极限平衡法介绍

极限平衡法介绍
极限平衡法介绍

边坡极限平衡分析方法及其局限性

边坡极限平衡分析方法及其局限性 1.引言 边坡稳定性问题是边坡工程中最常见的问题,边坡稳定性分析的核心问题是边坡安全系数的计算。边坡稳定性分析的方法较多,极限平衡分析计算方法简便,且能定量地给出边坡安全系数的大小,方法本身已臻成熟,广为工程界接受,仍然是当今解决工程问题的基本方法。 本文比较分析边坡极限平衡方法中最常用的几种方法,同时对极限平衡法中的若干重要问题及其局限性进行探讨。 2. 极限平衡法基本原则 边坡的滑面可以是圆弧、组合面( 比如圆弧和直线的结合) 或者由一系列直线定义的任意形状的面。图1[3]以最一般的形式显示了作用于一个组合滑面上的所有力。 图1 条块受力分析[3] 注: W为条块的总重力; N为条块底部作用的总法向力; S m为条块底部作用的切向力; E为条间的水平法向力( 下标L、R分别指土条的左、右侧) ; X为条间的竖向剪力; D 为外加线荷载; k W为通过每一条块的水平地震荷载; A为合成的外部水压力;R、f、x、e、d、h、a、ω、α为几何参数。一般边坡经合理简化后均可看作是该模型的特殊形式。

在边坡稳定分析方法中,极限平衡原理主要包含以下四条基本原则[1,5]。 (1)刚体原则 极限平衡法最基本的原则就是将滑体简化为刚体,即不考虑滑体的变形,不满足变形协调条件,这种破坏是以平面破坏模式为主。 (2)安全系数定义 将土的抗剪强度指标c 和tan φ 降低一定的倍数,比如降低FS 倍,则土体沿着此滑裂面达到极限平衡。安全系数为:??+=l l s dl dl c F 00' 'tan τ?σ (1),c 和tan φ两个强度参数共用同一安全系数F S ,即按照同一比例衰减。上述将强度指标的储备作为安全系数定义的方法被广泛采用。 (3)摩尔—库仑准则 当土体达到极限平衡时, 正应力c ′和剪应力tan φ′满足摩尔-库仑强度准则。如式(2)所示:''tan )sec (sec ?ααx u N x c T ?-+?=(2),式中,α 为土条底倾角,tan α=dy/dx ;u 为孔隙水压力。 (4)静力平衡条件 把滑动土体分成若干个土条,每个土条和整个滑动土体都满足力的平衡条件和力矩平衡条件。当未知数的数目超过了方程式的数目,为使静不定问题成为静定问题,可对多余未知数作出假设,使得方程数目和剩余未知数相等,即可解出方程,求得安全系数。 3. 极限平衡分析方法及其局限性[1,3,5] (1)瑞典圆弧法 1915 年,瑞典K.E.Peterson 提出瑞典圆弧法。将滑动土体当成刚体,通常粘性土坡的滑动曲面接近圆弧,因此称为圆弧法。 该法不考虑滑动土体内部的相互作用力,假定土坡稳定属于平面应变问题。 (2)瑞典条分法 1927 年,Fellenius 提出瑞典条分法,该法假设滑动面上的土体分成若干个垂直土条,忽略土条之间的相互作用力,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。安全系数定义为: ∑∑∑∑+=+= α?αβα?βsin )tan cos (sin )tan (W W c W N c F s (3)

极限平衡法介绍

基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主 23111212 311121e e e e P e e P e P P K n n n n n n n n n n n n n n n n c ???++??+?+= --------ΛΛ (12—1) 式中: si i si i bi i i Q e ?δ?α?sec )[cos(-+-=

) cos(i ei i a i W Q P α?-?= ) tan (si i i si i PW d C S ??-?= )(11111+++++?-?=si i i si i tn PW d C S ? )tan sec (bi i i i bi i u b C R ?α?-?= 1 1cos )sec(+++-=si si i bi i Q ??α? bi ?——条块底面摩擦角 bi c ——条块底面粘聚力 si ?——条块侧面摩擦角 si c ——条块侧面粘聚力 式(12—1)分成n 块滑体达到静力平衡的条件。该式物理意义是:使滑体达到极限平衡状态,必须在滑体上施加一个临界水平加速度Kc 。Kc 为正时,方向向坡外,Kc 为负时,方向向坡内,Kc 的大小由式(12—1)确定。 在对该方法应用中,对其进行了进一步完善,充分考虑了分层作用,并使不同层位赋予不同的强度参数,同时它还要求对解的合理性进行校核,使分析计算更趋合理,从而显示了该方法很强的适用性。 Bishop 法概述: 目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius 法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。 当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

极限平衡法在边坡稳定分析中的应用

极限平衡法在边坡稳定性分析中的应用 摘要从瑞典圆弧法、瑞典条分法和毕肖普法的基本原理出发,对比三者的不同假设,从得出的安全系数数据分析得出结论:三种方法中,毕肖普法得出的稳定性系数最大,瑞典条分法得出的稳定性系数居中,瑞典圆弧法迁出的稳定性系数最小。 关键词瑞典圆弧法瑞典条分法毕肖普法稳定性系数 1 概述 由于边坡内部复杂的结构和岩石物质的不同,使得我们必须采用不同的分析方法来分析其稳定状态。因此边坡是否处于稳定状态,是否需要进行加固与治理的判断依据来源于边坡的稳定性分析数据。 目前用于边坡稳定分析的方法有很多,但大体上有两种——极限平衡法和数值法。数值法有离散元法、边界元法、有限元法等;极限平衡法有瑞典圆弧法、毕肖普法、陆军工程师团法、萨尔玛法和摩根斯坦—普莱斯法等。 极限平衡法依据的是边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)来分析边坡在各种破坏模式下的受力状态,以及边坡滑体上的抗滑力和下滑力之间的关系来对边坡的稳定性进行评价的计算方法。由于它概念清晰,容易理解和掌握,且分析后能直接给出反映边坡稳

定性的安全系数值,因此极限平衡法是边坡稳定性分析计算中主要的方法,也是在工程实践中应用最多的方法之一。 其中瑞典圆弧法(简称瑞典法或费伦纽斯法)亦称Fellenious法,是边坡稳定分析领域最早出现的一种方法。这一方法由于引入过多的简化条件和考虑因素的限制 , 它只适用于φ= 0 的情况。虽然求出的稳定系数偏低 10 % ~20 %。,但却构成了近代土坡稳定分析条分法的雏形。 而在费伦纽斯之后,许多学者都对条分法进行了改良,产生了许多新的计算方法,使计算的方法日趋完善。 在瑞典圆弧法分析粘性边坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。Fellenius将土条两侧的条间力的合力近似的看成大小相等、方向相反、作用在同一作用面上,因此提出了不计条间力影响的假设条件。而每一土条两侧的条间力实际上是不平衡的,但经验表明,在边坡稳定性分析中,当土条宽度不大时,忽略条间力的作用对计算结果并没有显著的影响,而且此法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,所以目前的工程建设上仍然常用这种方法。 1955年,毕肖普(Bishop)在瑞典法基础上提出了——毕肖普法。这一方法仍然保留了滑裂面的形状为圆弧形和通过力矩平衡条件求解的特点,与瑞典条分法相比,毕肖普法是在不考虑条块间切向力的前提下,满足力多边形闭合条件,就是说虽然在公式中水平作用力并未出现,但实际上条块间隐含的有水平力的作用。毕肖普法由于考虑到了条块间水平力的作用,因此得到的安全系数较瑞典条分法略高一些。

极限平衡法的几种方法介绍

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主要有摩根斯坦-普瑞斯(Morgenstern-Price)法、毕肖普(Bishop)法、简布(Janbu)法、推力法、萨尔玛(Sarma)法等。 Bishop法概述: 目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。 当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,并与切向力相平衡,见图1(a),其算式为 (1)如图1(b)所示,将所有的力投影到弧面的法线方向上,则得 (2)当整个滑动体处于平衡时(图1(c)),各土条对圆心的力矩之和应为零,此时,条间推力为内力,将相互抵消,因此得 (3) 图1 毕肖普法计算图 将式(2)代入式(3),且,最后得到土坡的安全系数为

(4) 实用上,毕肖普建议不计分条间的摩擦力之差,即,式(4)将简化为 (5) 所有作用力在竖直向和水平向的总和都应为零,即并结合摩擦力之差为零,得出 (6) 代入式(5),简化后得 (7) 当采用有效应力法分析时,重力项将减去孔隙水压力,并采用有效应力强度指标有 (8) 在计算时,一般可先给假定一值,采用迭代法即可求出。根据经验,通常只要迭代3~4次就可满足精度要求,而且迭代通常总是收敛的。 摩根斯坦-普瑞斯(Morgenstern-Price)法 该方法考虑了全部平衡条件与边界条件,消除了计算方法上的误差,并对Janbu推导出来的近似解法提供了更加精确的解答;对方程式的求解采用数值解法(即微增量法),滑面形状任意,通过力平衡法所计算出的稳定系数值可靠程度较高。

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

极限平衡理论的应用分析

极限平衡理论的应用分析 极限平衡理论较常用于边坡稳定性分析,因可快速得到一潜在滑动面及其安全系数,但其假设较简单较不考虑岩土实际行为。本研究根据某一实例,由极限平衡理论的临界滑动面进行分析,接下来根据其安全系数加以讨论,有一定的现实意义。 标签:边坡稳定性极限平衡理论应用分析 由于近年来边坡灾害层出不穷,所以在边坡开发前,应审慎评估边坡安全性,因此边坡稳定分析是不可或缺的过程。一般工程界分析边坡稳定问题,大致可分为极限平衡理论与数值分析法,极限平衡理论为岩土在极限状态下计算力或力矩平衡方法,与岩土组合律无关;另外则为采用岩土应力-应变关系数值分析方法,如有限元素法、有限差分法等。 极限平衡方法用以评估边坡稳定已有相当多年的历史,其主要假设为所考虑的可能滑动土体范围内均达极限塑性状态,以寻求力、力矩或能量平衡。极限平衡方法所以能为工程界所接受并加以使用,主要是其简易且可得到不错结果。但该法无法确切反应边坡行为,除非边坡已接近临界状态,即安全系数接近或甚至小于1.0[1]。随着数值分析方法演进及计算能力提升,极限平衡方法有效性逐渐受到存疑[2]。 本研究使用Pcstabl 程序程序由美国普渡大学Siege 于1974 年所开发,并且不断发展新的功能。程序中有Bishop、Janbu 及Spencer 等切片分析法可求取边坡安全系数及可能滑动破坏面位置。此外对于异向性的岩土、地下水位、地表荷重、地震力等均能加以分析,其应用于边坡相关问题分析上相当普遍[3]。本研究采用Pcstabl5m Janbu切片分析法,此法可解决不规则地形与不同剪力强度土层边坡稳定问题,滑动面可为任意形状,且滑动面上与滑动土体内任意位置应力皆可计算[4]。 实务工程设计常使用极限平衡理论,因可快速求得安全系数与可能滑动面。而安全系数一般可由力平衡或力矩平衡求得,如式(1)所示。 但由于极限平衡理论假设沿边坡滑动面上的每一点均同时达到极限状态,即滑动面上每一点安全系数均相同,与实际边坡破坏并不相符[5]。其所假设与分析适用性均有不尽合理的地方,因此,极限平衡理论在使用上有其限制。 本研究区域由砂岩、页岩或砂页岩所构成,地层可概略分为两层,表层岩土为沉泥质砾石层至沉泥质砂土层,此层主要由黄棕色岩块及岩屑所构成,厚度约为0.7至24m不等;其下为风化砂岩层,此层主要由黄棕色至白色砂岩所构成,此层砂岩呈新鲜或完全风化不同现象,接近地表风化严重且破碎,大部份岩层锈染严重,反映地下水含量丰富。由一般物理性质试验可得,岩土干单位重为17至21kN/m3,饱和单位重为21至23kN/m3,三轴试验及直接剪力试验得凝聚力

边坡稳定性极限平衡法分析

边坡稳定性极限平衡法分析 ::边坡稳定性问题一直是岩土工程界的一个重要研究内容,它涉及矿山工程、土木工程、铁路公路工程、水利水电、港口、废渣及垃圾处理等诸多工程领域,以及山坡、岸坡等自然领域。本文介绍了边坡稳定性分析中比较常用的方法极限平衡法的基本原理,并且以某煤矿坡建筑场区为例说明了其应用,并给出相应的支护加固方案。 论文关键词:边坡稳定性,极限平衡法,边坡支护加固 1.引言 边坡(斜坡)是人类工程和经济活动中最普遍的地质地貌环境。它是岩石圈的天然地质和工程地质的作用范围内具有露天侧向临空面的地质体,是广泛分布于地表的一种地貌形态。边坡稳定性研究已有一百多年的历史,特别是近几十年来,随着环境保护与减轻自然灾害十年活动在我国的开展,边坡稳定性评价与滑坡预测已经成为具有特色的工程地质课题之一。 对于煤矿岩石高边坡极限平衡法,影响稳定性的因素总体上分为地质因素及非地质因素两类发表论文。前者是滑坡发生的地质基础条件,后者则为滑坡的发生提供了外动力因素和触发条件。影响边坡稳定状态的地质因素包括边坡岩体的结构特性、介质结构特性、地下水状态、水文地质条件及地应力等;非地质因素包括大气降雨、振动、坡脚切层开挖以及边坡下面地下开采等。

2.边坡稳定性分析 边坡稳定性分析理论在国内外的发展经历了一个很长的历史时期,国内外不少专家学者对其进行过研究,稳定性分析方法很多,如:定性分析方法,定量分析方法,不确定分析方法,确定性和不确定性方法的结合,物理模拟方法等。 2.1极限平衡法基本原理 现在边坡稳定性分析中比较常用的方法是极限平衡法。该方法基于该原理的方法很多,如瑞典圆弧法、Bishop法、Janbu法、Sarma法、Morgenstern-Price法极限平衡法,Spencer法,不平衡推力法等,并且开发了相应的计算机程序。 极限平衡法的基本原理是根据边坡破坏的边界条件,应用力学分析研究的方法,对可能发生的滑动面,在各种荷载作用下进行理论计算和抗滑强度的力学分析。通过反复计算和分析比较,对可能的滑动面给出稳定性系数。 一般建立在极限平衡原理基础上的边坡稳定性析方法包含强度准则、静衡、安全系数定义三个原则。 由于滑坡体内地下水位位于滑动面附近,水的润滑作用对滑坡的稳定极为不利,根据极限平衡法稳定计算结果,滑坡体处于极限平衡状态偏不稳定状态,结合在根据滑坡的变形特征和变形监测结果极限平衡法,目前滑坡比较活跃,变形速率平均为0.5mm/d,最大变形速率高达

边坡极限平衡法

边坡极限平衡法 极限平衡法的特点 核心思想 极限平衡法的核心思想有两点:一是化整为零,即将边坡滑体进行条块划分,并研究条块之间的相互作用,不同的极限平衡法之间的差异就在于条块间相互作用假定的不同;二是极限平衡,即滑体在一定条件下达到极限平衡状态,亦即边坡安全系数Fs=1.0,当然不同方法对边坡安全系数的定义也有差异。 方法的可行性 极限平衡法虽然简单,但是简单并不代表其理论上不严密,在此有两个问题需要说明:一是为何可以选取平面作为边坡剖面进行分析,这是由于在选择计算剖面时通常选取最不利的平面,并且平面忽略了垂直于平面的约束,将其简化为平面应力问题,这使得典型剖面的计算结果更加保守,因此更偏于安全;二是边坡实际所处的弹塑性状态,根据潘家铮上下限原理,岩土体所处状态总是介于上下两个极限之间,对边坡而言,其上限是整个滑体达到塑性状态,下限是仅滑动面达到塑性状态,极限平衡法对应的极限状态首先是使滑面达到塑性状态,滑体则根据不同方法条间力假定的不同而在不同程度上达到塑性状态。基于以上两点,可以看出极限平衡法虽然简单,但是它在一定程度上反映了边坡稳定状态的本质,而且在理论和方法上是严密可行的。 优缺点

极限平衡法的特点即是忽略边坡演化过程,直指特定状态下的稳定分析结果,这个特点既是其优点所在,也是其不足之处,优点在于忽略了边坡岩土本构这个难题,直接分析边坡极限状态下的稳定性;不足在于由于忽略了本构,因此不能分析边坡的变形演化过程,而且只求解边坡整体稳定系数,目的过于单一。当然极限平衡法和数值算法亦存在一个共同问题,即必须在典型剖面上搜索出滑动面,不同之处在于,极限平衡法是通过经验和试算选取安全系数最小的剖面作为滑动面,而数值算法则选取塑性贯通区作为滑动面。

极限平衡法的研究及其发展现状

极限平衡法的研究及其发展现状 【摘要】本篇论文主要介绍极限平衡法在国内和国外实际工作中常用到的一些方法,并简单介绍这些方法的特点、应用范围及基本假定,最后简述极限平衡法的发展。 【关键词】极限平衡法;特点;应用范围;基本假定;发展 1 前言 边坡稳定分析是土力学中很值得研究的一个学术领域,而极限平衡法则在边坡稳定分析方法中应用是最早最广泛的。该法以Mohr Colomb强度理论为基础,通过分析土体在破坏那一刻的静力平衡来求得问题的解。它没有像传统的弹塑性力学那样,引入应力应变关系来求解本质上为静不定的问题,而是引入了一些简化假定,从而使问题变得静定可解。这种处理使方法的严密性受到了损害,但对稳定性计算结果的精度影响并不大,由此带来的好处是使分析计算工作大为简化。这也是迄今国内外对边坡稳定问题的分析仍广泛采用极限平衡法的原因所在。 2 国内外极限平衡法及其特点 目前国内外常用的极限平衡法主要有(1)Fellenius法、(2)简化Bishop法、(3)Morgenstern Price法、(4)Spencer(1967)法、(5)Sarma(1973)法、(6)Janbu法(1973)和(7)国内常用的推力传递法等,下面将对这些方法做一下概述。 2.1 Fellenius法 Feellnius法(费伦纽斯法)亦称瑞典圆弧法,是根据土坡极限平衡稳定进行计算的。自然界均质土坡失去稳定时,通常粘性土坡的滑动曲面接近圆弧,可按圆弧计算,所以称为圆弧法。圆弧法是条分法中最古老而又最简单的方法,由于不考虑条间力的作用,严格地说,对每个土条力的平衡条件是不完全满足的,对土条本身的力矩平衡也不满足,仅能满足整个滑动土体的整体力矩平衡条件。由此产生的误差,一般使求出的稳定系数偏低10%到20%,而且这种误差随着滑动面圆心角和孔隙压力的增大而增大。 2.2简化Bishop法 简化Bishop法假设条块间作用力的方向为水平,即假定只有水平推力作用,而不考虑条间的竖向剪力,于是可建立整体力矩平衡方程并由静力平衡条件求解安全系数。简化Bishop法忽略了条间剪力差,使求解安全系数变得更方便,精度相对来说也没有降低。 该法也适用于圆弧滑动面。与瑞典圆弧法相比,如上所述,它是在不考虑条块间切向力的前提下,满足力的多边形闭合条件。也就是说,隐含着条块间水平力的作用,虽然在它的计算公式中水平作用力并未出现,但很多工程计算表明,该法与满足全部静力平衡条件的方法,如与Janbu法相比,结果甚为接近。由于计算过程不很复杂,精度也比较高,所以,该方法是目前工程中很常用的一种方法。简化Bishop法目前已被纳入各国规范。 2.3 Morgenstern Price法 Morgenstern Price法适用于任意形状的滑动面。该法对任意曲线形状的滑裂面进行了分析,导出了满足力的平衡及力矩平衡条件的微分方程式,然后假定两相邻土条法向条间力和切向条间力之间存在对水平方向坐标的函数关系,根据整

边坡稳定性计算极限平衡计算法的计算图法 2010

边坡稳定性计算极限平衡计算法的计算图法 2010-1-15 一、基本条件的假定和计算图原理 本方法是在假定边坡坡顶无张裂隙和无地下水的条件下,在极限平衡原理的基础上,经过数理分析和适当简化而推导出的。 二、使用方法和应用条件 首先根据设计条件确定边坡滑坡类型和计算参数,然后用相应的(即按图1A和图 2A)计算公式算出边坡高度函数y和边坡角度函数x,最后查计算图曲线(图1B或图2B),便可求得稳定系数或边坡角。

图1B 平面形滑坡设计计算g-稳定系数曲线图

图2B 弧形滑坡设计计算 g-稳定系数曲线图 该方法可应用于矿山开采的可行性研究、规划、任务书或方案设计,或工程地质条件简单的中小型矿山设计。对生产矿山进行边坡稳定性评价时,在计算参数满足计算查图要求条件下,亦可应用该方法。 三、边坡稳定系数计算 X,Y值的计算模式和计算公式见图1A或图2A。 四、算例 见下表。 算例(一)

=200m;=45°;允许 K=1.25;C=20×104Pa;=36°; =2.7×104N/m3=200m;=30°;=40°; Zo=50m;Hw=100m;C=14×104Pa;=30° 按图1A 式a:式b:按图1A 式e: 式d: 先用Y、K值查图1B中曲线是 X值,后将X代入式求得 算例(二) 坡角β值 =250m;=55°; =2.6×104N/m3;C=7.5×104Pa =250m;允许K=1.16;Hw=125m; C=40×104Pa;=42° =2.4×104N/m3

式a: 式b: 式c: 式b: K=1.55 先用Y、K值查图2B中曲线得X 值,后将X代入式C求得=45°注:选自《参考文献》[4]

某露天矿高边坡极限平衡法对比分析

Ser i a l N o.486 O c t ober.2009现代矿业 M ORDEN M IN ING 总第486期 2009年10月第10期 何巡军,400030重庆市。某露天矿高边坡极限平衡法对比分析 何巡军赵洪宝王俯标李小双 (重庆大学资源及环境科学学院) 摘要:介绍了3种基于极限平衡理论边坡稳定分析方法的基本原理,并利用SLOPE/W程序对某露天矿边坡典型勘探线剖面在当前开采境界和计划开采境界下进行了稳定性分析。通过分析计算,获得了分别采用B ishop法、Janbu法和Sar m a法在自然状态、考虑水和地震作用3种工况下边坡安全系数。分析结果表明:当前开采境界下,边坡处于稳定状态;计划开采境界下,边坡处于非稳定状态,不可按原计划进行开采;水和地震的作用将对边坡稳定性产生重要的影响。 关键词:高边坡;B ishop法;Janbu法;Sar m a法;拟静力法 中图分类号:TD854.6文献标识码:A文章编号:1674-6082(2009)10-0055-03 Co m parative Analysis of Li m it Equilibriu m M ethods for H igh Slope at an Open P itM ine H e Xun j u n Zhao H ongbao W ang Fub iao L iX i a oshuang (C ollege o fResource and Env ir onm enta l Sciences,Chongq i n g Un i v ersity) Abst ract:The basic pri n ciples of t h ree kinds o f slope stability ana l y sis m ethods based on li m it equ-i li b ri u m theory are descri b ed.The stability o f typica l prospecting li n e secti o n of a sl o pe of an open pit m ine at current and planned m i n i n g boundary using SLOPE/W is ana l y zed.Through analysis and ca lcu-lation,the sl o pe sa fety coefficients considering natural sta te,w ater and earthquake effects are gained by B ishop m ethod,Janbu m ethod and Sar m a m et h od.The resu lts i n dicate t h at t h e slope is stab le at curren t m ining boundary;the slope is unstable at planned m ining boundary and the m ining plan needs change. W ater and earthquake have i m portant effects on sl o pe stab ility. K eyw ords:H igh slope;B ishop m ethod;Janbu m ethod;Sar m a m ethod;Pseudo-static m ethod 1引言 在我国金属矿山中,有相当一部分矿山采用的是露天开采方式[1,2]。随着开采规模的不断扩大,开采深度不断增加,形成了一些高陡露天边坡。据不完全统计,在我国露天矿山中,不稳定边坡或具有潜在不稳定边坡占总边坡长度的15%~20%,个别的高达30%以上[3]。边坡失稳已经成为影响、困扰矿山安全作业和矿工生命安全的重要问题。 笔者以极限平衡法为理论基础,运用三种不同的极限平衡方法,在三类工况下进行了某露天矿边坡的稳定性计算分析。 2极限平衡法基本原理 正确评价分析露天矿边坡稳定性对矿山安全生产具有重要意义[4]。目前,在露天矿边坡分析中使用最为广泛的方法仍然是极限平衡法[5]。这种方法是以M ohr-Coulo m b强度理论为基础,其表达式为: S f=c c+R c tan U c(1)式中:S f为破坏面上的剪应力;R c为破坏面上有效法向应力;c c为土的有效粘聚力;U c为土的有效内摩擦角。 极限平衡方法的基本特点是,将边坡视为刚体,只考虑静力平衡条件和土的摩尔-库伦破坏准则。也就是说,通过分析土体在破坏时的力学平衡来求得问题的解。但在大多数情况下,通过这些条件建立的方程组是静不定的。极限平衡方法处理是对某些多余的未知量作一定简化假定,使问题变得静定可解[6~8]。边坡土条受力见图1。 由图1知,土条受力包括:重力W i;作用在土条体底部的法向力N i和切向力T i;作用在侧面的法向力X i和切向力S i。 55

三维刚体极限平衡法程序的编制及其应用

100429665 2000 09(01)20107206 J ou rnal of E ng ineering Geolog y 工程地质学报 三维刚体极限平衡法程序的编制及其应用Ξ 蒋臻蔚① 王启耀② 赵 杰① (①长安大学 西安 710054) (②同济大学 上海 200092) 摘 要 西安市黑河水库右坝肩变形体是在旋转变形条件下形成的,这样,对它的稳定性评价必须按空间问题来考虑,要用三维分析方法来计算它的稳定性。鉴于目前的三维计算方法比较复杂,得出的结果实用性不大,本文首次编制了三维刚体极限平衡法程序,该程序既能计算稳定系数,又能计算出相应稳定系数下的滑坡推力。应用该程序计算黑河水库右坝肩变形体的稳定性,得出的结果与实际相吻合,同时又为工程治理提供了依据。 关键词 平面旋转坡体 三维刚体极限平衡法 稳定性分析 中图分类号:O343.2 O344.4 文献标识码:A PROGRA MM I NG OF THE3-D R I GI D L I M I TE D-QU I L I BR I U M M ETHOD AND I TS APPL I CATI ON J I A N G Zhenw ei① WAN G Q iyao② ZHAO J ie① (①Chang′an U niversity,X i′an 710054) (②T ongJ i U niversity,S hang hai 200092) Abstract T he defo r m ed rock m ass at the righ t abut m en t of the H eihe R eservo ir of X ian C ity w as fo r m ed by ro tati on.T hus,the analysis of its stability m ust be perfo r m ed by th ree2di m en si on m ethod.How ever,curren t calculati on m ethods are difficult to be put in to p ractical use due to their comp licity.T h is paper w rites a3-D p rogra m of the rigid li m ited-equilibrium m ethod by w h ich bo th the stability coefficien t and the push ing fo rce of landslide can be computed.T hen,it is app lied to the stability analysis of defo r m ed rock m ass at the righ t abut m en t of H eihe R eservo ir.T he result co rrelates w ellw ith real case and p rovide evidence fo r the engineering p reven ti on. Key words P lane ro tati on sl ope,32D rigid li m ited-equilibrium m ethod,Stability analysis 1 引 言 西安市黑河引水工程是解决西安城市供水、农田灌溉及水力发电的综合性大型水利工程。 黑河水库金盆坝址右坝肩2#滑坡体开挖清除时,开挖削坡仅4万余方即引起上部岩体较大范围的变形。在坡体上方710~775m高程范围内先后发现一系列弧形及羽状山体裂缝,后缘裂缝长达400m左右,裂缝宽度10c m至1.5m不等,局部深不见底,缝壁多近直立。初始裂缝发生月余后,不连续弧形裂缝即发展到14条之多。其分布范围之广,发展速度之快,实属罕见。此外,在开挖断面上及几个平硐内均可见大量张开裂隙及岩体拉裂松动现 Ξ收稿日期:2000210215.收到修改稿日期:2000212230. 第一作者简介:蒋臻蔚(19752),女,硕士研究生,地质工程专业.

极限平衡法

1定义(两种) 极限平衡法是岩土体稳定性分析方法之一。通常根据作用于岩土体中潜在破坏面上块体沿破坏面的抗剪力与该块体沿破坏面的剪切力之比,求该块体的稳定性系数。[1] 分析岩体和土体稳定性时假定一破坏面,取破坏面内土体,为脱离体计算出作用于脱离体上的力系达到静力平衡时所需的岩土的抗力或抗剪强度,与破坏面实际所能提供的岩土的抗力或抗剪强度相比较,以求得稳定性安全系数的方法,或根据所给定的安全系数求允许作用外荷载的方法. 2目前常用的二维极限平衡分析方法有:瑞典法(亦称作Fellenious法)、简化Janbu 法、Bishop简化法、严格Janbu法、Lowe-Karafiath(罗厄)法、美国陆军工程师团法、Morgenstern-Price法、Spencer法、垂直条分Sarma法、斜条分Sarma法、传递系数法等,区别主要在于条间力假设。这些方法都是假定滑体各分条块在某种条件下(超载或材料强度折减)在剪切面上都达到极限平衡状态,并将超载倍数或强度折减的系数定义为边坡稳定的安全系数。上述各种极限平衡分析方法是一些基本的分析方法,在分析中需要进行迭代计算,在计算时会遇到迭代不收敛及计算精度问题。随着岩土力学、数值分析方法和计算机技术的发展,许多学者对这些分析方法进行了不断地改进、发展与完善。

在边坡、坝基和其他建筑物的抗滑稳定分析中,极限平衡法是工程中普遍采用的方法;Spencer 和Morgenstern and Price method 都是严格的极限平衡;Fredlund和Krahn通过对不同分析方法的比较,得出Morgenstern-Price法是最优方法。在二维分析的基础上,一些学者对边坡抗滑稳定的三维极限平衡分析方法进行了研究,将二维时的分条变成了三维时的分条柱,其分析方法的基本思路与二维一致。三维极限平衡分析时将二维时的分条变成了三维时的分条柱,其分析方法的基本思路与二维一致。三维极限平衡法计算的稳定安全系数均高于二维极限平衡平面法,三维法计算结果更接近真实性,二维法偏于保守。尽管三维极

基于极限平衡法的边坡稳定性分析

基于极限平衡法的边坡稳定性分析 【摘要】本文利用极限平衡方法,结合边坡极限平衡分析软件Slide对长沙市天心区新天村安置小区南侧边坡稳定性进行了分析,并对支护措施进行了验证。研究表明:该边坡在自然无支护条件下处于极限稳定状态,与实际监测数据一致。在利用设计院推荐支护措施进行支护处理后边坡达到规范规定的安全系数要求,表明该支护措施对边坡的治理是行之有效的。 【关键词】极限平衡法;边坡;稳定性;锚索 0引言 边坡稳定性分析方法主要分为极限平衡法与数值分析方法,极限平衡方法分析边坡稳定性具有简单、快捷的特点。而数值分析方法主要利用数值计算软件对边坡开挖、支护过程进行模拟,计算精度较高,但由于建模分析相对繁琐,在工程中并未得到广泛的推广应用。随着计算机水平的发展,极限平衡方法逐渐被软件化,出现了以geo-studio、slide等为代表的一批基于极限平衡方法的边坡计算软件,为相关工程的设计计算提供了方便,并得到了广泛的应用。如万文[1]运用极限平衡法对某高速公路边坡稳定性及支护措施进行了模拟,探讨了Janbu法、Bishop法、Morgenstren-Price计算方法在边坡稳定性计算中的不同点。得到了一些有益的结论。而曾铃[2]运用极限平衡方法对某边坡滑移面的抗剪强度参数进行了反演分析,得到了与实际相符的计算参数。由此可见,利用极限平衡方法分析边坡稳定性已经得到了广泛应用。因此,本文在总结前人研究成果的基础上,基于极限平衡计算软件,对某边坡初始稳定性及处治措施进行了研究,为设计与施工提供了参考依据,具有一定的现实意义。 1极限平衡计算原理及方法 1.1极限平衡计算原理 分析岩体和土体稳定性时假定一破坏面,取破坏面内土体,为脱离体计算出作用于脱离体上的力系达到静力平衡时所需的岩土的抗力或抗剪强度,与破坏面实际所能提供的岩土的抗力或抗剪强度相比较,以求得稳定性安全系数。安全系数根据定义可表示为[3]: F■=■(1) 式中:F■为安全系数,τ■为滑动面上的抗滑力,τ为滑动面上的实际滑力。 极限平衡分析方法最早是1961年由瑞典人彼得森提出来的,他将边坡潜在滑移面以上的土体划分成若干个垂直条块,在计算过程中进行了一定的假设,假设条块间没有相互作用力的存在,定义安全系数为潜在滑移面上的抗滑力矩与滑动力矩之比为边坡安全系数。随着科学技术的研究的不断深入,广大学者在此基础上对其进行了优化[4-5],出现了以Bishop法、Janbu法、Morgenstren-Price等一系列简化方法。限于篇幅本文只对Bishop法进行详细介绍。 1.2Bishop简化计算方法 简化的Bishop法假设滑移面的形状为圆弧形[6-7],土条之间只有水平推力,条间剪力为零,计算见图如图2所示。 图1BISHOP计算简图 作用在第i条块上的力有重力(W)、开挖面的法向力(Nci)和切向力(Tci)、条块分界面上的法向力(Ei,Ei-1)和切向力(Xi,Xi-1)以及潜在滑动面上法向力(Ni)和切向力(Ti)。l■为第i条块底边长度,α■为第i条块底边与水平面的夹角,c■

相关文档
最新文档