煤矿深部巷道围岩控制技术

煤矿深部巷道围岩控制技术
煤矿深部巷道围岩控制技术

深部煤矿应力分布特征及巷道围岩控制技术 韩孝广

深部煤矿应力分布特征及巷道围岩控制技术韩孝广 发表时间:2019-01-09T14:22:32.410Z 来源:《建筑学研究前沿》2018年第31期作者:韩孝广王涛[导读] 本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 山东省滕州曹庄煤炭有限责任公司山东滕州 277519 摘要:近年来,矿井开采深度逐年增加,巷道周边的地应力也相对提高。本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 关键词:深部煤矿;应力分布特征;巷道围岩 前言 深部煤炭开采的最大特点是煤炭资源开采前煤岩体处于高原岩应力状态,而进行采掘活动后,裸露采掘空间表面垂直方向的应力迅速降到大气压。这种变化引起围岩应力的调整,出现很高的集中应力,在围岩中形成很大的应力梯度。围岩应力分布不是一成不变的,而是随着采掘活动的进行不断变化。当煤岩体不能承受这种应力变化时,就会出现各种灾害,这对深部煤矿的安全、高效开采带来巨大威胁。 1 深部煤矿应力分布特征 1.1 深部煤矿地应力测量与分析 目前,许多矿区对深部煤矿的地应力特征缺乏理性认识。当前直接用于地应力场的研究数据较为缺乏,许多煤矿对支护问题、冲击地压等,与地应力场联系较少。矿井深度的增加导致地应力值增加,破坏巷道能力加强。 当前的地应力测量主要以空心包体法为主,某些条件下也可采用水压致裂法。研究地应力学者通过整理600~1500m的深部矿区数据,剔除特殊地质环境测量数据后,总结出地应力测量的方法主要有:水压致裂法(用于一般地质条件)、结合应力解除法。 1.2 深部煤矿地区的地应力方向特征 经过对我国深部煤矿地区的地应力测量研究,发现我国深部矿区地应力方向存在一些特征:岩层中的水平应力方向特征较为显著;最大水平应力角度下量值较垂直应力大。 2 深部巷道围岩控制技术 巷道围岩控制技术按原理可分为3大类:①支护法。它是作用在巷道围岩表面的支护方式,如各种类型的支架、砌碹支护,为了改善支架受力状况,提高支护阻力,还可实施壁后充填和喷浆等。②加固法。其是插入或灌入煤岩体内部起加固作用,使煤岩体自稳的方法,如各种锚杆与锚索、注浆加固,锚杆、锚索分为插入煤岩体内的部分(杆体、锚固剂),以及设置在巷道表面的构件(托板、钢带及金属网),因此,“锚杆支护”确切意义上应称为“锚杆加固”或“锚杆加固与支护”。③应力控制法。它是改善巷道围岩应力状态,从而使巷道处于应力降低区的方法,包括巷道布置优化及各种人工卸压法。 2.1 巷道布置优化及应力控制法 针对深部巷道围岩应力高、变形大,甚至会出现冲击地压、煤与瓦斯突出等动力灾害,进行采掘优化、巷道布置优化,改善巷道受力状态是首先应考虑的方法。将巷道布置在应力降低区,如沿已稳定的采空区边缘掘进巷道(沿空掘巷),将巷道布置在采空区下方(掘前预采、上行开采等),均可明显降低巷道受力,改善围岩应力状态。 在深部开采中,有些煤矿水平应力大于垂直应力,而且水平应力具有明显的方向性,最大水平主应力明显高于最小水平主应力。在这种条件下,当巷道轴线与最大水平主应力平行,巷道受水平应力的影响最小,有利于顶底板稳定。根据地应力实测数据优化巷道布置方向,对巷道稳定性会起到事半功倍的作用。此外,巷道布置应尽量避开大型地质构造(断层、褶曲、陷落柱等)。 根据深部煤矿地应力场分布特征,对巷道断面形状与尺寸进行优化,可改善巷道周边附近围岩应力分布,有利于围岩稳定。人工卸压法,包括切缝、爆破、钻孔及掘卸压巷等,可转移巷道周边附近的高应力,改善围岩应力状态,在适宜的条件下可作为一种辅助的围岩控制手段。 2.2 深部巷道支护与加固法 目前,深部巷道支护与加固形式主要有:锚杆、锚喷支护,U型钢可缩性支架,注浆加固,复合支护(采用2种或2种以上的支护加固方式联合支护巷道,如锚喷+注浆加固,锚喷+U型钢可缩性支架,U型钢支架+注浆加固,以及锚喷+注浆+U型钢支架等型式)。经过多年研究与实践,我国煤矿已形成了基于煤岩体地质力学测试、以预应力锚固与注浆为核心的巷道支护成套技术。对于深部巷道,锚固与注浆技术也是经济有效的围岩控制技术。 1)预应力锚固技术。在深部巷道采用的预应力锚杆、锚索支护技术,其支护原理是大幅提高支护系统的初始刚度与强度,形成高支护应力场,降低采动应力场梯度,主动控制围岩扩容变形,保持其完整性。同时,支护系统应具有高延伸率,允许围岩有较大连续变形,通过预留变形量,使巷道发生可控变形后仍能满足使用要求。不同巷道条件应有不同的锚杆支护形式:预应力锚杆支护适用于围岩比较完整的岩石巷道、岩石顶板煤巷等;预应力锚杆与锚索支护可应用于煤顶巷道、无煤柱护巷、软岩巷道、高应力巷道、动压巷道及大断面巷道等多种比较困难的条件;全预应力锚索支护,顶板、两帮,甚至底板全部采用预应力锚索支护,适用于深部高应力巷道、强烈动压巷道等非常困难的条件。 2)注浆加固技术。在松软破碎煤岩体中开掘巷道,围岩自稳时间短、破碎范围大,在这种条件下,注浆加固是围岩控制的有效途径。注浆加固利用浆液充填围岩内的裂隙,将破碎煤岩体固结起来,提高围岩整体强度,增加围岩自身承载能力。我国煤矿目前采用的注浆材料主要分为2大类:一类是水泥基材料,是注浆加固应用最广的材料;另一类是高分子材料,如聚氨酯、脲醛树脂等。此外,还开发出多种复合材料,以改善注浆材料的性能,降低注浆材料的成本。在井下应用时,可根据巷道具体地质与生产条件进行选择。 3)预应力锚固与注浆联合加固技术。当巷道围岩松软破碎,锚杆与锚索锚固力不能保证时,预应力锚杆、锚索与注浆联合是一种有效的加固技术。注浆可将松软破碎围岩粘结,提高围岩整体强度,同时为锚杆与锚索提供可锚的基础,保证锚杆与锚索预应力与工作阻力能有效扩散到围岩中。注浆后采用预应力锚杆与锚索支护,可有效控制围岩扩容变形,保持围岩长期稳定。此外,还开发了多种注浆锚杆、注浆锚索及钻锚注一体化锚杆,适用于不同条件的巷道加固。

深部开采

深部矿井开采技术问题 摘要:本文根据我国主要深部矿区30余对矿井的实地调查、部分井下观测和25个矿务局的函调材料,对我国煤矿深部开采的基本状况及其在开采中遇到的巷道维护、冲击地压、瓦斯突出及地热等主要问题作了总结和剖析,并就今后煤矿深部开 技术问题提出了几点看法和建议。 1煤矿深部开采的现状及趋势 深井开采技术是当今世界主要深井开采国家(如德国、原苏联、波兰等)十分关注的问题之一。随着我国煤矿开采规模的扩大,开采深度的逐渐增加,深部开采中遇到的各种技术问题日益增多,对当前的煤矿生产和今后矿井建设的影响日趋严重。因此,研究深部开采问题,对安全、经济、合理地开发深部煤炭资源无疑有特别重要的意义。 我国是世界第一产煤大国,1997年原煤产量13.3亿吨。全国主要国有矿区90多个,井工开采的生产矿井588对(1996年统计)。据不完全统计,采深超过800m的深井19对,其中开滦矿务局赵各庄、沈阳矿务局彩屯矿采深超过1000m,新汶矿务局孙村矿、华丰矿、长广七矿采深超过800m。“八五”期间新打深井65个,平均深度588m,其中700~800m的井筒28个,800~1000m的井筒13个,1000m以上井有12个。 据煤炭资源开发和资源保护研究指出,在我国预测总储量中73.2%埋深在1000m 以下,浅部储量较少。因此,深井开采技术不仅是目前一些深矿井面临的问题,而且从长远看,它将是我国今后进一步开发利用深部煤炭资源的带有战略意义的问题。 2深井开采的主要技术问题 2·1矿压显现加剧,巷道维护困难随着矿井采深的不断增加,一方面,巷道断面必需加大,据对开滦矿区统计,近10年间采深平均增加100m,岩石巷道断面平均增加8.1%,煤、半煤岩巷平均增加32%;另一方面,地压增大,在深部高应力作用下,围岩移动更为剧烈,巷道产生变形破坏更为严重。在调查的超过700m的深井中,巷道矿压问题普遍严重,底鼓成为常见的地压现象,特别在采准巷道中尤其严重。失修和严重失修巷道比例增加,据开滦局调查统计,井深1000m时巷道失修率约是同条件下500~600m埋深巷道失修率的3~15倍,部分矿井巷道失修和严重失修率达20%以上。巷道维修占用大量人力物力,林西矿井深800m,巷道维修工占井下工人的比重为7.00%~10.50%。很多深部巷道由于严重破坏无法行人、行车而被迫停产反修。且常常出现前掘后修、重复反修的象。深井巷道维护问题已成为整个矿井生产系统中的最薄弱环节。 出现上述现象的主要原因是客观上井深、围岩应力增加。主观上没有充分认识深井巷道矿压规律,巷道支护形式不能适应深井巷道围岩变形的要求,支护形式、支架参数

深部围岩变形破坏时效性分析

深部围岩变形破坏时效性分析 1.引言 围岩应力场和位移场的分布规律是地下工程设计中必须解决的主要问题。地下洞室的失稳破坏,往往是从洞室周边开始、由于围岩应力超载或围岩位移过量所致,而岩石的流变性使得围岩的变形具有很强的时效性。一方面由于岩石和岩体本身的结构和组成反映出明显的流变性质,另一方面也由于岩体的受力条件(包括长期受力和三轴应力状态)使流变性质更为突出,因此,在矿山和地下工程中表现的力学现象,包括地压、变形、破坏等等几乎都与时间有关。巷道或隧道开挖后,在地应力的作用下,围岩往往会向巷道或隧道内慢慢地移动收敛,具体表现是:侧墙逐渐向内移动,底板慢慢隆起,顶拱则进一步开裂。各种长期监测资料表明,自洞室开挖至数月或数年内,围岩的变形和应力分布均随时间发生变化。现在己经认识到岩体流变的普遍性,并用塑性流动和粘性流动来解释地下工程的时间效应问题。岩石的流变变形也是导致岩体地下工程中支护结构产生变形和破坏的主要原因,作用于地下结构衬砌上的载荷会随时间而增长,大型边坡和地下洞室的变形会逐渐加大,甚至会引起灾难性的后果。 因此,对地下洞室变形时效性的研究,也是我们在地下工程中合理选择支护类型及支护结构的前提,对于研究开挖后的工程岩体的动态特征以及岩体工程的设计,均具有十分重要的意义。 2.岩体时效(Rock Timeliness)的影响因素 岩体流变性质和时效特征是岩石材料的固有力学属性,也是用以解释和分析地质构造运动现象和进行岩体工程长期稳定性预测的重要依据。根据大地构造测试结果,地壳目前的平均蠕变速率为106l/s。不少大断层至今仍有持续移动的迹象。在边坡、隧洞、基坑、矿井、铁路路基等岩体工程中,岩体流变现象很常见。近年来,由于能源开发的扩大和环境保护要求的提高,所进行的天然气、液化气、油料以及核废料地下储藏课题研究,将岩石材料在不同荷载水平和不同温度条件下的长期变形与稳定问题提到了十分紧迫和重要的地位。一般认为,岩体工程中的时间效应主要是由以下几个方面的因素所引起的: (l)、岩石材料本身所具有的粘性性质,如蠕变、松弛、滞后以及弹性后效等。一般的软岩,如盐岩、泥岩、粘土岩等,其粘滞系数都达到106-109MPa.S。硬岩的流变性态相对较弱,如测得的花岗岩的粘滞系数为1013MPa .S。然而,由于受到成岩过程中的地质构造运动影响,岩石材料中存在各种裂隙、节理、层理等构造面,这一结构特点导致脆性岩体亦呈现较强的

矿井深部开采沿空巷道的围岩控制技术研究

矿井深部开采沿空巷道的围岩控制技术研究 摘要:针对深部综放沿空巷道围岩稳定性差、变形大、难支护的特点,通过理论分析、数值模拟和现场实验等方法,从巷道支护方式和巷道断面优化两方面讨论了深部综放沿空巷道的控制技术。研究结果表明:直墙半圆拱形断面、锚梁网索联合支护方式能够较好的控制深部综放沿空巷道围岩,减少巷道围岩变形,增强其稳定性。 关键词:深部综放沿空巷道半圆拱形锚网索联合支护断面优化 1、引言 随着对能源需求量的增加和开采强度的不断加大,我国矿山相继进入深部开采。目前,我国煤矿开采深度以每年8~12m的速度增加,而东部矿井更以每年10~25m的速度增加,预计未来20年,我国很多煤矿将进入1000m~1500m的深度开采。另一方面,我国已探明煤炭资源埋深在1000m以下的储量为2.95万亿吨,约占煤炭资源总量的53%,因此,现在及未来一段时间内,我国煤矿开采将逐渐转入深部开采。 由于深部岩体所处的地球物理环境及其应力场的复杂性,在浅部开采基础上发展起来的传统支护理论、支护参数已难以适应深部巷道支护设计和实践的需要。深部综放沿空巷道,作为一类较特殊的回采巷道,与普通的回采巷道相比,具有以下特点:(1)综放沿空巷道布置在靠近采空区的煤体中,巷道围岩结构破碎,在掘进和回采过程中,巷道将发生较大的变形;(2)对于综放沿空巷道而言,由于巷道上方为顶煤,上覆岩层运动波及的范围及影响程度相应地增大,回采过程中的矿压显现将更加剧烈;(3)综放工作面年产量多在100万t左右,开采强度大,机械设备体积较大,且所需风量剧增,这就要求巷道具有较大的断面;(4)深部综放沿空巷道埋深大,地应力相对较大。由于以上原因,深部综放沿空巷道围岩的稳定性及其控制一直是采矿领域中的研究热点和难点。本文主要从支护方式与参数、巷道断面优化等方面讨论深部综放沿空巷道围岩的控制技术。 2、综放沿空巷道断面的优化 由于施工简单,易于成型等优点,矩形和梯形断面形状是目前国内综放沿空煤巷的主要断面形状。但根据弹性力学、岩石力学知道,这两种巷道断面都容易在4个拐角处产生应力集中,不利于巷道围岩的稳定性。直墙半圆拱形断面具有易于巷道顶板稳定、易于施工等优点,目前已经成为岩石巷道的主要形式;但由于半圆拱形巷道施工较复杂,不易成型等缺点,在煤巷中很少应用。由于深部综放沿空巷道的特殊性,尤其是综合机械化掘进易于完成直墙半圆拱形断面的开挖,因此,直墙半圆拱形断面可优先应用于综掘施工的深部综放沿空巷道中。下面将通过数值计算件模拟这两种断面对浅部、深部巷道围岩,特别是对深部综放沿空巷道顶部煤岩体稳定性的影响。

深井软岩巷道破坏机理与围岩控制技术研究

深井软岩巷道破坏机理与围岩控制技术研究 李智峰 (黑龙江科技学院,黑龙江哈尔滨150027) 摘 要 矿井开采进入深部以后,原有的支护方式及支护强度已很难适应深井煤巷的变形特征,巷道围岩变形根本无法满足矿井安全生产的 需要。该文通过对深井软岩巷道的变形破坏机理,采用锚杆为主的联合支护技术,实现了深井软岩巷道围岩控制的长期稳定,也为该类巷道推行锚杆联合支护技术提供了参考和借鉴。关键词 深井 软岩 锚喷支护中图分类号TD327 文献标识码 A *收稿日期:2012-02-27 作者简介:李智峰(1972-),男,辽宁彰武人,中级职称,毕业于黑龙江科技学院计算机科学与技术专业,大学本科。现为黑龙江科技学院安全工程学院教师,主要从事科研管理和煤矿安全方面的研究工作。 随着煤矿开采强度与范围显著增加,巷道布置出 现了以下发展方向:(1)在巷道层位方面,永久性巷道从岩巷向煤巷发展,以提高掘进速度,缩短建井周期;放顶煤开采技术的广泛应用,使得回采巷道从岩石项板煤巷向煤层项板巷道和全煤巷道发展。(2)在巷道断面形状与大小方面,拱形断面向矩形断面发展,以提高掘进速度与断面利用率,回采巷道有利于采煤工作面的快速推进;小断面向大断面发展,以满足大型采掘设备与高开采强度的要求。(3)在回采巷道数量方面,单巷布置向多巷发展,以满足高瓦斯矿井及大型矿井运输、通风的要求。(4)从巷道赋存条件方面,埋深从浅部向深部发展,简单地质条件向复杂地质条件发展,特别是深井软岩巷道围岩控制问题,增加了巷道支 护难度,对支护技术提出更高、更苛刻的要求 [1-3] 。因此,本文从深井软岩巷道破坏机理,针对具体实际情况确定巷道支护方式和技术参数,通过现场工业试验获得良好的技术经济效果。1 深井软岩巷道破坏机理 随着开采深度的增加,地应力也随之增加,由于围岩强度小,巷道围岩应力状态达到或超过岩石的塑性变形临界或强度极限,要达到一个新的平衡,必须由深部岩石来承载巷道动压,当一个平衡点被破坏,就要求有一个新的平衡点来支持,这样必然造成巷道围岩松动圈增大,由浅入深,因而巷道收敛变形量急剧增加,稳定性差,给巷道稳定性控制带来困难。1.1深井巷道矿山压力 深井巷道稳定性差的根本原因是深井巷道的矿山压力较大,或简单地说是原始地应力大,假定巷道承受的垂向地应力等于地层重力。对于深度达到800m 的巷道,则自重应力可达到20MPa ,如果巷道围岩的轴抗压强度为40MPa ,则有巷道的不稳定系数为0.5,则巷 道围岩会因应力集中达到单轴抗压强度极限。对于受 到采场矿压作用的巷道,则更容易发生变形破坏。1.2深井巷道变形破坏规律 若以巷道松动圈的厚度来表示巷道变形破坏情况,则可发现:随采深的加大,各种岩性巷道的松动圈的厚度随着加厚;岩性越软则松动圈厚度越大,承受动压作用的各种岩性巷道松动圈的厚度值更大一些。鸡西荣华煤矿主要大巷所在水平的岩层主要为泥岩、煤和炭质泥岩,经观测泥岩、煤和炭质泥岩松动圈最大在2 2.5m 之间,属于深井软岩,极难支护。1.3深井软岩巷道稳定性控制 通过以上分析,巷道稳定性主要取决于3方面的因素:(1)巷道围岩应力场,主要由开采深度和采动影响决定;(2)巷道围岩的力学性质,主要由岩层结构、岩石强度和裂隙发育情况等因素起作用;(3)巷道支护方式和参数。 因此,深井软岩围岩控制应从煤层赋存情况、开采 深度和井田的地质情况为依据, 从巷道的支护方式和参数入手,不断优化支护方案,增强围岩强度,提高支护能力来控制巷道的稳定性。2锚杆支护在软岩巷道中的应用 2.1 支护方式的选择 以鸡西荣华矿水平运输大巷为例介绍软岩巷道围岩控制方式。 软岩支护设计必须采取卸压、让压与加固围岩、提高围岩自承能力相结合的方法,若采用料石砌碹的支护方法,不仅工序复杂,支护工期长,工人劳动强度大,成本高,而且因砌筑材料是刚性的,起不到卸压、让压的作用,当围岩应力发生变化时,极易破坏,不能解决软岩支护问题;采用U 型钢支架支护,虽然承载能力高,可缩性强,但硐室高度、跨度较大,施工困难,成本较高,且它不能对巷道围岩提供主动支护作用,也不是一种理想的支护方式。根据荣华水平运输大巷围岩的 实际情况, 对设计依据进行了详尽分析后,确定采用以高强度左旋无纵筋螺纹钢树脂锚杆为主的锚、网、索与喷射混凝土联合支护。通过高强度左旋无纵筋螺纹钢树脂锚杆对围岩进行主动加固,保持围(下转第155页) 3 512012年第5 期

深部矿井巷道围岩分区破裂实测研究

深部矿井巷道围岩分区破裂实测研究 姜 光1 ,朱守颂1 ,谷 满2 ,王松涛 2 (1 中国矿业大学矿业工程学院,江苏徐州221008; 2 中平能化集团六矿,河南平顶山467000) [摘 要] 采用钻孔电视监测法对某矿3213工作面运输平巷进行现场定点定面多次监测,选取掘后10d 与掘后50d 观测结果进行对比分析,研究巷道围岩随时间影响在其内部的变形趋势,同时展开深部巷道围岩阶段性裂隙成型与围岩应力变化关系的分析研究,成果揭示了深部矿井开掘巷道围岩内在变形破坏机理,为此类巷道维护提供依据。 [关键词] 深部巷道;分区破裂;钻孔探视[中图分类号]TD313 1 [文献标识码]A [文章编号]1006 6225(2010)06 0083 03 Zonal D isintegration O bservation of Roadway 's Surrounding Rock in D eep M ine JI ANG Guang 1 ,Z HU Shou song 1 ,GU M an 2 ,WANG Song tao 2 (1.M i n i ng Engi n eeri ng Schoo,l C hina Un i versit y ofM i n i ng&Techno l ogy ,Xuzhou 221008,C h i na ; 2.S i xt h M i ne ,Zhongp i ng Energy Che m icalG roup ,P i ngd i ngs han 467000,Ch i na) Abstrac t :Bo reho le TV appli ed to mon it o ri ng road w ay sta t us i n 3213m i ning face and observati on result of 10d and 50d after driv i ng compared and ana l y zed ,the paper ana l y zed defor m ati on tendency o f surround i ng rock i nfl uenced by ti m e .R e lati onship o f stress var i a ti on and crack of deep roadway w as researched .The resu lt show ed inner fail ure m echan i s m of roadway surroundi ng ro ck dr i ven i n deep ,wh ich prov i ded re ference for roadway m aintenance . K ey word s :deep road w ay ;zona l d i s i nteg rati on ;bo reho le TV [收稿日期]2010-07-27 [基金项目]国家自然科学基金项目(50974118);教育部新世纪优秀人才支持计划(NCET -09-0727);江苏省 青蓝工程 资助。 [作者简介]姜 光(1982-),男,河南平顶山人,硕士研究生,从事矿山压力与岩层控制方面的研究。 在矿井深部岩土工程中导致围岩呈分区、分阶段的形式破裂,其形成机制国内外学者做过大量研究。1986年俄罗斯学者E I She m yakin 等 [1-2] 率先 提出 间隔性的环带状碎裂现象 ,国内专家学者称之为 分层断裂 、 分区破裂 或 区域性断裂 、 间隔破裂 等;顾金才,顾雷雨等 [3] 认为 分层断裂应有较大的平行于深部开挖硐室轴线的水平地应力,同时硐壁要有较大的平整面或较大的曲率半径;贺永年,蒋斌松,韩立军等 [4] 采用能量 分析的方法对深部巷道围岩间隔断裂的形成机理进行了研究,并从围岩应力与物理力学性质方面阐述了间隔断裂的成因;李术才,王汉鹏,钱七虎等 [5] 通过钻孔电视研究淮南近千米深不同巷道后, 给出了巷道分区破裂分布图,并总结出破裂区半径与巷道半径r 的关系式为(2)i -1 r (i =1,2,3, 4);潘一山,李英杰,唐鑫等 [6] 在对金川与阜新 五龙等矿区现场监测基础上,通过天然岩石的实验室测验、相似模拟等手段,对分区碎裂现象进行了系统的研究,结合理论推导重新界定了巷道围岩分区碎裂发生的条件公式;钱七虎,李树忱 [7] 讨论 了国内外深部岩体分区破裂现象实验和理论的研究 进展,归纳分区破裂产生条件、变化规律的同时指出了接下来研究的5个方向,其中就有分区破裂现象下巷道围岩的支护稳定性研究。 分区破裂方向随着研究的不断深入,其形成机制与控制机理正逐步形成体系,但在深部矿井开挖巷道中对分区破裂发展发育的时间空间关系却研究较少。本文以某矿3213工作面运输平巷现场监测为基础,通过钻孔探测与理论分析,解析出深部开挖巷道围岩分区破裂的时间规律及其形成机理[8] , 为深部岩土工程的进一步深入研究提供参考。1 工程概况1 1 地质条件 某矿3213工作面运输平巷埋深700m 。煤层顶底板情况如表1所示。1 2 巷道断面及支护设计 3213工作面运输平巷设计为矩形断面,断面尺寸为5000mm !3000mm,采用锚杆(索)网梁支护,顶板锚杆规格为 22mm !M 24!2400mm 的左旋无纵筋螺纹钢,间排距800mm !800mm;锚索钢绞线规格为 17 8mm !6 8m,钻孔深度为6 5m,间排距为2200mm !1600mm 。 83 第15卷第6期(总第97期) 2010年12月煤 矿 开 采Coa lm i n i ng T echno l ogy V o1 15N o 6(Ser i es N o 97) D ece m ber 2010

软岩动压巷道围岩稳定性原理及控制技术研究

软岩动压巷道围岩稳定性原理及控制技术研究 顾士亮 (中国矿业大学,江苏徐州221008) [摘 要] 针对张双楼煤矿西大巷围岩力学性质,主要是膨胀性泥岩在浅部遇水破碎、扩容的特征、深部膨胀特征,通过现场测试、建立力学模型、数值计算,对西大巷稳定性的 力学效应、受采动影响时围岩塑性区及破碎区宽度及变形与采动支承应力的关系 分析,分析在采动支承应力作用下的软岩巷道,其围岩破碎区、塑性区的范围,巷道 变形与破碎围岩塑性区范围、峰后强度、支护的关系,研究动压软岩巷道围岩变形 机理、软岩巷道围岩流动规律,提出了深井巷道围岩控制的“内、外结构”稳定性原 理。针对西大巷围岩地质条件,依据研究的成果,寻求巷道稳定控制技术,并通过 工业性试验检验,使得西大巷由研究试验前的强烈变形到研究后的基本稳定。[关键词] 软岩;巷道;稳定性;控制 [中图分类号] T D263 [文献标识码] B [文章编号] 100326083(2004)0120015203 0 引 言 在煤矿巷道中,70%~80%的巷道受到采动影响,到深部后表现明显的软岩特性,巷道强烈底鼓、围岩难以控制,动压影响的软岩巷道的维护状况已成为制约煤矿集约化生产的瓶颈。与一般软岩巷道相比,动压软岩巷道稳定性主要取决于巷道的围岩性质、动压的影响。对这类巷道围岩稳定性及其控制尚未有系统的研究。通过对张双楼煤矿西大巷围岩力学性质分析,探讨软岩动压巷道围岩稳定性原理及控制技术。 1 巷道围岩岩性及其对巷道稳定性的影响分析 (1)围岩工程力学性质。岩石强度试验表明,砂质泥岩、泥岩、海相泥岩强度较小,单轴抗压强度一般20~40MPa,部分低于20MPa。海相泥岩最大膨胀率1718%,最大膨胀力012MPa,砂质泥岩最大膨胀率2818%,最大膨胀力0131MPa。 (2)西大巷变形的主要原因。岩石的工程力学性质差;受到7煤和9煤叠加采动支承压力作用;原支护形式不合理,难以抗拒围岩012~0131 MPa的膨胀力。 2 软岩巷道围岩受力变形分析 峰值强度前的变形为线弹性变形;在岩体破坏前,不发生体积应变,但在峰值后出现塑性剪胀扩容和应变软化现象,在应变软化区和残余变形区的塑性扩容系数一致;曲线简化为弹性变形区(虎克定律)、应变软化区和残余变形区(摩尔2库仑准则),对应巷道围岩变形的弹性区、塑性区和破碎区。 3 动压作用下的软岩巷道围岩受力变形 动压对软岩巷道变形的影响主要反映在塑性区岩体的蠕变。蠕变速度始终维持在一定的水平。不同应力水平下峰后蠕变试验如图1所示 。 (a)加载 (b)峰后蠕变 (c)峰后蠕变 (d)峰后蠕变 图1 不同应力水平下峰后蠕变曲线 51 2004年第1期 能源技术与管理

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

矿山岩层控制

采场顶板支护方法和顶板控制 摘要:在实际生产过程中,工作面常有下述一系列矿山压力现象,并且习惯上用这些现象作为衡量矿山压力显现程度的指标。随着我国各种支护设备的使用,我国煤矿回采开采已进入现代化水平,工作面的推进速度,以及当工作面甩掉这些已发生错动的老顶时,时常发生顶板的周期来压,裂隙带岩层形成的结构将始终经历“稳定—失稳—再稳定”的变化。这种变化将呈现周而复始的过程。回采工作面应用的液压支架主要是由梁与柱组合而成的,不仅能实现支设与回撤的自动化,而且对顶板的管理和维护起到很关键的作用,使工作面推进一系列工序也同时实现了机械化,充分减轻了繁重的体力劳动。 关键词矿山压力回采开采周期来压液压支架顶板管理 一.巷道围岩控制理论与实践的发展 (1)巷道布置改革及无煤柱护巷技术 我国在采准巷道矿压理论指导下,形成了完善的巷道合理布置系统。在分析开采引起的围岩应力重新分部规律的基础上,研究沿空巷道一侧煤柱边缘带的应力重新分部和支架与围岩关系,掌握无煤柱护巷机理,推进无煤柱护巷技术。同时,发展整体浇注式巷旁充填技术,为沿空留巷的扩大应用开辟了广阔前景。 (2)研究巷道支架与围岩关系采用先进支护技术 研究巷道支架的合理性能和结构形式,既能有效地抑制围岩变形,又能与围岩变形相互协调,减少支架损坏和改善巷道维护。为此,

研制了适用于不同条件的U型钢、工字钢结构可缩性支架,完善了辅助配套设施,发展了支架壁后充填。 (3)软岩巷道围岩控制理论与实践的发展 自70年代以来,有计划地开展软岩巷道支护技术科技攻关。对软岩巷道围岩控制的基础理论、软岩的岩性分析及工程地质条件、围岩变形力学机制、巷道支护设计、施工工艺及监测进行全面系统研究。针对软岩的类别和变形力学机制,发展了锚喷网支护技术、U型钢支护壁后充填技术、防治底臌封闭支护技术、围岩爆破卸压和注浆加固技术。 (4)巷道围岩控制设计决策及支护质量与顶板动态监测 依据巷道围岩稳定性分类及巷道支护形式与合理支护参数选择 专家系数,预测巷道围岩稳定性类别、预计围岩移近量、选择支护型式、确定支护参数。实行巷道支护质量与顶板动态全过程监测,通过施工过程中的现场监测、信息反馈、不断修正支护设计和调整支护参数。使巷道围岩控制逐步由经验判断和定性评估向定量分析和科学管理转化。 二.采场上覆岩层活动规律的假说 自从采用长壁工作面开采以来,上覆岩层中是否存在着大结构,以及此结构是什么形式,一直是采矿科学研究的重要课题。 1.压力拱假说

巷道围岩控制方法与支护方式

巷道围岩控制方法与支护方式 [摘要]在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 【关键词】巷道;围岩控制;支护方式 在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。回采导致的支承压力不但数倍于原岩应力,并且,影响范围大。巷道受回采影响后,围岩应力、围岩变形成几倍、几十倍急增。巷道围岩控制的实质是利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,防范回采引起的支承压力的影响,控制围岩压力。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 1、巷道围岩压力及影响因素 1.1、围岩压力 (1)松动围岩压力。因巷道挖掘而松动、塌落的岩体,其重力直接作用在支架结构物上的压力,表现为松动围岩压力载荷形式,如支护没有有效控制围岩变形,围岩形成松动垮塌圈时,造成松动围岩压力,顶压显现严重。 (2)变形围岩压力。支护可控制围岩变形的发展时,围岩位移挤压支架而出现的压力,即:变形围岩压力。在围岩、支护力学体系中,围岩与支架互相作用,围岩就对支架施加变形压力。弹性变形压力是围岩弹性变形时作用在支架上的压力,弹性变形出现的速度很快,变形量相当小,围岩、支护相互作用的过程,实际作用较小。塑性变形压力是因为围岩塑性变形和破裂,围岩向巷道空间位移,使支护结构受压,这是变形围岩压力的基本形式。塑性变形的状况由巷道塑性区和破裂区的范围所决定。塑性区的扩展具有时间效应,它不再扩展时,围岩变形速度就下降。 (3)膨胀围岩压力。 与变形压力不同,它是由吸水膨胀导致的。从表面上看,膨胀压力是变形压力,而两者的变形机制完全不同。一个是与水发生理化反应;一个是围岩应力与结构效应。

巷道围岩破坏机理及防护技术

巷道围岩破坏机理及防护技术 矿产资源的不断开采,开采深度不断加大,渐渐进入深部开采,深部开采引起的三高一绕动严重影响巷道的稳定性,进入千米之后的深部开采围岩压力增大、原始构造应力大、巷道围岩变化剧烈。因此巷道围岩破坏研究机理及技术是我们研究重点,针对围岩稳定的基本状况,提出有针对性的支护方案有重要意义。 标签:巷道围岩;支护;稳定性 1 巷道围岩机理研究 矿井的深部开采的巷道问题已经不能用浅部理论解决,浅部条件下的地质情况以及矿山压力破坏机理都产生变化,深部的地质状况有独特的特点,对于深部要进行特征分析以及重新建立一个符合特点的压力显现理论。根据巷道变形的特点,建立一个科学体系将弹塑性理论以及破碎理论融合,传统的连续介质不适合复杂条件。深部巷道围岩破裂区和完整区多次交替的现象,即分区破裂化。将分区破裂化定义为“在深部岩体中开挖洞室或者巷道时,在其两侧和工作面前的围岩中,会产生交替的破裂区和不破裂区。 在各类的巷道进行施工的过程中,原始的应力场遭到破坏,巷道围岩压力的调整在巷道稳定蠕变期间,一个非线性的复杂的体系是围岩体系的状态,对于深部的巷道破坏不会有明显的显现特征,我们要保证加强对高应力下的巷道控制,做到对于耦合围岩变形的特征还有围岩压力进行控制。对于上覆岩层压力以及扩容压力是围岩失稳的主要方面,破坏扩容及粘土矿物膨胀压力是影响深部软岩巷道稳定的持续性力源。不注重围岩与支护体的变形协调和祸合难以达到理想的支护效果,是不能够合理的分析破坏机理,为此,必须从围岩的变形破坏特征。矿物组成、结构特点、力学作用等多方面深入研究围岩的变形力学机制,只有这样才能设计出一个合理稳定防御体系。对巷道围岩进行分析归类,对于不同的体系采取,对于支护方案进行设计,对参数进行确定,修缮施工工艺,多角度全方位的进行支综合研究。如今支护在材料以及支护设备上有新的突破,在支护材料方面主要研发了锚杆支护、喷射混凝土支护、钢结构支护混凝土预制大弧板结构等,在支护方式是包括锚杆+喷射混凝土、锚喷网、锚喷网+锚索,锚喷网。 2 支护方案 在现场进行锚杆与卸压孔协同作用就行现场应用,评价巷道围岩稳定性。深部测点数据在埋深982m处,最大水平主应力为29.20MPa,垂直应力为23.30MPa,最大水平主应力方向N20.6°E。埋深在1034m,轨道巷中,最大水平主应力33.22/MPa最小水平主应力15.19/MPa垂直应力25.84/MPa最大水平主应力方向N35°E。在1045m深的回风巷最大水平主应力为31.27MPa,最小水平主应力为14.27MPa,垂直应力为22.38MPa,煤矿深部地层应力场类型为H大于V大于A 型应力场,最大水平主应力为最小水平主应力的1.5到2.1倍。地应力数据划分的地应力水平是超高地应力区域,巷道围岩的强度显示,在岩层的完整性来看是

动压巷道围岩控制支护技术探讨正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 动压巷道围岩控制支护技 术探讨正式版

动压巷道围岩控制支护技术探讨正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过 程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1 问题的提出 由于我矿主采煤层的底板大多为松软的泥岩,二水平开采深度已达500m,布置在底板岩巷的南大巷、南异三条上山、各类峒室及采区准备巷道,受采动影响遭到严重破坏,失修巷道达1万m,年维修费用达千万元以上。为彻底解决失修巷道,从根本上解决问题,除抓好工程施工质量外,将受采动影响的巷道提前进行加固,保证巷道受采动后仍能保证安全使用。

2 支护技术方案与对策 2.1锚注预加固支护方案 对于锚喷巷道来说,可采取的加固措施包括可缩性金属支架加强支护、加长锚杆及预应力锚索支护、注浆加固支护等。通过矿井近几年的实践证明,采用金属支架加强支护并不能保证巷道的长期稳定,而采用加长锚杆及预应力锚索支护工艺复杂,成本较高,亦不宜采用。经分析研究,决定采用锚注预加固联合支护方案。在原锚网喷基础上,对巷道进行初喷,堵塞巷道的裂缝,接着进行锚注加固,使灰浆充满围岩中裂隙,最后进行锚网梯加

巷道滞后注浆围岩控制理论与实践.

巷道滞后注浆围岩控制理论与实践 1.概述 1.1 注浆技术应用现状 采矿工程师应用注浆技术已有一个多世纪的历史,1864年首创水泥注浆法,1885年铁琴斯(Tietjens)成功采用地面预注浆开凿井筒,获得专利权;20世纪初注浆技术应用到井下巷道,此后注浆法在矿井建设中作为防治水和改善工程地质条件的重要方法,先后在英国、法国、南非和苏联得到广泛应用。比较有名的注浆工程如:巴黎地铁奥柏(Auber)车站注浆、横跨尼罗河的阿斯旺(Aswan Dam)水坝防渗注浆、日本青函隧道围岩预注浆等,其目的主要是防渗和堵水,客观上也起到稳定工程结构及围岩的作用。近数十年来,注浆技术在岩土工程实践中获得了更广泛的应用,已研制开发出多种注浆方法和上百种注浆材料,满足了很多复杂地质条件的工程要求,并积累了丰富的经验,逐渐发展成为一个相对独立的研究方向。1989年国际岩石力学学会成立注浆委员会,1991年我国在广州举行全国灌浆会议,并成立了中国岩石力学与工程学会岩石锚固与注浆技术专业委员会,加强了理论研究和技术交流。但由于岩土介质的极端复杂,裂隙岩体的渗流理论尚不够成熟,注浆工程常常依赖于经验,大型注浆工程技术参数只能依赖于反复的现场调试和监测,其中注浆固结体的力学性质、浆液流动时的力学过程以及注浆参数设计等理论问题,尤其缺乏系统完整的研究与论述。这些问题影响到注浆效果和技术经济指标的提高,甚至造成人力、物力的浪费,其总体研究水平与其他岩土工程技术相比尚处于初级阶段。

在我国煤矿的井巷施工中,注浆技术早在20世纪50年代就有较多的应用,东北鹤岗矿区、鸡西矿区和山东淄博矿区首先采用井壁注浆封堵井筒漏水,随后山东新汶矿区张庄立井采用工作面预注浆取得良好堵水效果。20世纪60年代以后注浆法有了很大发展,在矿井中已将注浆用于堵水、灭火、密封(瓦斯)以及对软土和构造破碎岩层进行加固,处理围岩冒落坍塌事故,进行巷道修复等方面的工作。20世纪80年代以来,由于现代支护理论的发展和注浆技术的进步,以支护为目的的巷道围岩注浆在苏联、德国等地开始研究和推行,我国同期也在复杂和不良岩体内的巷道工程中采用过注浆加固技术。典型的实例有:金川镍矿用后注浆法加固巷道取得良好效果;山东龙口矿区采用注浆加固与锚喷支护或锚喷架联合支护治理软岩取得实效;徐州旗山矿应用锚注支护技术维护巷道取得成功;抚顺矿区采用卸压加固注浆获得成功;徐州矿务局权台煤矿在v类回采巷道中采用围岩注浆与锚架联合支护取得成功,淮北矿务局朱仙庄煤矿、芦岭煤矿的新掘岩巷、修复岩巷和煤巷中应用滞后注浆加固技术控制围岩变形取得明显效果。 注浆材料也从水泥浆发展到多种化学浆、水泥一水玻璃浆。 因此,从历史发展看,注浆多用于岩土工程的堵水、防渗与加固,主要是一门与地下水害作斗争的工程技术。 煤矿巷道围岩注浆加固技术目前仅作为一项特殊的手段,主要用于如下两种情况: (1) 为提高掘进头及掘进工作面前方煤和岩体的稳定性,短期加固煤岩体,便于安全掘进和支护,从时间上可分为预注浆和随开挖及时注浆,

深部大断面厚顶煤巷道围岩稳定原理及控制

2011年6月 Rock and Soil Mechanics Jun. 2011 收稿日期:2010-10-08 基金项目:国家自然科学基金项目(No. 50774077);煤炭资源与安全开采国家重点实验室自主研究课题资助(No. SKLCRSM08X04);国家重点基础研究发展计划(“973”计划);全国博士学位论文作者专项资金资助项目(No. 200760),教育部新世纪优秀人才支持计划(No. NCET-06-0475);中国矿业大学青年科研基金资助项目(No. 2008A002);中央高校基本科研业务费专项资金资助(No. 2010QNA31)。 第一作者简介:肖同强,男,1981年生,博士,主要从事巷道围岩控制理论与支护技术方面的研究工作。E-mail :xtq2000@https://www.360docs.net/doc/827829648.html, 文章编号:1000-7598 (2011)06-1874-07 深部大断面厚顶煤巷道围岩稳定原理及控制 肖同强1, 2,柏建彪1, 2,王襄禹1, 2,陈 勇1, 2,于 洋1, 2 (1. 中国矿业大学(徐州) 煤炭资源与安全开采国家重点实验室,江苏 徐州 221008;2. 中国矿业大学(徐州) 矿业工程学院,江苏 徐州 221008) 摘 要:针对深部高地应力、大断面、厚顶煤巷道围岩控制难题,采用理论分析、数值计算等方法研究了其变形破坏机制及其控制技术。研究结果表明,深部大断面厚顶煤巷道顶煤塑性区呈“拱形”或上宽下窄的“倒梯形”形态,直接顶塑性区则呈“矩形”形态,且存在肩角稳定区域。提出了“倒梯形”塑性区形成的层理面剪切破坏作用机制:在深部高应力(尤其是高水平应力)以及顶煤较大下沉产生的附加水平应力作用下,顶煤和直接顶之间的层理面发生剪切破坏,并引起其附近煤体破坏,促进了顶煤“倒梯形”塑性区的形成。基于此,提出了高强高预紧力锚杆和斜拉锚索梁联合支护围岩控制技术,认为斜拉锚索可锚固在肩角稳定区域,并起到限制顶煤与直接顶岩层之间层理面的剪切变形、阻止顶煤塑性区由“拱形”向“倒梯形”发展的作用。研究成果成功应用于工程实践。 关 键 词:深部巷道;厚顶煤;大断面;破坏机制;层理面;斜拉锚索梁 中图分类号:TD 322 文献标识码:A Stability principle and control of surrounding rock in deep coal roadway with large section and thick top-coal XIAO Tong-qiang 1, 2, BAI Jian-biao 1, 2, WANG Xiang-yu 1, 2, CHEN Yong 1, 2, YU Yang 1, 2 (1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 2. School of Mines Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China) Abstract: Based on the difficult problem of surrounding rock control in deep coal roadway with large section and thick top-coal, surrounding rock deformation and failure mechanism and its supporting technology are studied. The results show that, for deep coal roadway with large section and thick top-coal, plastic zone of top-coal presents “arched” or “inverted trapezoid” with wide upper and narrow lower, however plastic zone of immediate roof presents “rectangular”; the shoulder stable region exists in the immediate roof. Bedding surface shear failure effect mechanism for “inverted trapezoid” plastic zone is proposed: under the effect of high stress (especially high horizontal stress) and horizontal stress caused by larger roof subsidence; bedding surface between top-coal and immediate roof goes to shear failure, which causes coal body near bedding surface failure; and it promotes the formation of “inverted trapezoid” plastic zone. Based on above, high prestressed bolt with strip and steel mesh combining with diagonal cable and beam structure support is put forward. It is thought that diagonal cable can be anchored to the stability region in the shoulder; and it can limit the shear deformation of bedding surface between top-coal and immediate roof, and also can prevent the development of top-coal plastic zone from “arch” to “inverted trapezoid”. The research results have been successfully applied to roadway supporting. Key words: deep coal roadway; thick top-coal; large section; failure mechanism; bedding surface; diagonal cable and beam structure 1 前 言 目前我国许多矿区的开采深度已超过600~800 m ,新汶、淄博、徐州、开滦等矿区的开采深度已超过1 000 m ,最大开采深度达到1300 m ,预计未来20年我国很多煤矿将进入到1 000~1 500 m 的开采深度[1–5]。随着回采工作面产量的急剧增 大和采掘重型设备的应用,为满足通风、运输等安全生产的需要,深部回采巷道宽度也逐渐增 加,由原来的3.0~4.5 m 增至4.5~6.0 m 。深部、大断面条

相关文档
最新文档