几何中的公理化方法

几何中的公理化方法
几何中的公理化方法

几何中的公理化方法

定义:所谓公理化方法,就是指从尽可能少的原始概念和不加证明的原始命题(即公理、公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎系统的方法。

公理化方法的意义:公理化方法能系统的总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,促进新数学理论的建立和发展。

公理是对诸基本概念相互关系的规定,这些规定必须是必要的而且是合理的.因此,一个严格完善的公理系统,对于公理的选取和设置,必须具备如下三个基本要求:

相容性:这一要求是指在一个公理系统中,不允许同时能证明某一定理及其否定理.反之,如果能从该公理系统中导出命题A和否命题非A(记作-A),从A与-A并存就说明出现了矛盾,而矛盾的出现归根到底是由于公理系统本身存在着矛盾的认识,这是思维规律所不容许的.因此,公理系统的无矛盾性要求是一个基本要求,任何学科,理论体系都必须满足这个要求.

独立性;这一要求是指在一个公理系统中的每一条公理都独立存在,不允许有一条公理能用其它公理把它推导出来,同时使公理的数目减少到最低限度.

完备性:这就是要求确保从公理系统中能推出所研究的数学分支的全部命题,也就是说,必要的公理不能减少,否则这个数学分支的许多真实命题将得不到理论的证明或者造成一些命题的证明没有充足的理由.

从理论上讲,一个公理系统的上述三条要求是必要的,同时也是合理的.至于某个所讨论的公理系统是否满足或能否满足上述要求,甚至能否在理论上证明满足上述要求的公理系统确实存在等,则是另外一回事了.应该指出的是,对于一个较复杂的公理体系来说,要逐一验证这三条要求相当困难,甚至至今不能彻底实现。

数学的公理化

数学的公理化 十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。 经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。 对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。 十九世纪八十年代,非欧几何学得到了普遍承认之后,开始了对于几何学基础的探讨。当时已经非常清楚,欧几里得体系的毛病很多:首先,欧几里得几何学原始定义中的点、线、面等不是定义;其次,欧几里得几何学运用许多直观的概念,如“介于……之间”等没有严格的定义;另外,对于公

理系统的独立性、无矛盾性、完备性没有证明。 在十九世纪八十年代,德国数学家巴士提出一套公理系统,提出次序公理等重要概念,不过他的体系中有的公理不必要,有些必要的公理又没有,因此他公理系统不够完美。而且他也没有系统的公理化思想,他的目的是在其他方面——想通过理想元素的引进,把度量几何包括在射影几何之中。 十九世纪八十年代末期起,皮亚诺和他的学生们也进行了一系列的研究。皮亚诺的公理系统有局限性;他的学生皮埃利的“作为演绎系统的几何学”,由于基本概念太少而把必要的定义和公理弄得极为复杂,以致整个系统的逻辑关系极为混乱。 希尔伯特的《几何学基础》的出版,标志着数学公理化新时期的到来。希尔伯特的公理系统是其后一切公理化的楷模。希尔伯特的公理化思想极深刻地影响其后数学基础的发展,他这部著作重版多次,已经成为一本广为流传的经典文献了。 希尔伯特的公理系统与欧几里得及其后任何公理系统的不同之处,在于他没有原始的定义,定义通过公理反映出来。这种思想他在1891年就有所透露。他说:“我们可以用桌子、椅子、啤酒杯来代替点、线、面”。当然,他的意思不是说几何学研究桌、椅、啤酒怀,而是在几何学中,点、线、

平面几何图形的基本概念

小学六年级数学总复习(九) 班级______ 姓名_______ 得分__________ 复习内容: ① 线和角的基本概念 ② 平面几何图形的基本概念 一、填空 1. 2. 从一点引出( ),就组成一个角,这个点叫做角的( ),这( ) 叫做角的边。 3. 两条直线相交,有一个角是直角,这两条直线叫做( ),其中一条直线叫做另一条 直线的( ),这两条直线的交点叫做( )。 4. 一个三角形有两条边相等,这个三角形叫做( )。如果这个三角形的顶角是70°, 其余两个底角各是( )度。 5. 直角度数的 31 ,等于平角度数的()(),等于周角度数的()() 。 6. 在直角三角形中,如果一个锐角的度数是另一个锐角度数的一半,那么这两个锐角的度数 分别是( )度和( )度。 7. 一个三角形的每个角都是60°,如果按角分,这个三角形是( )三角形;如果按边分, 这个三角形是( )三角形。 8. 平行四边形的两组对边( ),两组对角( )。 9. 在梯形里,互相平行的一组对边分别叫梯形的( )和( ),不平形的一组对边叫 梯形的( )。 10. 等腰三角形有( )条对称轴,等边三角形有( )条对称轴,长方形有( )条对 称轴,正方形有( )条对称轴,等腰梯形有( )条对称轴,圆有( )条对称轴。 二、判断(对的请在括号内打“√”,错的打“×”。) 1. 一条直线长10厘米。……………………………………………………( ) 2. 角的两条边越长,角就越大。………………………………………… ( ) 3. 通过圆心的线段叫做圆的直径。……………………………………… ( ) 4. 比90°大的角叫做钝角。……………………………………………… ( ) 5. 两个正方形一定可以拼成一个长方形。……………………………… ( ) 6. 四条边相等的四边形不一定是正方形。……………………………… ( ) 7. 经过两点可以作无数条直线。………………………………………… ( ) 8. 两条不平行的直线一定相交。………………………………………… ( ) 9. 平角是一条直线。……………………………………………………… ( ) 10.平行四边形没有对称轴。……………………………………………… ( )

现代公理化方法的奠基人——希尔伯特

现代公理化方法的奠基人——希尔伯特 1900年8月6日,第二届国际数学家代表大会在法国巴黎召开。一位38岁的德国数学家神采奕奕地走上了讲台,他向与会者,也向国际数学界提出了横跨数学领域的尚待解决的23个数学问题,预示了20世纪数学的发展进程,他就是20世纪世界最伟大的数学家之一——希尔伯特。 希尔伯特于1862年1月23日生于哥尼斯堡,1943年2月14日在哥廷根逝世。他于1880年入哥尼斯堡大学,1885年获博士学位。希尔伯特的数学贡献是巨大的,他典型的研究方式就是直攻数学中的重大问题,开拓新的研究领域,并从中寻找普遍性的方法。1899年希尔伯特在汲取前人工作的基础上,完成了他著名的《几何基础》一书,第一次给出了完备的欧几里德几何公理体系——希尔伯特公理体体系,从而彻底结束了两千多年来,人们对欧几里德《几何原本》的补充、整理工作。在《几何基础》中,希尔伯特仍使用欧几里德的传统语言和叙述方法,首先补充了欧氏体系中缺少的公理,建立起欧几里德几何的完备公理集,从这个公理集可以无缺陷地推出欧氏几何中的所有定理,并精确地提出了公理系统的相容性、独立性和完备性,因而希尔伯特被誉为现代公理化方法的奠基人。 希尔伯特的数学贡献也是多方面的,他所研究的领域遍及代数学,几何学、分析学、数学基础及物理学许多方面,并取得了举世公认的伟大成就。他眼光深邃,精力充沛,富于创造、献身科学事业的信念使他深深地埋头科学研究,以致几乎考察了数学领域的每一个王国,超凡的才、学、识使他能以卓越的远见和洞察力提出了新世纪数学所面临的难题,从而推动了半个多世纪以来众多数学分支的发展。据统计,从1936——1974年,被誉为数学界诺贝尔奖的菲尔兹国际数学奖的20名获奖者中,至少有12人的工作与希尔伯特的问题有关。 希尔伯特的成功固然有其特定的社会因素,但也是与他本人的勤奋努力、顽强拼搏分不开的,在他的回忆录中,他承认自己小时候并非天才,而是一个愚钝的孩子,他的亲友也没人提到过希尔伯特的能力曾受到人们的注意,但他顽强的精神,却给周围人留下极深刻的印象:不论面对多么繁重的计算,他都具有计算到底的毅力,有一股不达目的绝不罢休的劲头。

数学公理化方法

数学公理化方法 在一个数学理论系统中,从尽可能少的原始概念和一组不加证明的公理出发,用纯逻辑推理的法则,把该系统建立成一个演绎系统的方法,就是公理化方法。它是随着数学和逻辑学的发展而产生的。 公元前6世纪前后,希腊数学家泰勒斯(Thales)开始了几何命题的证明,开辟了几何学作为证明的演绎科学的方向。毕达哥拉斯学派的欧多克斯于公元前4世纪在处理不可通约量时,建立了一公理为依据的演绎方法。爱奥尼亚学派的芝诺(Zeno)在论辩术中运用了归谬法。伯拉图阐明了许多逻辑原则。亚里士多德在其著作《分析篇》中,对公理方法作了系统总结,指出了演绎证明的逻辑结构和要求,从而奠定了公理化方法的基础。 公元前3、4世纪之交,希腊数学家欧几里德在总结前人积累的几何知识基础上,把形式逻辑的公理演绎方法应用于几何学,运用他所抽象出的一系列基本概念和公理,完成了传世之作《几何原本》,标志着数学领域中公理化方法的诞生。由于《几何原本》在第五公设的陈述和内容上复杂而累赘,引起人们对这一公设本身必要性的怀疑。在此后的2000多年间,人们试图给出一个第五公设的证明,但所有的尝试都失败了。19世纪,俄国年轻的数学家罗巴切夫斯基吸取前人失败的教训,从反面提出问题,给出了一个新的公理体系,创立了非欧几何学。这是公理化方法的进一步发展。 1899年,德国数学家希尔伯特在前人工作的基础上,著《几何基础》一书,解决了欧氏几何的欠缺,完善了几何公理化方法,创造了全新的形式公理化方法。为了避免在数学中出现悖论,希尔伯特认为要设法绝对的证明数学的无矛盾性,致使他从事“证明论的研究”,于是希尔伯特又把公理化方法推向一个新阶段,即纯形式化发展阶段,这就产生了纯形式公理化方法。 几何学的公理化,成为其它学科及分支的楷模。相继出现了各种理论的公理化系统,如理论力学公理化,相对论公理化,数理逻辑公理化,概率论公理化等。同时,纯形式公理化方法推动了数学基础的研究,并为机算机的广泛应用开阔了前景。

最新六年级平面几何图形的基本概念总复习题

六年级平面几何图形的基本概念总复习题 班级______ 姓名_______ 得分__________ 复习内容: ① 线和角的基本概念 ② 平面几何图形的基本概念 一、填空 1. 2. 从一点引出( ),就组成一个角,这个点叫做角的( ),这( ) 叫做角的边. 3. 两条直线相交,有一个角是直角,这两条直线叫做( ),其中一条直线叫做另一条 直线的( ),这两条直线的交点叫做( ). 4. 一个三角形有两条边相等,这个三角形叫做( ).如果这个三角形的顶角是70°, 其余两个底角各是( )度. 5. 直角度数的 3 1 ,等于平角度数的 ()(),等于周角度数的()(). 6. 在直角三角形中,如果一个锐角的度数是另一个锐角度数的一半,那么这两个锐角的度数 分别是( )度和( )度. 7. 一个三角形的每个角都是60°,如果按角分,这个三角形是( )三角形;如果按边分, 这个三角形是( )三角形. 8. 平行四边形的两组对边( ),两组对角( ). 9. 在梯形里,互相平行的一组对边分别叫梯形的( )和( ),不平形的一组对边叫 梯形的( ). 10. 等腰三角形有( )条对称轴,等边三角形有( )条对称轴,长方形有( )条对 称轴,正方形有( )条对称轴,等腰梯形有( )条对称轴,圆有( )条对称轴. 二、判断(对的请在括号内打“√”,错的打“×”.) 1. 一条直线长10厘米.……………………………………………………( ) 2. 角的两条边越长,角就越大.………………………………………… ( ) 3. 通过圆心的线段叫做圆的直径.……………………………………… ( ) 4. 比90°大的角叫做钝角.……………………………………………… ( ) 5. 两个正方形一定可以拼成一个长方形.……………………………… ( ) 6. 四条边相等的四边形不一定是正方形.……………………………… ( ) 7. 经过两点可以作无数条直线.………………………………………… ( ) 8. 两条不平行的直线一定相交.………………………………………… ( ) 9. 平角是一条直线.……………………………………………………… ( )

公理化和形式化

公理化和形式化axiomatization and formalization 研究演绎科学理论和构造演绎系统的两种方法。它们被广泛应用于现代逻辑和数学研究中。 公理化 把一个科学理论公理化,就是用公理方法研究它,建立一个公理系统。每一科学理论都是由一系列的概念和命题组成的体系,公理化的实现就是:①从它的诸多概念中挑选出一组初始概念,即不加定义的概念,该理论中的其余概念,都由初始概念通过定义引入,即都用初始概念定义,称为导出概念;②从它的一系列命题中挑选出一组公理,即不加证明的命题,而其余的命题,都应用逻辑规则从公理推演出来,称为定理。应用逻辑规则从公理推演定理的过程称为一个证明,每一定理都是经由证明而予以肯定的。由初始概念、导出概念、公理以及定理构成的演绎体系,称为公理系统。其中,初始概念和公理是公理系统的出发点。 公理方法经历了从古代的实质公理学到现代的形式公理学的发展过程。 公理系统相应地区分为古典公理系统、现代公理系统或称形式公理系统。最有代表性的古典公理系统是古希腊数学家欧几里得在《几何原本》一书中建立的。第一个现代公理系统是D.希尔伯特于1899年提出的。他在《几何基础》一书中,不仅建立了欧几里得几何的形式公理系统,而且也解决了公理方法的一些逻辑理论问题。 古典公理系统的对象域即公理系统所研究的对象,是先于公理而给定的,概念是对象的反映,公理则反映对这些对象的认识,表达这类对象的重要性质和关系。古典公理系统的初始概念和公理都有直观的具体内容,而系统的公理和定理是关于这对象域的真命题。从认识的发展来看,现代形式公理系统虽然一般也是从某种直观理论得到的,并且通常有预先想到的解释。但是,系统自身并不给初始概念予直观的具体内容,它们的意义完全由公理规定,对初始概念和公理可以给予不同的解释,可以刻划多个不同的对象域,即有多个不同的对象域都可以使得一个公理系统的公理和定理为真,它们在不同的解释下成为不同对象域的真命题。 公理系统要满足某些一般要求,包括系统的一致性、完全性和范畴性,以及公理的独立性。其中一致性是最重要的,其他几个性质则不是每个公理系统都能满足的,或可以不必一定要求的。 形式化 公理系统的进一步形式化不仅可以有不同的解释,而且需要应用专门设计的人工符号语言,使一个理论更为精确化和严格化,也就是运用人工的表意符号语言陈述所要形式化的理论。这种人工语言称为形式语言。把一个理论形式化就是把理论中的概念转换为形式语言中的符号,命题转换为符号公式,定理的推演转换成符号公式的变形,并把一个证明转换成符号公式的有穷序列。形式语言的符号和它们所表示的概念之间的对应是确定的,符号公式的结构反映它们的意见。把一个理论形式化后,就可以暂时完全撇开原来理论中的概念、命题的意义,而只从语言符号、公式结构(符号组合的形状)方面研究。意义是抽象的,往往不容易精确理解和掌握。而符号和公式是有穷的具体的对象,能够对其作更精确、更严格的研究,从而通过对具体对象的研究把握抽象的东西。 形式系统 把一个理论形式化的结果是建立形式系统。形式系统是形式化了的公理系统,它包括以下3个部分:①形式语言。规定一个形式语言,首先要列出各种初始符号,它们是形式语言的字母,其中一部分是初始概念,包括逻辑概念;然后再列出一组形成规则,形成规则规定怎样由初始符号组合起来的符号序列是系统中的合式公式,只有合式公式才是有意义的命题,而不合式的符号序列则是无意义的。②形式系统的公理。公理是挑选出来作为出发点的一组合式公式,它们经解释后可以是真的命题。③一组变形规则,也称为推导规则。变形规则规

七年级数学几何图形的初步认识知识点

第二章 几何图形的初步认识 2.1从生活中认识几何图形 知识点: 一、认识几何图形 几何图形 二、几何图形的构成 1、面与面相交成___,线与线相交成___。 2、点动成___,___动成面,面动成___。 3、___、___、___是构成几何图形的基本要素,体是由___围成的。 4、面有___面和___面,线有___线和___线。 引申探讨:n 棱柱有几个顶点、几条棱、几个面 平面图形 立体图形 柱体 锥体 球体 台体 圆柱 棱柱 圆锥 棱锥 圆台 棱台

2.2 点和线 知识点: 1、点的表示: A B 用一个大写的字母,例如:点A、点B 2、线段的表示: 方法一 :用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA. 方法二:用一个小写字母.例如线段a. 3、射线的表示: 用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB 4、直线的表示: 方法一 :用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA. 方法二:用一个小写字母.例如直线a. 5、线段、射线、直线的比较: 6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线) 7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点) 引申探讨:1、一条直线上有n个点,会有几条线段? 2、握手问题、票价问题、车票问题。

2.3线段的长短 知识点: 1、线段长短的比较方法:(两种) (1)度量法:是从数量的角度来比较 (2)叠合法:是从图形的角度来比较 另外了解估测法:依据已有的经验来判断 2、线段的画法: 3、线段的性质:两点之间的所有连线中,线段最短。 (简记为:两点之间,线段最短。) 引申探讨:蚂蚁爬行问题 2.4 线段的和与差 知识点: 一、线段的和与差的概念及作图方法 二、线段的和与差的计算 三、线段的中点 2.5 角以及角的度量 知识点: 一、角的概念 二、角的表示方法: 1、用大写英文字母表示 (1)用三个大写英文字母表示(此时要把表示顶点的字母写在中间)。 (2)用一个大写字母表示(只有在某个顶点处只有一个角,而且这个字母必须用顶点的字母表示)。 2、用阿拉伯数字表示。 3、用小写希腊字母表示。 三、角的度量

初一数学几何图形初步知识点汇总

初一数学几何图形初步 知识点汇总 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

方向教育《几何图形初步》1 一、知识结构框图 二、具体知识点梳理 (一)几何图形(是多姿多彩的) 平面图形:三角形、四边形、圆等. 1、几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 主(正)视图---------从正面看; 2、几何体的三视图侧(左、右)视图-----从左(右)边看; 俯视图---------------从上面看.

(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平面图形不一样的. (2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 2、直线的性质 经过两点有一条直线,并且只有一条直线.简称:两点确定一条直线. 3、画一条线段等于已知线段(1)度量法(2)用尺规作图法 4、线段的大小比较方法(1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形: 符号:若点M是线段AB的中点,则AM=1/2BM=AB,AB=2AM=2BM. 5、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短. 6、两点的距离:连接两点的线段长度叫做这两点的距离.

几何光学的基本原理

第三章几何光学 本章重点: 1、光线、光束、实像、虚像等概念; 2、Fermat原理 3、薄透镜的物像公式和任意光线的作图成像法; 4、几何光学的符号法则(新笛卡儿法则); 本章难点: 5、理想光具组基点、基面的物理意义; §3.1 几何光学的原理 几何光学的三个实验定律: 1、光的直线传播定律——在均匀的介质中,光沿直线传播; 2、光的独立传播定律——光在传播过程中与其他光束相遇时,不改变传播方 向,各光束互不受影响,各自独立传播。 3、光的反射定律和折射定律 当光由一介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。 反射定律:入射光线、反射光线和法线在同一平面内,这个平面叫做入射面,入射光线和反射光线分居法线两侧,入射角等于反射角 光的折射定律:入射光线、法线和折射光线同在入射面内,入射光线和折射光线分居法线两侧,介质折射率不仅与介质种类有关,而且与光波长有关。 §3.2 费马原理 一、费马原理的描述:光在指定的两点间传播,实际的光程总是一个极值(最大值、最小值或恒定值)。 二、表达式 ,(A,B是二固定点) Fermat原理是光线光学的基本原理,光纤光学中的三个重要定律——直线传播定律,反射定律和折射定律()——都能从Fermat原理导出。 §3.3 光在平面界面上的反射和折射、光学纤维 一、基本概念:单心光束、实像、虚像、实物、虚物等 二、光在平面上的反射 根据反射定律,可推导出平面镜是一个最简单的、不改变光束单心性的、能成完善像的光学系统. 三、单心光束的破坏(折射中,给出推导) 四、全反射 1、临界角

2、全反射的应用 全反射的应用很广,近年来发展很快的光学纤维,就是利用全反射规律而使光线沿着弯曲路程传播的光学元件。 2、应用的举例(棱镜) §3.4 光在球面上的反射和折射 一、基本概念 二、符号法则(新笛卡儿符号法则) 在计算任一条光线的线段长度和角度时,我们对符号作如下规定: 1、光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负。物点或像点至主抽的距离,在主轴上方为正,在下方为负。 2、光线方向的倾斜角度部从主铀(或球面法线)算起,并取小于π/2的角度。由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负。 3、在图中出现的长度和角度只用正值。 三、球面反射对光束单心性的破坏 四、近轴光线条件下球面反射的物像公式 五、近轴光线条件下球面折射的物像公式(高斯公式) 六、高斯物像公式 七、牛顿物像公式(注意各量的物理意义) 八、例题一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为2cm。若在哑铃左端5cm处的轴上有一物点,试求像的位置和性质。 §3.5 薄透镜 一、基本概念: 凸透镜、凹透镜、主轴、主截面、孔径、厚透镜、薄透镜、物方焦平面、像方焦平面等 二、近轴条件下薄透镜的成像公式 如果利用物方焦距和像方焦距

初一数学第四章几何图形初步知识点汇总

方向教育《几何图形初步》1

一、知识结构框图 二、具体知识点梳理 (一)几何图形(是多姿多彩的) 平面图形:三角形、四边形、圆等. 1、几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 主(正)视图---------从正面看; 2、几何体的三视图侧(左、右)视图-----从左(右)边看; 俯视图---------------从上面看. (1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图 (1)同一个立体图形按不同的方式展开,得到的平面图形不一样的. (2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. (2)点动成线,线动成面,面动成体.

(二)直线、射线、线段 1、基本概念 2、直线的性质 经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线. 3、画一条线段等于已知线段(1)度量法(2)用尺规作图法 4、线段的大小比较方法(1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等 5、 定义:把一条线段平均分成两条相等线段的点叫做线段的中点. 图形: 符号:若点M是线段AB的中点,则AM=1/2BM=AB,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短. 7、两点的距离:连接两点的线段长度叫做这两点的距离. 8、点与直线的位置关系(1)点在直线上;(2)点在直线外. (三)角 1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点, 这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。 2、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫 做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。 角的表示: ①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C 等。

几何图形初步知识点训练及答案

几何图形初步知识点训练及答案 一、选择题 1.下列图形不是正方体展开图的是() A.B. C.D. 【答案】D 【解析】 【分析】 根据正方体展开的11种形式对各选项分析判断即可 【详解】 A、B、C是正方体展开图,错误; D折叠后,有2个正方形重合,不是展开图形,正确 故选:D 【点睛】 本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件 2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是() A.20°B.30°C.35°D.50° 【答案】C 【解析】 【分析】 由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数. 【详解】 解:

由垂线的性质可得∠ABC=90°, 所以∠3=180°﹣90°﹣∠1=35°, 又∵a ∥b , 所以∠2=∠3=35°. 故选C . 【点睛】 本题主要考查了平行线的性质. 3.下列立体图形中,侧面展开图是扇形的是() A . B . C . D . 【答案】B 【解析】 根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B . 4.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )

A.8 B.9 C.10 D.11 【答案】C 【解析】 【分析】 连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】 +的值最小 解:如图,连接DE,交AC于P,连接BP,则此时PB PE ∵四边形ABCD是正方形 ∴、关于AC对称 B D ∴ = PB PD ∴+=+= PB PE PD PE DE == Q BE AE BE 2,3 AE AB ∴== 6,8 22 ∴=+=; 6810 DE +的最小值是10, 故PB PE 故选:C. 【点睛】 本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出. 5.下列图形中,是正方体表面展开图的是() A.B.C.D. 【答案】C 【解析】 【分析】

九年级数学公理与定理

2.3公理和定理 一、教学目标: 1、了解公理、定理的含义,初步体会公理化思想,并了解本教科书所使用的定理。 2、通过介绍欧几里得的原本,使学生感受公理化方法对数学发展和促进人类文明进步的价值。 二、教学重点、难点: 公理和定理的区别和联系 三、教法:引导发现法 四、教具准备:投影仪 五、教学过程: 一.创设情景 想一想 如何通过推理的方法证实一个命题是真命题呢? 在数学发展史上,数学家们也遇到过类似的问题。 公元前3世纪,古希腊数学家欧几里得将前人积累下来的几何学成果整理在系统的逻辑体系之中。他挑选了一部分不定义的数学名词(称为原名)和一部分公认的真命题(称为公理)作为证实其他命题的起始依据,定义出其他有关的概念,并运用推理的方法,证实了数百个有关的命题,使几何学成为一门具有公理化体系的科学。 二.回顾总结 通过长期实践总结出来,并且被人们公认的真命题叫做公理。例如,欧几里得将“两点确定一条直线”,“直角都相等”等五条基本几何事实作为公理。通过推理得到证实的真命题叫做定理。 本教科书选用如下命题作为公理:

此外,等式的有关性质和不等式的有关性质都可以看作公理。例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换”。 三.应用举例 由上面给出的公理,可以证明如下命题的正确性:等角的补角相等。 已知:∠1=∠2,∠1+∠3=180,∠2+∠4=180。 求证:∠3=∠4 证明:∵∠1+∠3=180,∠2+∠4=180(已知), ∴∠3=180-∠1,∠4=180-∠2 (等式的性质) ∵∠1=∠2 (已知), ∴∠3=∠4 (等式的性质)。 这样,我们便可以把上面这个经过证实的命题称作定理了。已经证明的定理可以作为以后推理的依据。 证明一个命题的正确性,要按照“已知”、“求证”、“证明”的顺序和格式写出。其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程。四、巩固练习: 课本随堂练习2、习题1、2

小学几何图形基本概念及计算公式

小学几何图形基本概念及计算公式 轴对称图形:如果一个图形沿着一条直线对折,直线左右的两部分能够完全重合,那么这个图形就叫做轴对称图形.这条直线叫做对称轴.长方形(2条对称轴),正方形(4条对称轴),等腰三角形(1条),等边三角形(3条),等腰直角三角形(1条),等腰梯形(1条),圆(无数条). 点:线和线相交于点. 直线:某点在空间中或平面上沿着一定方向和相反方向运动,所画成的图形,叫做直线.直线是向相反方向无限延伸的,所以它没有端点,不可以度量. (可以用表示直线上任意两点的大写字母来记:直线AB,也可以用一个小写字母来表示:直线a) 射线:由一个定点出发,向沿着一定的方向运动的点的轨迹,叫做射线.这个定点叫做射线的端点,这个端点也叫原点.射线只有一个端点,可以向一端无限延长,不可以度量.(射线可以用表示他端点,和射线上任意一点的两个大写字母表示:射线OA)

线段:直线上任意两点间的部分,叫做线段.这两点叫做线段的端点,线段有长度,可以度量.(线段可以用两个端点的大写字母表示:线段AB,也可以用一个小写字母表示;线段a)线段的性质:在连接两点的所有线中,线段最短. 角:从一点引出两条射线所组成的图形,叫做角.这两条射线的公共端点,叫做角的顶点.组成角的两条射线,叫做角的边. 角的大小与夹角两边的长短无关. 角的分类: 直角:90度的角叫做直角 平角:一条射线由原来的位置,绕它的端点按逆时针方向旋转,到所成的角的终边和始边成一直为止,这时所成的角叫做平角.或者角的两边的方向相反,且同在一条直线上时的角叫做平角,平角是180度. 锐角:小于90度的角叫做锐角 钝角:大于90度的角叫做钝角 垂直与平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行. 如果两条直线相交成

几何图形(基础)知识点讲解

几何图形(基础)知识讲解 【学习目标】 1.理解几何图形的概念,并能对具体图形进行识别或判断; 2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力; 3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程. 【要点梳理】 要点一、几何图形 1.定义:把从实物中抽象出的各种图形统称为几何图形. 要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等. 2.分类:几何图形包括立体图形和平面图形 (1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等. (2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形. 要点诠释: (1)常见的立体图形有两种分类方法: (2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等. (3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系. 要点二、从不同方向看 从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图. 要点三、简单立体图形的展开图 有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图. 要点诠释: (1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形. (2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到

《公理化体系》

公理化方法 公理化方法公理化思想任何真正的科学都始于原理,以它们为基础,并由之而导出一切结果来随着假设演绎模型法的进一步发展,经济学日益走向公理化方法。公理化是一种数学方法。最早出现在二千多年前的欧几里德几何学中,当时认为“公理’(如两点之问可连一直线)是一种不需要证明的自明之理,而其他所谓“定理” (如三对应边相等的陌个三角形垒等)则是需要由公理出发来证明的,18世纪德国哲学家康德认为,欧几里德几何的公理是人们生来就有的先验知识,19世纪末,德国数学家希尔伯特(David Hilbert)在他的几何基础研究中系统地挺出r数学的公理化方法。 简介 恩格斯曾说过:数学上的所谓公理,是数学需要用作自己出发点的少数思想上的规定。 公理化方法能系统的总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,促进新数学理论的建立和发展。 现代科学发展的基本特点之一,就是科学理论的数学化,而公理化是科学理论成熟和数学化的一个主要特征。 公理化方法不仅在现代数学和数理逻辑中广泛应用,而且已经远远超出数学的范围,渗透到其它自然科学领域甚至某些社会

科学部门,并在其中起着重要作用. 历史发展 产生 公理化方法发展的第一阶段是由亚里士多德的完全三段论到欧几里得《几何原本》的问世.大约在公元前3世纪,希腊哲学家和逻辑学家亚里斯多德总结了几何学与逻辑学的丰富资料,系统地研究了三段论,以数学及其它演绎的学科为例,把完全三段论作为公理,由此推导出其它所有三段论法,从而使整个三段论体系成为一个公理系统.因此,亚里斯多德在历史上提出了第一个成文的公理系统. 亚里斯多德的思想方法深深地影响了当时的希腊数学家欧几里得.欧几里得把形式逻辑的公理演绎方法应用于几何学,从而完成了数学史上的重要著作《几何原本》.他从古代的量地术和关于几何形体的原始直观中,用抽象分析方法提炼出一系列基本概念和公理.他总结概括出10个基本命题,其中有5个公设和5条公理,然后由此出发,运用演绎方法将当时所知的全部几何学知识推演出来,整理成为演绎体系.《几何原本》一书把亚里斯多德初步总结出来的公理化方法应用于数学,整理、总结和发展了希腊古典时期的大量数学知识,在数学发展史上树立了一座不朽的丰碑. 公理学研究的对象、性质和关系称为“论域”,这些对象、性

七年级上册数学几何图形初步知识点整理

几何图形初步 一、本节学习指导 本节知识点比较简单,都是基础,当看书应该就能理解。 二、知识要点 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。比如:正方体、长方体、圆柱等 平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。比如:三角形、长方形、圆等 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 3、生活中的立体图形 4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。 侧棱:相邻两个侧面的交线叫做侧棱。 n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。 棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。棱柱的侧面有可能是长方形,也有可能是平行四边形。 5、正方体的平面展开图:11种

6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。 7、三视图,如: 、 物体的三视图指主视图、俯视图、左视图。 主视图:从正面看到的图,叫做主视图。 左视图:从左面看到的图,叫做左视图。 俯视图:从上面看到的图,叫做俯视图。 三、经验之谈 本节知识比较重要的是我们要对常见的立体图形有个概念性的认识,很多图形在小学就学习过,我们要巩固其相关求法。其次画立体图形的三视图的时候要小心,多在脑子里形成空间想象。

数学中的公理化方法(下)

數學中的公理化方法(下) 吳開朗 四、數學公理系統的美學標準 美國數學家F.S.梅里特在其所著《工程中的現代數學方法》一書中曾經說過:“每一模型都是由一組公理定義的,···公理自身必須無矛盾且相互獨立”[11]。所謂一組公理,即是一個公理系統。關於公理系統的無矛盾性,是指借助於演算不可能在一個公理系統中推出兩個相互否定的命題。關於公理系統的獨立性,是指在該系統中任何一條公理都不可能作為其餘各公理的邏輯推論。如果一個公理系統具備無矛盾性(即相容性)和獨立性,那麼,這個公理系統(或者說這個理論體系)就是優美的。因此,相容性和獨立性也就是公理系統的美學標準。 獨聯體維林金等編著的《中學數學現代基礎》一書中曾指出:“可以由給定的公理系統導出的全部不同的命題,一般說來有無窮多個。因此,為了證明給定的公理系統的相容性,要想由這一公理系統作出全部可能的推論,並且指出其中沒有相互矛盾的命題,這是不可能的。為了解決這個難題,曾經創造一種特殊的方法,它的名稱叫做模型法”。[12]所謂模型法,即是欲證明某一新數學理論的無矛盾性(一致性),或者欲證明某一新數學理論 與某一已知的(舊)數學理論的相容性(相對一致性),可以設法為它在古典數學中構造一個模型,並且進而證明這個新數學理論的公理系統在該模型中都能夠得以實現,這樣,即可以把這個新理論的相容性,化歸為新理論與建造它的模型(新理論的模型)時所需要的古典數學理論的相容性(相對一致性)。因此,這種模型法,又可稱之為化歸法。例如,我們利用龐卡萊(Poincar′e)模型和球面模型,可以把非歐幾何的相容性,化歸為歐氏幾何的相容性,再利用算術模型,又可進一步把歐氏幾何的相容性,化歸為算術理論的相容性。[13]然而,對於一個新理論而言,並不需要如此逐步化歸,一般地說,只要是在古典數學中,能夠為其構造一個數學模型已足,因為古典數學已經過億萬群眾長期的科學實踐檢驗。 維林金在《中學數學現代基礎》一書中指出:“利用模型法也可以解決所給公理系統的獨立性問題。如果理論T中的公理A,由其它公理既不能證明,也不能否定,則稱公理A是與其它公理相獨立的。要證明所給公理A的獨立性,應該建立一個新的公理系統,在其中將公理A換成它的否定,而T中其它公理則保持不變。如果所給的公理系統以 1

六年级平面几何图形的基本概念总复习题

六年级平面几何图形的基 本概念总复习题 This manuscript was revised by the office on December 10, 2020.

小学六年级数学总复习(九) 班级______ 姓名_______ 得分__________ 复习内容: ① 线和角的基本概念 ② 平面几何图形的基本概念 一、填空 1. 2. 从一点引出( ),就组成一个角,这个点叫做角的( ),这( ) 叫做角的边。 3. 两条直线相交,有一个角是直角,这两条直线叫做( ),其中一条 直线叫做另一条直线的( ),这两条直线的交点叫做( )。 4. 一个三角形有两条边相等,这个三角形叫做( )。如果这个三角形 的顶角是70°,其余两个底角各是( )度。 5. 直角度数的3 1,等于平角度数的()(),等于周角度数的()()。 6. 在直角三角形中,如果一个锐角的度数是另一个锐角度数的一半,那么这 两个锐角的度数分别是( )度和( )度。 7. 一个三角形的每个角都是60°,如果按角分,这个三角形是( )三角 形;如果按边分,这个三角形是( )三角形。 8. 平行四边形的两组对边( ),两组对角( )。 9. 在梯形里,互相平行的一组对边分别叫梯形的( )和( ),不平 形的一组对边叫梯形的( )。 10. 等腰三角形有( )条对称轴,等边三角形有( )条对称轴,长方形 有( )条对称轴,正方形有( )条对称轴,等腰梯形有( )条对称轴,圆有( )条对称轴。 二、判断(对的请在括号内打“√”,错的打“×”。) 1. 一条直线长10厘米。……………………………………………………( ) 2. 角的两条边越长,角就越大。………………………………………… ( ) 3. 通过圆心的线段叫做圆的直径。……………………………………… ( ) 4. 比90°大的角叫做钝角。……………………………………………… ( ) 5. 两个正方形一定可以拼成一个长方形。……………………………… ( )

数学公理化方法的意义和作用

数学公理化方法的意义和作用 2008-9-27 16:06:49 ——摘自《徐利治谈数学哲学》 公理化方法在近代数学的发展中起过巨大的作用,可以说,它对各门现代数学都有极其深刻的影响.即使在数学教学中,公理化方法也是一个十分重要的方法. 所谓公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一门数学理论构造成为演绎系统的一种方法.所谓基本概念和公理,当然必须反映数学实体对象的最单纯的本质和客观关系而并非人们自由意志的随意创造. 众所周知,Hilbert l899年出版的《几何学基础》一书是近代数学公理化的典范著作.该书在问世后的二三十年间曾引起西方数学界的一阵公理热,足见其影响之大.Hilbert的几何公理系统实际上是在前人的一一系列工作成果基础上总结出来的,书中的公理条目也曾屡经修改.直到1930年出第七版时,还作了最后修改.这说明一门学科的公理化未必是一次完成的,公理化过程是可以包含着一些发展阶段的. 谈到数学公理化的作用,至少可以举出如下四点: (1)这种方法具有分析、总结数学知识的作用.凡取得了公理化结构形式的数学,由于定理与命题均已按逻辑演绎关系串联起来,故使用起来也较方便. (2)公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创 (3)数学公理化方法在科学方法论上有示范作用.这种方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用.例如,20世纪40年代波兰的Banach曾完成了理论力学的公理化,而物理学家亦把相对论表述为公理化形式…… (4)公理化方法所显示的形式的简洁性、条理性和结构的和谐性确实符合美学上的要求,因而为数学活动中贯彻审美原则提供了范例 数学公理化方法 2007-09-19 23:30 §2 数学公理化方法 公理化方法在近代数学的发展中起过巨大的作用,它对于各门现代数学都有极其深刻的影响.公理化方法是数学研究的一种基本方法,即使在数学教学中,也是一个十分重要的方法. 一、公理化方法的意义和作用 所谓公理化方法,就是由尽可能少的不加定义的原始概念(基本概念)和一组不加证明的原始命题(公理或公设)出发,运用逻辑规则推导出其余命题或定理,把一门数学建立成为演绎系统的一种方法. 公理化方法不仅在现代数学和数理逻辑中广泛应用,而且已经远远超出数学

相关文档
最新文档