相对论铯原子钟实验

相对论铯原子钟实验
相对论铯原子钟实验

实验问题:

运动的时钟一定变慢吗?

东西两向飞行的原子钟指示是否一致?

地面上的钟为什么比空中的慢?

实验背景:

钟表的航行实验室对时钟延缓效应可以直接检验,上世纪出现的原子钟时的这种检验成为可能。1970年,Hafele设计了一个检验时间膨胀效应的环球航行实验(即两只在地球上同步的原子钟,一只留在地球上,另一只放到飞机上绕地球航行,飞机飞行一周后降落到地面,然后将这两只原子钟的读数进行比较)。在实际实验中,飞机是在地球的引力场中在不同高度上绕地球飞行的,因此,院子中速率的变化不仅受狭义相对论的运动学效应影响,也将受到引力场的影响,在理论上处理这一问题就必将涉及广义相对论。

实验原理:

假定地球是在一个非转动参考系K中以等角速度Ω旋转(自转),如下图所示,

在非转动参考系K中有引力场存在,这个引力场与地球引力场相同。下面我们再这个参考系中计算环球航行原子钟飞行一周后与地面上的原子钟读数之差。

由狭义相对论的时间膨胀效应可以知道,

其中dτ是在K系中以速度u移动的原子钟的时间间隔(固有间隔),dt是静止在K系中的原子中的相应读数(坐标时间隔)。

考虑一只静止在地球赤道上的原子钟(τ0),它在K系中运动的速度u0就是地球赤道上的切向速度,即u0=ΩR(R是地球半径,Ω是地球自转的角速度)因此,这只原子中的固有时间隔dτ0 与坐标时间隔dt之间的关系如下:

其中,由于ΩR《c,所以略去了高于(ΩR/c)^2的小项,以速度v相对于地面向东运动的另一只原子钟,它在K系中的速度u由狭义相对论的速度相加定理(考虑地球自西向东转动)给出:

其中,由于v/c《1,ΩR/c《1,所以略去了二阶以上的小项,这只飞行的原子钟的固有时间隔dτ与坐标时间隔dt之间的关系如下:

将上述方程中的坐标时间隔dt消去,就得到地球赤道平面内距地面为h的空中,以速度v向东绕地球飞行的原子钟的固有时间隔dτ,与静止在地球赤道上的原子钟的固有时间隔dτ0之间的关系为:

这就是狭义相对论的时间膨胀效应所欲言的运动学效应。

另一方面,这两只原子钟都处在地球的引力场中,因此必须考虑所谓的“引力红移”有关的贡献。在广义相对论中,对于弱引力场最低次近似的情况,两只钟的速度之差正比于他们所在地点的引力势之差,因此,距地面为h的原子钟,与地面原子钟速度之差应该是:

其中g=GM/R^2是地球表面的引力加速度,由于h《R,方程略去了高于h/R比值的小项,方程是引力场的贡献。

则总的效应为:

如果原子钟不再地球赤道平面内,而且,飞行的原子钟的速度v偏离向东方向,那么方程应该为:

在实际实验中,飞行的原子钟速度v以及高度h都随时间而变化,因此,当原子钟绕地球航行一周后回到地面而与地面原子钟比较它们的读数时,两只原子钟的读书之差有上面方程的积分形式给出:

上面方程右边第一项是引力贡献,它总是正的,即地面上的原子钟比空中的原子钟走的慢;第二项和第三项是运动学效应,其中第三项的正负特性与飞行速度和方向有关,对于向东飞行的原子钟这一项是负的,向西飞行这一项是正的。

实验过程与结果:

1971年,Hafele和Keating完成了这种实验,他们将四只铯原子钟放到飞机上,飞机在赤道平面附近高度向东及向西绕地球航行一周后回到地面,然后将飞机上四个铯原子中

与意志静止在地面上的铯原子钟的读数进行比较,结果如下:

实验结论:

向东飞行时四只原子钟的读数比地球上的原子钟读数平均慢了59exp(-9)秒;而向西飞行时四只原于钟的读数比地球上的原子钟的读数平均快了273exp(-9)秒.在实验误差之内这些结果与方程预言值相符。

实验思考:

我们分析一下这个实验,如果去高度h=0,即飞机擦地面飞行,那么在非转动的K系中的观察者看来,飞机上的钟于地面上的钟走得是同一条圆形轨道(假定两只钟都在地球赤道平面内)。在飞机相对于地面向东飞行时,在K’系看来飞机上的钟总是比地面上的钟速度大,计算给出Δτ〈0,即向东飞行的钟总是比地面的中走的慢。在飞机向西飞行时,Δτ的符号要视飞机飞行的速度v的大小而定;若v〈2ΩR,即在非转动系K中的观察者看来,地面钟的速度比飞行中的速度大,方程给出Δτ〉0,地面钟比飞机中走的慢,若v=2ΩR,此时地面上的钟与飞机上的钟在同一条圆轨道内以大小相等的速度向相反的方向运动,由方程得出Δτ=0,两只钟的速率相同,若v〉2ΩR,即地面中的速度比飞机的速度小,方程给出Δτ〈0,地面钟比飞机上的钟走得快。

综上所述,运动钟的速率快慢并不是相对的,在惯性系中作圆周运动的钟变慢了,切向速度越大钟走得越慢。特别是,当两只钟在同一圆轨道内以大小相等的速度反向飞行时,虽然两只钟相互之间有相对运动存在,但是这两只钟重新会合时它们的读数仍然是相同

的,上述各种结果与转动原判的横向多普勒频移试验的结果也是一致的。这表明,狭义相对论的时间膨胀效应只有在惯性系中才能给出正确的预言。--END

从访谈看我国原子钟研制水平

从访谈看我国原子钟研制水平 弄虚作假,夸大其词——真TM恶心! 编者按:十年前,国家为落实“科教兴国“的伟大战略,启动了在中国教育和科学发展史上具有开创性意义的“211工程”。工程的实施,在学科建设、人才培养、科技创新等方面为北京大学这样一所百年名校的发展,提供了重要的物质支持和精神支撑。在短短的十年左右的时间中,全体师生团结进取,开拓创新,以奋发向上的精神面貌和丰硕的学术科研成果,为中华民族的进步不断作出着新的贡献。我们将陆续推出——回眸北大“211工程”的系列报道,让大家在了解和思考中,进一步增强建设世界一流大学的豪情壮志,在新阶段的历史征程中,不负国家和人民的期望,书写更加辉煌的篇章。 2006年4 月17,18号北京大学将接受“211”工程二期项目的验收。“构建新一代原子钟研究平台”正是“211工程”中重要的一个项目。在迎接验收前夕,记者特地采访了该项目的带头人、北京大学信息科学技术学院副院长、博士生导师、量子电子学研究所所长、教育部量子信息与测量实验室主任陈徐宗教授。 记者:陈教授您好!首先非常感谢您在百忙中接受我的采访!您知道再过10天我们北京大学就要接受“211”工程二期项目的验收,您可以谈一下在过去几年中我们这个项目获得“211”工程资助的资金数额以及在这些资金的资助下推动了哪些研究项目,进展如何呢? 陈教授(以下简称陈):好的,我也正想利用这个机会向大家汇报一下。在过去几年中我们这个项目获得了“211工程”二期资金300百万,利用这批资金我们主要做了三件事: 第一,研制成功我国(也是世界上)第一个长期连续运转的光轴运铯原子钟(至今已连续运转2年多),长期稳定度达:10-10,准确度到达10-11打破了美国等的禁运,满足国内地面高精度小型化原子钟的需求;第二,研制出高性能的铷原子钟,使铷原子钟稳定度从目前的1×10-13/日提高到2-3×10-14/日的国际先进水平,该原子钟已被选为我国二代卫星导航系统的核心部分; 第三,我们建立了新型原子钟的基础研究平台,该平台可以开展以超冷原子与超高精度光学梳状发生器为基础的新型原子钟研究,取得的成果为: (1)实现了玻色—爱因斯坦凝聚,获得了中国稳定最低的物质材料,温度为50纳开尔文,而绝对零度是0开尔文,我们知道绝对零度是无法实现只能靠近。 (2)实现了多种原子激光(包括:脉冲原子激光、连续原子激光、准联系原子激光、磁场加速原子激光等)。国际上共有43个实验室获得了玻色—爱因斯坦凝聚,其中只有8个获得了脉冲原子激光,我们北大量子电子实验室就是其中之一。而连续原子激光世界上只有2个实验室获得,一个是2005年诺贝尔物理学奖获得者德国慕尼黑大学教授、马克斯普朗克-l量子光学研究所所长Theodor.W.Hansch教授领导的小组,另一个就是我们北大的实验室。 (3)建立了高精度飞秒锁相光梳与半导体激光频率标准测量系统。利用此平台,我们获得了国际973项目:“超冷原子光晶格微波原子钟”、“主动式钙原子光钟”、“主动式钙原子光钟”与国家自然科学重大基金项目“光学频率向微波频率精密传递”等项目的支持。 记者:听了陈教授的介绍,真是欢欣鼓舞!陈教授,我对您刚才提到的一些比较专业的术语比如玻色—爱因斯坦凝聚、一些数据的实际概念都不是完全了解。另外我也想问一下原子钟的工作原理。 陈:首先玻色—爱因斯坦凝聚是爱因斯坦在70年前提出的,我们知道在常温下原子是很活跃的,很难控制,而到达一定低温后所有的原子会表现出同一个状态形成一种“凝聚”。打个不恰当的比方——本来操场上有很多穿着各种衣服在锻炼的同学,他们打球、踢球、跑步等等,而现在让他们都穿上统一服装做广播体操,并且假设每个人都是一模一样的。而玻色—爱因斯坦凝聚状态下的原子就类似这个情形。至于上面所说的一些数据,10-12也就是说原子钟30万年差一秒,我们现在研制成功的10-15也就是说3000万年差一秒。 而天稳定度我们这样说吧,卫星在运转过程会出现偏差,每天都要调整,如果卫星携带的原子钟天稳定度高,那么调整幅度就比较小,调整起来就比较方便。至于原子钟的工作原理嘛,我们知道电子在原子内进

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

铯的基本常识.

铯的基本常识 铯是低熔点金属,纯净的金属铯呈金黄色,密度1.878,熔点28.4℃,沸点669.3℃。在碱金属中,铯的熔点和沸点最低,蒸气压最高,正电性最强,电离势和电子逸出功最小。在室温下,金属铯在空气中猛烈燃烧,在纯氧中则会发生爆炸,生成超氧化铯。铯与水剧烈作用,甚至与-116℃的冰也能剧烈反应,生成氢氧化铯和氢气。因此,铯必须在严密隔绝空气的情况下保存在液体石蜡中。铯与有限量氧气作用,可生成氧化铯,还能与卤素发生反应。铯和其他碱金属可形成低熔点合金,如含钠12%、钾47%、铯41%的合金,熔点为-78℃;含铷13%、铯87%的合金,熔点为-39℃;含钠5.5%、铯94.5%的合金,熔点为-29℃。 铯在地壳中含量比较少, 主要分散在锂辉石、锂云母、铁锂云母中,在钾长石、天河石、钾盐和光卤石等矿物中与钾、钠、锂呈类质同像存在。主要的铯矿物是铯榴石(2Cs2O•2Al2O3•9SiO2•H2O),含Cs2O 34.6%。还有硼铯铷矿,含Cs2O 3.5%;铯绿柱石,含Cs2O1.72~3.6%,但较稀少。 铯化合物的提取:从铯榴石中提取铯化合物的方法有盐酸法,还有氯化焙烧法、盐熔法和硫酸法。盐酸法是将经过拣选或浮选的铯榴石的精矿(含Cs2O 20~30%)磨细后,以浓盐酸搅拌浸出,精矿中的铯转化成氯化铯,以水稀释,并加入三氯化锑盐酸溶液,析出氯化锑铯复盐(3CsCl•2SbCl3)。由于锑铯复盐在盐酸溶液中的溶解度比铷、钾复盐小,铷、钾大部分留在母液中而与铯分离。锑铯复盐加入10倍重量的水,煮沸,水解生成白色的碱式氯化锑沉淀,反应式为:3CsCl•2SbCl3+2H2O→3CsCl+2SbOCl↓+4HCl,氯化铯重新进入溶液。溶液中通入H2S气体,除去残余的锑及其他重金属。将精制液煮沸,蒸发浓缩,冷却结晶,经干燥得到氯化铯。 氯化焙烧法是将铯榴石同碳酸钙和氯化钙混合,在800~900℃焙烧后以水浸出。盐熔法是将铯榴石与氯化纳和碳酸钠混合,于800~850℃熔融,再以水浸出。两种方法的浸出液经过净化均可以用4-仲丁基-2(α-甲苄基)苯酚(简称BAMBP)-脂肪烃煤油萃取,以盐酸或二氧化碳加水反萃,得氯化铯或碳酸铯产品。 金属铯的制取:常用金属热还原法以钙还原氯化铯。此法在小于10-3托真空下,温度700~900℃进行还原反应,产生的铯蒸气,经冷凝后成液态收集。熔盐电解法制取金属铯是以液态铅作阴极,石墨作阳极,于700℃电解氯化铯,由阴极得到含铯8.5%的铅铯合金。合金于600~700℃真空蒸馏,除去铅等杂质,制得纯铯。 铯的主要工业用途是制造光电池、光电倍增管和电视摄象管以及用作真空管的吸气剂。由钠和铊激活的碘化铯可制作工业和医疗用的X射线图象放大板或荧光屏。用铯形成的人工铯离子云,可以进行电磁波的传播和反射。铯在多种有机、无机合成中用作助催化剂或催化剂。铯盐还用于生产激光用的玻璃、低熔点玻璃和纤维透镜玻璃。铯还可用于制作铯原子钟。在铯离子热电转换器、铯离子发动机、磁流体发电系统以及超临界蒸气发电系统等新能源研究中均用到铯。多种铯盐用于微量分析和用作药物。 金属铯的活性很强,在空气中燃烧会喷溅,产生浓密的碱性烟雾,伤害眼睛、呼吸系统和皮肤。因此在生产、贮存及运输时必须严格防止金属铯同空气或水接触。金属铯转移时,

狭义相对论的基本原理

基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了xx的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理: _______________. (2)光速不变原理: ___________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的

D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( )

A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈xx一xx实验得出的结果是: 不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的 A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A 到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( )

狭义相对论基础

第五章 狭义相对论基础 §5.1伽利略相对性原理 经典力学的时空观 一.伽利略(牛顿力学)相对性原理 对力学规律而言,所有的惯性系都是等价的或在一个惯性系中,所作的任何理学实验都不能够确定这一惯性系本身是静止状态,还是匀速直线运动。 力学中不存在绝对静止的概念,不存在一个绝对静止优越的惯性系。 二.伽利略坐标变换式 经典力学时空观 设当O 与O '重合时0t t ='=作为记 时的起点 同一事件:K 系中)t ,z ,y ,x ( K '系中)t ,z ,y ,x ('''' 按经典观念:???????='='='-='t t z z y y vt x x 或???? ???' ='='=' +'=t t z z y y t v x x ??? ??'='=+'=?????='='-='?'='=z z y y x x z z y y x x u u u u v u u u u u u v u u t d dt ,t t 或Θ 所谓绝对时空: 1、时间:时间间隔的绝对性与同时的绝对性,即t t ,t t ='?='?。时间是与参照系无 关的不变量。 2、空间:若有一把尺子,两端坐标分别为 K 中:)t ,z ,y ,x (P ),t ,z ,y ,x (P 22221111

K '中:) t ,z ,y ,x (P ),t ,z ,y ,x (P 22221111''''''''' 有222222z y x r ,z y x r '?+'?+'?='??+?+?=? 由,t t =' 得r r '?=?,即:长度(空间间隔)是与参照系无关的不变量或长度(空间间 隔)的绝对性。 a a ρρ='即?????='='='z z y y x x a a a a a a 且认为m m ,F F ='='ρ ρ 因此:在K '中,有a m F ''='ρρ,得K 中a m F ρρ= 由牛顿的绝对时空以及“绝对质量”的概念,得到牛顿相对性原理。 总结:牛顿定律在所有惯性系都具有相同的表述形式,即牛顿定律在伽利略变换下是协变的,牛顿力学符合力学相对性原理。 §5.2狭义相对论基本原理与光速不变 一.引子:相对论主要是关于时空的理论 局限于惯性参考系的理论称为狭义相对论,推广到一般参考系和包括引力场在内的理论称为广义相对论。 牛顿力学的困难: 例子:○ 1打排球,发点球 ○2超新星爆发过程中光线传播引起的疑问,如“蟹状星云”有较为祥实的记载。“客 星”最初出现于公元1054年,历时23天,往后慢慢暗下来,直到1056年才隐没。 按牛顿观点: 1500v ?km.s -1 5000l ?光年 会持续25年,能看到超新星开始爆发时发出的强光,其实不然 ○ 3电动力学的例子

广义相对论的理解

11、广义相对论的几 个疑难问题 1、暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。我们能找到的普通物质仅占整个宇宙的4%,各种测算方法都证实,宇宙的大部分是不可见的。要说宇宙中仅仅就是暗色尘云和死星体是很容易的,但已发现的有力证据说明,事实并非如此。正是对宇宙中未知物质的寻找,使宇宙学家和粒子物理学家开始合作,最有可能的暗物质成分是中微子或其它两种粒子:neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据认为,这三种粒子都不带电,因此无法吸收或反射光, 但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。 天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。 美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出 有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。 尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。 阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和

NIM4_铯冷原子喷泉钟新一代时间频率基准

收稿日期:2002-08-20 作者简介:李天初,男,研究员。 2004年2月宇航计测技术 Feb.,2004第24卷 第1期 Journal of Astronautic Metrology and Measurement Vol.24,No.1文章编号:1000-7202(2004)01-0020-06 中图分类号:TM93511 文献标识码:A NIM 4#铯冷原子喷泉钟新一代时间频率基准 李天初 李明寿 林平卫 黄秉英 钱进 王平 干云清 辛明德 陈伟亮 石春英 赵晓惠 刘年丰 (中国计量科学研究院,北京100013) 文 摘 回顾了NIM4#钟实现5L K 冷原子云,74cm 原子喷泉和0195Hz 线宽Ramsey 跃迁实验,报道了9119 GHz 微波锁定到铯原子秒定义跃迁,频率稳定性达到(5-7)@10-15(15000s)。目前我们正在进行不确定度评估,可望不确定度进入10-15量级,建立我国新一代时间频率基准装置。 主题词 时间频率基准 原子钟 + 冷原子喷泉钟 NIM 4#Cold Cesium Atomic Fountain Clock a Time and Frequency Primary Standard of New Generation LI Tian-chu LI Ming-shou LIN Ping-wei HUANG Bing-ying QIAN Jin W ANG Ping GAN Yun-qing XIN Ming-de CHEN Wei-liang SHI Chun-ying ZHAO Xiao-hui LI U Nian-feng (National Institute of Metrology,Beijing 100013) Abstract We in this paper review realizations of the 5L K cold atom cloud,74c m atomic fountain,and Ramsey transition with 0.95Hz linewidth;and report the locking of th 9.19GHz microwa ve to the time unit,sec ond,definition transition of the Cesium atom with a stability of (5-7)@10 -15 (15000s)on the NI M4# cold atomic fountain clock.Now we are evaluating the uncertainties with the target to establish the ne w genera -tion time and frequency primary standard,with uncertainty in the order of 10-15,of this nation. Key words Time and frequency standard Atomic clock + Cold atomic fountain clock

量子科学实验

量子科学实验 一、背景及科学意义 根据国务院第105次常务会议审议通过的“中国科学院创新2020规划”,中国科学院启动实施系列战略性先导科技专项,量子科学实验卫星(以下称量子卫星)所属空间科学战略性先导科技专项是首批启动的先导专项之一。在2008年立项的中科院重大创新项目“空间尺度量子实验关键技术”的基础上,经过近一年的科学目标与有效载荷配置论证、工程立项综合论证,于2011年12月23日正式立项启动。 量子科学实验卫星工程将借助于卫星平台,一方面将在国际上首次实现千公里级的无条件安全的量子通信,促进广域乃至全球范围量子通信网络的最终实现;另一方面,将是国际上首次在宏观大尺度上对量子理论本身展开实验检验,在更深层次上为认识量子物理的基础科学问题、拓宽量子力学的研究方向做出重要贡献。量子科学实验卫星所发展起来的技术,还将为在空间尺度对广义相对论效应、量子引力等物理学基本原理的深入检验奠定基础,促进整个物理学的发展。 量子科学实验卫星总重量631公斤,将由“长征二号丁”运载火箭在酒泉卫星发射中心发射,运行于500公里太阳同步轨道,轨道倾角97.37°,设计在轨运行寿命2年。有效载荷有量子密钥通信机、量子纠缠发射机、量子纠缠源及实验控制与处理机和高速相干激光通信机。卫星配置两套独立的有效载荷指向机构,通过姿控指向系统协同控制,可与地面上相距千公里量级的两处光学站同时建立量子光链路,光轴指向精度优于3.5urad。 二、科学目标 1、进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。 2、在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。 三、研制历程

原子钟

https://www.360docs.net/doc/8314295663.html,/AMuseum/time/index.html NPL:铯:计时技术小史 文/Justin Rowlatt 铯中心:位于科罗拉多州的信号中继站,原子钟时间信号从这里传到美国的千家万户。 作为一个化学元素,铯实际上已经重新对时间进行了定义。 自小时候到现在,在各种场合你都被告知准时很重要。现在,有了铯原子,全世界各个地方的时间都能保持准确,准确到让我们感到需要重新思考时间是什么。而且我们发现计时技术中存在一个奇怪的缺陷。事实上是在近些年来人们才意识到准确及时的重要性。并不是我们的祖先不需要知道时间,他们当然需要。几千年来,人类制造出多种多样精致的仪器来衡量时间的流逝。但事实是直到175年前,在那之前的几千年里,人们对于时间的定义来源都是太阳。不管走到哪里,你总能认出什么时候是正午。晴天里只要看一眼天空或者看一下日晷,你就能知道时间。这一切随着世界上第一条铁路线的开通而改变了,这第一条铁路就在这里,在我们英国。在那之后人们都知道伦敦的正午比布里斯托(Bristol)的正午早10分钟,这是一个精确的值,它是阳光走过两座城市之间的经度差所需要的时间。计时系统出现错误导致的将不只是乘客会误车。由于计时偏差导致的危险事件甚至火车事故越来越多。 1840年11月,英国西部铁路公司(Great Western Railway)解决了这一问题,他们使用了一个叫“铁路时间”(Railway Time)的计时系统。系统内所有城市的时间都是伦敦时间,这是第一次人们根据一个标准将不同地点的时间同步起来。此举引起了很大争议。突然间,皇家格林尼治天文台(Royal Observatory)就可以从遥远的格林尼治控制你的时间系统。埃克赛特大学的校长拒绝将学校大教堂的时钟调整至英国西部铁路公司所要求的时间。布里斯托采用了一个折中的方案:时钟上有两个分针,一个显示当地时间,一个显示“铁路时间”。

验证相对论关系实验报告

验证相对论关系实验报告 Prepared on 22 November 2020

验证快速电子的动量与动能的相对论关系实验报告 摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。 关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器。 引言: 经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。β-的速度几近光速,可以为我们研究高速世界所利用。本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。 实验方案: 一、实验内容 1测量快速电子的动量。 2测量快速电子的动能。 3验证快速电子的动量与动能之间的关系符合相对论效应。 二、实验原理 经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。 19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此

狭义相对论基础

第五章狭义相对论基础 内容: 1.经典力学的时空观;迈克耳逊–莫雷实验,长度收缩,时间延缓,同时的相对性,狭义相对论的时空观。质量与速度的关系;相对论动力学基本方程;相对论动量和能量。 2.狭义相对论的基本原理; 3.洛仑兹坐标变换式; 4.相对运动; 重点与难点: 1.经典力学的时空观 2.迈克耳逊–莫雷实验。 3.狭义相对论的基本原理; 3.质量与速度的关系; 4.相对论动量和能量。 5.相对论动力学基本方程 要求: 1.了解爱因斯坦狭义相对论的两个基本假设。 2.了解洛伦兹坐标变换。了解狭义相对论中同时的相对性以及长度收缩和时间延缓。了解 伽利略的绝对时空观和爱因斯坦狭义相对论的时空观及其二者的差异。 3.理解狭义相对论中质量和速度的关系、质量和能量的关系。 相对论包括狭义相对论和广义相对论两部分内容.狭义相对论提出了新的时空观,建立了物体高速运动所遵循的规律,揭示了时间和空间、质量和能量的内在联系.广义相对论提出了新的引力理论,开始了有关引力本质的探索.本章仅介绍狭义相对论的运动学以及相对论动力学的主要结论. §5-1 伽利略变换与力学相对性原理 为了理解相对论时空观的变革,首先回顾一下牛顿力学的时空观. 一、伽利略变换与绝对时空观 要描述某一个事件,应该说明事件发生的地点和时间.这就需要确定一个参考系,并在其中使用一定的尺和钟,用以确定事件发生的空间坐标和时间坐标,即用x、y、z来表示事件发生的空间位置,用t来表示事件发生的时刻. 设有分别固定在两个惯性参考系上的两个直角坐标系S和S',如图5-1所示,相应的坐标轴相互平行,S'系相对于S系以恒定速度v沿x轴正方向运动.现在要讨论的问题是:如果在S系上的观测者测得某一事件P发生的位置和时刻分别为x、y、z和t,而在S'系上观测者测得同一事件P发生的位置和时刻分别为x'、y'、z'和t',那么x、y、z、t 和x'、y'、z'、t'之间的关系如何呢?

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

原子钟的几种常见类型

原子钟的几种常见类型 摘要本文按出现的时间顺序介绍几种常用原子钟(光谱灯抽运铷原子钟、光谱灯抽运铯原子钟、磁选态铯原子束钟、激光抽运铯原子束钟、激光冷却冷原子喷泉钟、积分球冷却原子钟)的基本原理。 原子钟是利用原子或分子的能级跃迁的辐射频率来锁定外接振荡器频率的频率测量标准装置的俗称,通称为量子频率标准或原子频标。其工作原理可用图1来描述: 图1 一个受控的标准频率发生器产生的信号经过倍频和频率合成转换成为频率接近于原子跃迁频率的信号,激励原子产生吸收或受激发射的频率响应信号,呈共振曲线形状,称为原子谱线,其中心频率即原子跃迁频率为,线宽为Δν。若经过转换的受控振荡器频率与原子跃迁频率不符,原子做出的响应信号通过伺服反馈系统来矫正振荡频率,直到使其与原子频率符合为止。这样就使受控振荡器频率始终稳定在原子跃迁频率上,从而实现使其振荡频率锁定于原子跃迁频率的目的。 光谱灯抽运铷原子钟光抽运汽室频标用碱金属原子基态两个超精细结构能级之间跃迁的辐射频率作为标准频率,它处在微波波段。在磁场中,这两个能级都有塞曼分裂,作为标准频率的跃迁是其中两个磁子能级=0之间的跃迁,它受磁场影响最小。若用合适频率单色光照射原子系统,使基态一个超精细能级

上的原子被共振激发,而自发辐射回到基态时可能落到所有能级,原子就会集中到一个基态能级,极大地偏离玻尔兹曼分布,这就是光抽运效应。这里选择抽运光起着关键作用。在20世纪60年代初,激光器刚发明尚无法利用,唯一可用的共振光源是光谱灯。一般光谱灯是由同类原子发光,它的光谱成分能使基态两个超精细能级上的原子都被激发,因而不能有效地实现选择吸收,起到光抽运作用。幸好对铷原子,可以有一个巧妙的办法。铷原子有两种稳定同位素:和,其丰度分别为72. 2%和27. 8%。它们各有能级间距为3036MHz和6835MHz的两个超精细能级,其共振光的频率分布如图2所示。这里A,B线为所产生,a,b线属于原子。从它们的位置可见,A,a两线有较多的重合,而B,b线则重合较少。因此,若原子发出的光透过一个充以原子的滤光泡,a线就会被较多地吸收,而剩下较强的b线。原子在这种光作用下,就会有较多的下能级原子被激发,从而使更多原子聚集在超精细结构的上能级上,这就实现了光抽运效应。 图2 光谱灯抽运铯原子钟20世纪60年代初期铯原子没有简单的抽运光源可用,只能利用无极放电光谱灯。这种灯能发出强度大致相等的两条超精细结构谱线,分别可对铯原子基态F=3和F=4两个超精细能级发生作用,引起原子激发。

研究性学习——爱因斯坦与相对论(原创)

爱因斯坦与相对论 引言:“政治是暂时的,方程是永恒的”——爱因斯坦仰观星空,觉宇宙之浩瀚;俯视大地,察生命之神奇;透过显微镜,是量子的奇迹。我们在理论与实践中穿梭,游走在神秘的物理世界。 一.漫长的探索 纵观人类的历史,从亚里士多德开始,就已经开始探索那浩如烟海的物理世界了——力学。 早期的物理学家们都是从实验的角度来阐述物理(准确说是物理理论)的,亚里士多德从显而易见的现象中便得出重物比轻物下降的快的结论(虽说是错误的),阿基米德也从简单的实验中得出了杠杆原理和浮力定律,伽利略通过理想实验建立了动力学的基础,传出了相对性原理的先声,笛卡尔发明了坐标系,使之能更好的表述,物理开普勒透过第谷的测量用数学知识成功导出了开普勒三大定律。 这一切的积累,终于在一个人身上有了叠加与爆发,1687年,艾萨克·牛顿出版了他的新书《自然哲学的数学原理》,从此“经典力学”建立了,也翻开了数学研究物理的辉煌一页。书中详细的讲解的力学与运动学,阐述了牛顿三大定律,流体阻力原理和万有引力定律,以及牛顿的绝对时空观,是经典力学前所未有的进步。 二.相对论的横空出世

19世纪后期,随着经典力学和电磁学的进一步发展(电磁学的主要贡献者法拉第和麦克斯韦一直想把电磁学建立在经典力学上,然而失败了),科学家们相信他们对宇宙的描述达到了尾声,然而,与“以太”思想相悖的理论出现了, 1887年实验证实光的传播速度是不变的(间接否定了“以太”论和经典力学),整个物理学界陷入了巨大恐慌。 这时,1905年,爱因斯坦(生平简介:阿尔伯特·爱因斯坦,Albert.Einstein,1879年3月14日-1955年4月18日,出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家,享年76岁。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭<父母均为犹太人>,1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。)的一篇论文《论动体的电动力学》永久地解决了这一棘人的问题,狭义相对论便由此创生了。 1.经典力学的时间和空间 牛顿所谓的时间与空间都是绝对的,与外界无关永远相同和

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

相关文档
最新文档