5三相半波有源逆变电路实验报告

5三相半波有源逆变电路实验报告
5三相半波有源逆变电路实验报告

实验报告

课程名称:现代电力电子技术

实验项目:三相半波有源逆变电路实验

实验时间:

实验班级:

总份数:

指导教师:朱鹰屏

自动化学院电力电子实验室

二〇〇年月日

广东技术师范学院实验报告

学院:自动化学院专业:电气工程及其自

动化

班级:成绩:

学号:组别:组员:

实验地点:电力电子实验室实验日期:指导教师签名:

实验(五)项目名称:三相半波有源逆变电路实验

1.实验目的和要求

研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

2.实验原理

晶闸管可选用DJK02上的正桥,电感用DJK02上的Ld=700mH,电阻R选用D42三相可调电阻,将两个900Ω接成串联形式,直流电源用DJK01上的励磁电源,其中DJK10中的心式变压器用作升压变压器使用,变压器接成Y/Y接法,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出。直流电压、电流表均在DJK02上。

图3-11 三相半波有源逆变电路实验原理图

3.主要仪器设备

4.实验内容及步骤

实验内容:三相半波整流电路在整流状态工作下带电阻电感性负载的研究。

实验步骤:

(1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=120°(注意此处的α表示三相晶闸管电路中

的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)。

⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。

⑧将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)三相半波整流及有源逆变电路

①按图3-11接线,将负载电阻放在最大阻值处,使输出给定调到零。

②按下“启动”按钮,此时三相半波处于逆变状态,α=150o,用示波器观察电路输出电压U d波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90o,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。在这过程中记录α=30O、60o、90o、120o、150o时的电压值以及波形。

5.实验数据记录和处理

(1)画出实验所得波形图。

(2)对可控整流电路在整流状态与逆变状态的工作特点作比较。

6.实验结果与分析

(1)为防止逆变颠覆,逆变角必须安置在90o≥β≥30o范围内。即U ct=0时,β=30o,调整U ct时,用直流电压表监视逆变电压,待逆变电压接近零时,必须缓慢操作。

(2)在实验过程中调节β,必须监视主电路电流,防止β的变化引起主电路出现过大的电流。

(3)在实验接线过程中,注意三相心式变压器高压侧的和中压侧的中线不能接一起。

(4)有时会发现脉冲的相位只能移动120°左右就消失了,这是因为触发电路的原因,触发电路要求相位关系按A、B、C的排列顺序,如果A、C两相相位接反,结果就会如此,对整流实验无影响,但在逆变时,由于调节范围只能到120°,实验效果不明显,用户可自行将四芯插头内的A、C相两相的导线对调,就能保证有足够的移相范围。

7.问题与讨论

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

第五章 逆变电路 习题集答案

第五章逆变电路 一、填空题 1、换流方式主要有器件换流、电网换流、负载换流、和强迫换流。 2、单相电压型逆变电路中二极管的作用是反馈和续流。 3、180。导电方式三相电压型逆变电路中,为了防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源短路,要求采用先断后通的方法。 t 4、单相桥式电流型(并联谐振式)逆变电路中为了保证晶闸管可靠关断,反压时间应大 t 于晶闸管关断时间。(大于、等于或小于) q 5、串联二极管式晶闸管三相电流型逆变电路采用强迫换流方式。 二、选择题 1、电压型逆变电路特点有(bcd) A、直流侧接大电感 B、交流侧电流接正弦波 C、直流侧电压无脉动 D、直流侧电流有脉动 2、电流型逆变电路特点有(a) A、直流侧接大电感 B、交流侧电流接正弦波 C、直流侧电压无脉动 D、直流侧电流有脉动 3、无源逆变电路中,以下半导体器件采用器件换流的有(acd),采用强迫换流和负载换流的有(b)。 A、GTO B、SCR C、IGBT D、MOSFET 4、(ad)属于自然换流,(bc)属于外部换流。 A、器件换流 B、电网换流 C、负载换流 D、强迫换流 三、问答题 1、无源逆变电路和有源逆变电路有何不同? 答:两种电路的不同主要是: 有源逆变电路的交流测接电网,即交流侧接有电源。而无源逆变电路的交流侧直接和负载联接。 2、换流方式各有哪几种?各有什么特点? 答:换流方多有4种: 器件换流:利用全控器件的自关断能力进行换流。全控型器件采用此换流方式。 电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。 负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。 强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。通常是利用附加电容上的能量实现,也称电容换流。 晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

电磁场实验报告

实验一:静电场的分析与求解 1.求二维标量场u(r)=y^2-x的梯度 [x,y]=meshgrid(-2:.2:2,-2:.2:2); z=y.^2-x; [px,py]=gradient(z,.2,.2); contour(z) hold on quiver(px,py) hold off title('等值线与梯度'); 2.2个等量同号点电荷组成的点电荷系的电势分布图clear v='1./((x-3).^2+y.^2).^0.5+1./((x+3).^2+y.^2).^0.5'; xmax=10; ymax=10; ngrid=30; xplot=linspace(-xmax,xmax,ngrid); [x,y]=meshgrid(xplot); vplot=eval(v); [explot,eyplot]=gradient(-vplot); clf; subplot(1,2,1),meshc(vplot); xlabel('x'); ylabel('y'); zlabel('电位');

subplot(1,2,2),axis([-xmax xmax -ymax ymax]); cs=contour(x,y,vplot); clabel(cs); hold on quiver(x,y,explot,eyplot) xlabel('x'); ylabel('y'); hold off 3.电偶极子的场(等位线和梯度) clear; clf; q=2e-6; k=9e9; a=1.5; b=-1.5; x=-6:0.6:6; y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE; Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),49);

电力电子复习题 第5章 有源逆变与变频电路

第五章有源逆变与变频电路 一.选择题 1.可实现有源逆变的电路为。 (A) 三相半波可控整流电路,(B) 三相半控桥整流桥电路, (C) 单相全控桥接续流二极管电路,(D) 单相半控桥整流电路。 2.在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理。 (A) 30o-35o, (B) 10o-15o, (C) 0o-10o, (D) 0o。 3.在有源逆变电路中,逆变角β的移相范围应选为最好。 (A) β=90o~180o,(B) β=35o~90o, (C) β=0o~90o, 4.下面哪种情况不具有变流功能的() (A) 有源逆变(B) 交流调压(C) 变压器降压(D) 直流斩波 5.可实现有源逆变的电路为。 (A) 单相全控桥可控整流电路(B) 三相半控桥可控整流电路 (C) 单相全控桥接续流二极管电路(D) 单相半控桥整流电路 6.变流器工作在逆变状态时,控制角α必须在度。 (A) 0°-90°; (B) 30°-120°; (C) 60°-150°; (D) 90°-150°; 二.判断题 7.在用两组反并联晶闸管的可逆系统中,使直流电动机实现四象限运行时,其中一组逆变器工作在整流状态,那么另一组就工作在逆变状态。() 8.逆变角太大会造成逆变失败。() 9.有源逆变指的是把直流电能转变成交流电能送给负载。() 10.变频调速实际上是改变电动机内旋转磁场的速度达到改变输出转速的目的。() 11.逆变失败,是因主电路元件出现损坏,触发脉冲丢失,电源缺相,或是逆变角太小造成的。() 12.变频调速装置是属于无源逆变的范畴。() 13.有源逆变装置是把逆变后的交流能量送回电网。() 14.供电电源缺相、逆变桥元件损坏、逆变换流失败等故障,也会引起逆变失败。() 15.电压型逆变电路,为了反馈感性负载上的无功能量,必须在电力开关器件上反并联反馈二极管。() 16.用多重逆变电路或多电平逆变电路,可以改善逆变电路的输出波形,使它更接近正弦波。() 17.无源逆变电路,是把直流电能逆变成交流电能,送给电网. () 18.无源逆变指的是不需要逆变电源的逆变电路。() 19.逆变角太小会造成逆变失败。() 20.变频器总是把直流电能变换成50Hz交流电能。() 21.有源逆变电路是把直流电能变换成50Hz交流电能送回交流电网。() 22.在变流装置系统中,增加电源的相数也可以提高电网的功率因数。() 23.在有源逆变电路中,当某一晶阐管发生故障、失去开通能力,则会导致逆变失败。() 24.在SPWM控制的逆变电路中,载波频率越高,SPWM波形中谐波频率也就越高。() 25.输出接有续流二极管的三相桥式全控桥,不可能工作在有源逆变状态。() 三.填空题 26.180°导电型三相桥式逆变电路,晶闸管换相是在_ 上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在_ 上的元件之间进行的。 27.由晶闸管构成的逆变器换流方式有换流和换流。 28.按逆变后能量馈送去向不同来分类,电力电子元件构成的逆变器可分为逆变器与逆变

实验四 三相全桥逆变电路

实验四三相全桥有源逆变电路 一、实验目的 1.加深理解三相桥式有源逆变电路的工作原理 2.研究三相桥式有源逆变电路逆变的全过程 3.掌握三相全桥有源逆变电路MATLAB的仿真方法,会设置各模块的参数。 二、预习内容要点 三相全桥有源逆变电路带阻感性负载在α所取不同角度下的运行情况。 三、实验仿真模型 三相全桥有源逆变电路 四、实验内容及步骤 对三相全桥有源逆变电路带阻感性负载在在α所取不同角

度下的运行情况进行仿真并记录分析改变脉冲频率时的波形。 (1)器件的查找 以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找 (2)三相对称正弦交流电源要求设置参数 Um=50V、f=50Hz初相位依次为0°、-120°、-240°。选择阻感性负载,R=2Ω,L=0.01H,C=inf 仿真波形及分析 α=30度时的波形 α=60度时的波形

α=90度时的波形 α=120度时的波形

α=150度时的波形 仿真波形图 从仿真结果可以看到α=30°和α=60°时,电路工作在整流状态,负载电压为正值,变流电路输出电压波形正面积大于负面积,平均电压大于零。当α=120°和α=150°时,负载电压为正值,输出电压波形正面积大于负面积,平均电压为负,电路工作在逆变状态;α=90°时,电路工作在中间态平均电压为0。 五、实验总结 采用Matlab/Simulink对三相半波有源逆变电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,使

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

三相半波有源逆变电路

a V 1 b V 2c V 3 u d R i d L M +- +-E D T 0u d α u a u b u c u a ωt 0 i d ωt i V1 i V2 i V3 i V1 (a)0 u d αu a 0i d ω i V3 三相半波有源逆变电路仿真 一、电路图及工作原理 当ɑ>90°时I d 的方向如图所示,E m 的极性与晶闸管的导通方向一致,且│E m │>│U d │,此时的U d 极性为负,电流由直流侧送到交流侧,电网吸收功率,实现逆变 三相半波有源逆变器(电阻负载)原理图 二、模型参数设置 1、电压源 三相交流电源通过三个频率为50Hz 、幅值为220V 、相位两两相差120°,A 相的设置如右图所示,另外两相设置为B

相相位滞后A相120°,Phase设置为-120°,C相相位超前A 相120°,Phase设置为120°,测量“measurements”三相都要选Voltage,以便使用万用表测量电压 2、电压电流测量 由于同步6脉冲触发器的AB,BC,CA端为同步线电压输入端,而三相电源提供的是相电压所以要通过三个电压表进行转换,其他电流电压测量无需设置直接使用 3、常量 本系统使用两个常量模块,一个提供触发角ɑ的值,一个设置为0连接同步6脉冲触发器的使能端Block,使其能

正常工作。如下图所示: 4、分路器和多路选择器 分路器输出Numbers of outputs选3 多路选择器输入Numbers of inputs选3 如图所示 5、同步6脉冲触发器 频率设置为50Hz,脉冲用宽脉冲设置为10°。 如图所示:

三相桥式全控整流

实验一三相桥式全控整流 一、实验目的 (1)加深理解三相桥式全控整流及有源逆变电路的工作原理 (2)了解KC系列集成触发器的调整方法和各点的波形 (3)掌握三相桥式全控整流电路MA TLAB的仿真方法,会设置各模块的参数。 二、实验原理 实验电路如图所示。主电路由三相全控整流电路及作为逆变直流电源的三相不可控整流电路组成,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。 途中的R p用滑线变阻器,接成并联形式,电感L b选用700mH。在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不可控整流机心式变压器可在实验装置上获得,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端A m、B m、C m,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。 三相桥式全控整流电路的计算公式如下: U d=2.34U2cosα(0~60°) U d=2.34U2[1+cos(α+π)](60°~120°) 三相桥式有缘逆变电路计算公式如下: U d=2.34U2cos(180°-β) 三、实验内容 (1)三相桥式全控整流电路了 (2)三相桥式有缘逆变电路 (3)在整流或有源逆变状态下,当触发电路出现故障(认为模拟)时观测主电路的各电压波形。 四、实验仿真 带电阻性负载的仿真 三相桥式全控整流系统模型图

启动MATLAB,进入SIMULINK后新建文档,绘制三相桥式全控整流系统模型,如图所示。双击各模块,在出现的对话框设置相应的参数。 (1)交流电压源的参数设置:三相电源的相位互差120°,设置交流峰值相电压为100V、频率为60Hz (2)负载的参数设置:R=45Ω,L=0H,C=inf (3)通用变换器桥参数设置:本例中设置桥的结构为三相,缓冲电阻R s,为了消除模块中的缓冲电路,可以缓冲电阻R s的参数设定为inf。缓冲电容Cs,单位为F,为了消除模块中的缓冲电路,可将缓冲电容C s的参数设定为inf。电力电子器件选择通用变换器桥中使用的电力电子的类型。内电阻R on单位为Ω,通用变换器中使用的是功率电子元件的内电阻,R on=1e-3(1×10-3)。内电感L on,单位为H,变换桥中使用的是二极管、晶闸管、MOSFET灯功率电子元件的内电感。 (4)同步6脉冲触发器的参数设置:设置同步电压频率为60Hz,脉冲宽度为60°。 (5)常熟模块参数设置:该模块只有一个输出端,在本例中只要改变参数对话框的数值大小,即改变了触发信号的控制角。 打开仿真/参数窗,选择ode23tb算法,将相误差设置为1e-3(1×10-3),开始仿真时间为0,停止时间设置为0.02. 设置好各模块参数后,单击仿真按钮,得到仿真结果。改变触发角α,得到不同的仿真结果。

电磁波实验报告

电磁场与微波技术 实验报告 院系: 班级: 姓名: 学号: 指导老师:

实验一线驻波比波长频率的测量 一、实验目的 1、熟练认识和了解微波测试系统的基本组成和工作原理。 2、掌握微波测试系统各组件的调整和使用方法。 3、掌握用交叉读数法测波导波长的过程。 二、实验用微波元件及设备简介 1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。 3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。 图 1 隔离器结构示意图图2 衰减其结构示意图 4.谐振式频率计(波长表): 图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二 1. 谐振腔腔体 1. 螺旋测微机构 2. 耦合孔 2. 可调短路活塞 3. 矩形波导 3. 圆柱谐振腔 4. 可调短路活塞 4. 耦合孔 5. 计数器 5. 矩形波导 6. 刻度 7. 刻度套筒 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。 5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。 6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。 三、实验内容及过程 1.微波信号源的调整: 频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。 2.测量线探针的调谐: 我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。 3.用波长计测频率: (1)在测量线终端接上全匹配负载。 (2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常 高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。 (3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。 4.交叉读数法测量波导波长: (1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。 (2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

三相半波有源逆变实验二

实验二三相半波有源逆变电路实验 一、实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。 2、观察逆变失败现象,并研究逆变失败产生原因及预防措施。 二、预习内容 1、什么是有源逆变和逆变角?有何分类? 2、实现有源逆变的条件是什么? 3、试画出β=30°,60°时逆变电压的波形。 三、实验所需设备及挂件 四、实验线路原理图及原理流程图 1)实验线路原理图:见图X-1

2)实验原理流程图:见X -2 图X -2实验原理流程图 五、注意事项 (1)参照三相半波可控整流实验的注意事项(1) (2)电阻调节要缓慢进行,以防主电路电流过大,损坏晶闸管. 六、实验内容 三相半波整流电路在有源逆变状态工作下带电阻电感性负载的研究。 七、实验方法及步骤 1、DJK02和DJK02-1上的“触发电路”调试(与整流电路步骤与方法相同略)。 2、三相半波有源逆变电路实验 。 ①)按图X-1接线。 a) 晶闸管选用DJK02 上的正桥组VT1、VT3、VT5采用共阴极接法. b) 电感用DJK02 上的Ld=700mH c) 电阻R 选用D42 三相可调电阻,将两个900Ω接成串联,且放在最大阻值。 注意:以上器件图片见“三相半波可控整流实验”。

d)直流电源用DJK01 上的励磁电源,其中DJK10 中的心式变压器用作升压变压器使用,变压器接成Y/Y 接法,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出。 e)直流电压、电流表用DJK01和DJK02 上的均可。见上图。 ②将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器Rp ,使触发角α=150°(即β=30°),实际调到βmin 即可。当初始触发角定下后,在以后的逆变调节中只调节给定电压Uct ,这样确保不进入整流状态。这点很重要。 ③按下“启动”按钮,此时三相半波处于逆变状态,用示波器观察电路输出电压U d 波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°(即β=90°),记录β=βmin 、45°、60°、75°、90°时的电压值以及波形。 计算公式:Ud=-1.17U2cos β 注意:本实验中的U2实际是多少? 八、实验报告 (1)画出实验所得的各特性曲线与波形图。 (2)对可控整流电路在整流状态与逆变状态的工作特点作比较。

电力电子技术最新版配套习题答案详解第5章

目录 第1章电力电子器件 (1) 第2章整流电路 (4) 第3章直流斩波电路 (20) 第4章交流电力控制电路和交交变频电路 (26) 第5章逆变电路 (31) 第6章PWM控制技术 (35) 第7章软开关技术 (40) 第8章组合变流电路 (42)

第5章逆变电路 1.无源逆变电路和有源逆变电路有何不同? 答:两种电路的不同主要是: 有源逆变电路的交流侧接电网,即交流侧接有电源。而无源逆变电路的交流侧直接和负载联接。 2.换流方式各有那几种?各有什么特点? 答:换流方式有4种: 器件换流:利用全控器件的自关断能力进行换流。全控型器件采用此换流方式。 电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。 负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。 强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。通常是利用附加电容上的能量实现,也称电容换流。 晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。 3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。 答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路 电压型逆变电路的主要特点是: ①直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。 ②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。 ③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。 电流型逆变电路的主要特点是: ①直流侧串联有大电感,相当于电流源。直流侧电流基本无脉动,直流回路呈现高阻抗。 ②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。 ③当交流侧为阻感负载时需要提供无功功率,直流侧电感起缓冲无功能量的作用。因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

三相桥式全控整流及有源逆变电路实验

实验2 三相桥式全控整流及有源逆变电路实验 一、实验目的 (1) 熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 (2) 了解集成触发器的调整方法及各点波形。 二、实验线路及原理 实验线路如图4-8所示。主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。 三、实验内容 (1) 三相桥式全控整流电路 (2) 三相桥式有源逆变电路 (3) 观察整流状态下模拟电路故障现象时的波形 三相桥式全控整流及有源逆变电路图 四、实验设备 (1) MCL现代运动控制技术实验台主控屏 (2) MCL—18组件 (3) MEL-02芯式变压器 (4) 滑线变阻器1.8K, 0.65A (5) 双踪记忆示波器 (6) 数字式万用表 五、预习要求 (1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容,弄清三相桥式全控整流电路带大电感负载时的工作原理。 (2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。 (3) 学习本教材§2-3中有关集成触发电路的内容,掌握该触发电路的工作原理。 六、思考题 (1)如何解决主电路和触发电路的同步问题?本实验中,主电路三相电源的相序能任意确定吗?

(2) 本实验中,在整流向逆变切换时,对α角有什么要求?为什么? 七、实验方法 1、接线与调试 (1) 按图4-8接线,未上主电源之前,检查晶闸管的脉冲是否正常。打开MCL-18电源开关,给定电压U g有电压显示。 (2) 用示波器观察双脉冲观察孔,应有间隔均匀,相互间隔60°的幅度相同的双脉冲。 (3) 检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲60°,则相序正确,否则,应调整输入电源。 (4) 用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V~2V的脉冲。 注:将面板上的U blf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个按键设置到“接通”。 (5) 将给定器输出U g 接至U ct端,调节偏移电压U b,在U ct =0时,使a=150o。此时的触发脉冲波形如图4-9所示。 图4-9 触发脉冲与锯齿波的相位关系 2、三相桥式全控整流电路 (1) 按图4-8接线,将开关“S”拨向左边的短接线端,给定器上的“正给定”输出为零(逆时针旋到底);合上主电路开关,调节给定电位器,使α角在30°~90°范围内调节(α角度可由晶闸管两端电压uT波形来确定),同时,根据需要不断调整负载电阻R d,使得负载电流I d保持在0.5A左右(注意I d不得超过1A)。用示波器观察并记录α= 30°,60°,90°时的 计算公式(4-4) (2) 模拟故障现象 当α= 60°时,将示波器所观察的晶闸管的触发脉冲按扭开关拨向“脉冲断”位置,模拟晶闸管失去触发脉冲的故障,观察并记录这时的u d、u T的变化情况。 3、三相桥式有源逆变电路

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

————————————————————————————————作者:————————————————————————————————日期:

北京邮电大学 电磁场与电磁波测量实验 实验报告 实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量 学院:电子工程学院 班级:2010211203班 组员:崔宇鹏张俊鹏章翀 2013年5月9日

实验一微波测量系统的使用和 信号源波长功率的测量 一、实验目的 (1) 学习微波的基本知识; (2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象。 二、实验仪器 1.微波信号源 微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。在教学方式下,可实时显示体效应管的工作电压和电流的关系。仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。 2.隔离器 位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。 3.衰减器 把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率从以及去耦合的作用。 4.波长计 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可 读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() PL d dB PL d n d d =+(式1) 010log/0 即平均接收功率为: ()[][]()()()[]() =--=- d dBm Pt dBm PL d n d d d dBm n d d Pr010log/0Pr010log/0 (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对

三相半波有源逆变电路上课讲义

三相半波有源逆变电 路

T a V 1 b V 2c V 3 u d R i d L M +- +-E D T 0u d α u a u b u c u a ωt 0 i d ωt i V1 i V2 i V3 i V1 (a)0 u d αu a 0i d ω i V3 三相半波有源逆变电路仿真 一、电路图及工作原理 当ɑ>90°时I d 的方向如图所示,E m 的极性与晶闸管的导通方向一致,且│E m │>│U d │,此时的U d 极性为负,电流由直流侧送到交流侧,电网吸收功率,实现逆变 三相半波有源逆变器(电阻负载)原理图 二、模型参数设置 1、电压源 三相交流电源通过三个频率为50Hz 、幅值为220V 、相位两两相差120°,A 相的设置如右图所示,另外两相设置为

B相相位滞后A相120°,Phase设置为-120°,C相相位超前A相120°,Phase设置为120°,测量“measurements”三相都要选Voltage,以便使用万用表测 量电压 2、电压电流测量 由于同步6脉冲触发器的AB,BC,CA端为同步线电压输入端,而三相电源提供的是相电压所以要通过三个电压表进行转换,其他电流电压测量无需设置直接使用 3、常量

本系统使用两个常量模块,一个提供触发角ɑ的值,一 个设置为0连接同步6脉冲触发器的使能端Block,使其能正常工作。如下图所示: 4、分路器和多路选择器 分路器输出Numbers of outputs选3 多路选择器输入Numbers of inputs选3 如图所示 5、同步6脉冲触发器 频率设置为50Hz,脉冲用宽脉冲设置为10°。

相关文档
最新文档