实验三 三相半波有源逆变电路实验

实验三  三相半波有源逆变电路实验
实验三  三相半波有源逆变电路实验

实验三三相半波有源逆变电路实验

一、实验目的

研究三相半波有源逆变电路的工作,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

三、实验线路及原理

其工作原理详见电力电子技术教材中的有关内容。

晶闸管可选用DJK02上的正桥,电感用DJK02上的L

=700mH,电阻R 选用D42

d

三相可调电阻,将两个900Ω接成串联形式,直流电源用DJK01上的励磁电源,其中DJK10 中的心式变压器用作升压变压器使用,变压器接成Y/Y 接法,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C 输出。直流电压、电流表均在DJK02上。

图3.3 三相半波有源逆变电路实验原理图

四、实验内容

三相半波整流电路在整流状态工作下带电阻电感性负载的研究。

六、实验方法

(1) DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器

(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α

=150°。

⑥适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦将DJK02-1面板上的Ulf端接地,用20 芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6 晶闸管门极和阴极之间的触发脉冲是否正常。

(2) 三相半波整流及有源逆变电路

①按图3.3 接线,将负载电阻放在最大阻值处,使输出给定调到零。

②按下“启动”按钮,此时三相半波处于逆变状态,α=150°,用示波器观察电路输出电压Ud波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°,继续升高给定电压,输出电压由零向正的电压升高,进入整流区。在这过程中记录α=30°、60°、90°、120°、150°时的电压值以及波形。

α30°60°90°120°150°

U1

U1(计算值)

三相半波可控整流电路实验

实验七三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-9。 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器. 5.双踪示波器。 6.万用电表。 五.注意事项 1.整流电路与三相电源连接时,一定要注意相序。 2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。 3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。

六.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL—18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。 2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V: (a)改变控制电压U ct,观察在不同触发移相角α时,可控整流电路的输出电压U d=f (t)与输出电流波形i d=f(t),并记录相应的U d、I d、U ct值。 (b)记录α=90°时的U d=f(t)及i d =f(t)的波形图。 (c)求取三相半波可控整流电路的输入—输出特性U d/U2=f(α)。 (d)求取三相半波可控整流电路的负载特性U d=f(I d) 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作 接入MCL—33的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。 (a)观察不同移相角α时的输出U d=f(t)、i d=f(t),并记录相应的U d、I d值,记录α=90°时的U d=f(t)、i d=f(t),U vt=f(t)波形图。 (b)求取整流电路的输入—输出特性U d/U2=f(α)。 七.实验报告 1.绘出本整流电路供电给电阻性负载,电阻—电感性负载时的U d= f(t),i d= f(t)及U vt= f(t)(在α=90°情况下)波形,并进行分析讨论。 2.根据实验数据,绘出整流电路的负载特性U d=f(I d),输入—输出特性U d/U2=f(α)。 八.思考 1.如何确定三相触发脉冲的相序?它们间分别应有多大的相位差? 2.根据所用晶闸管的定额,如何确定整流电路允许的输出电流?

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

三相全控桥式整流及有源逆变电路的设计

电力电子技术课程设计报告 有源逆变电路的设计 姓名 学号 年级20级 专业电气工程及其自动化 系(院) 指导教师 2012年12 月10 日 课程设计任务书

课程《电力电子技术》 题目 有源逆变电路的设计 引言 任务: 在已学的《电力电子技术》课程后,为了进一步加强对整流和有源逆变电路的认识。可设计一个三相全控桥式整流电路及有源逆变电路。分析两种电路的工作原理及相应的波形。通过电路接线的实验手段来进行调试,绘制相关波形图 要求: a. 要有设计思想及理论依据 b. 设计出电路图即整流和有源逆变电路的结构图 c. 计算晶闸管的选择和电路参数 d. 绘出整流和有源逆变电路的u d(t)、i d(t)、u VT(t)的波形图 e. 对控制角α和逆变β的最小值的要求

设计题目三相全控桥式整流及有源逆变电路的设计 一.设计目的 1.更近一步了解三相全控桥式整流电路的工作原理,研究全控桥式整流电路分别工作在电阻负载、电阻—电感负载下Ud, Id及Uvt的波形,初步 认识整流电路在实际中的应用。 2.研究三相全控桥式整流逆变电路的工作原理,并且验证全控桥式电路在有源逆变时的工作条件,了解逆变电路的用途。 二.设计理念与思路 晶闸管是一种三结四层的可控整流元件,要使晶闸管导通,除了要在阳极—阴极间加正向电压外,还必须在控制级加正向电压,它一旦导通后,控制级就失去控制作用,当阴极电流下降到小于维持电流,晶闸管回复阻断。因此,晶闸管的这一性能可以充分的应用到许多的可控变流技术中。 在实际生产中,直流电机的调速、同步电动机的励磁、电镀、电焊等往往需要电压可调的直流电源,利用晶闸管的单向可控导电性能,可以很方便的实现各种可控整流电路。当整流负载容量较大时,或要求直流电压脉冲较小时,应采用三相整流电路,其交流侧由三相电源提供。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。三相半波可控电路只用三只晶闸管,接线简单,但晶闸管承受的正反向峰值电压较高,变压器二次绕组的导电角仅120°,变压器绕组利用率较低,并且电流是单向的,会导致变压器铁心直流磁化。而采用三相全控桥式整流电路,流过变压器绕组的电流是反向电流,避免了变压器铁芯的直流磁化,同时变压器绕组在一个周期的导电时间增加了一倍,利用率得到了提高。 逆变是把直流电变为交流电,它是整流的逆过程,而有源逆变是把直流电经过直-交变换,逆变成与交流电源同频率的交流电反送到电网上去。逆变在工农业生产、交通运输、航空航天、办公自动化等领域已得到广泛的应用,最多的是交流电机的变频调速。另外在感应加热电源、航空电源等方面也不乏逆变电路的身影。 在很多情况下,整流和逆变是有着密切的联系,同一套晶闸管电路即可做整流,有能做逆变,常称这一装置为“变流器”。 三.关键词

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

电磁场实验报告

实验一:静电场的分析与求解 1.求二维标量场u(r)=y^2-x的梯度 [x,y]=meshgrid(-2:.2:2,-2:.2:2); z=y.^2-x; [px,py]=gradient(z,.2,.2); contour(z) hold on quiver(px,py) hold off title('等值线与梯度'); 2.2个等量同号点电荷组成的点电荷系的电势分布图clear v='1./((x-3).^2+y.^2).^0.5+1./((x+3).^2+y.^2).^0.5'; xmax=10; ymax=10; ngrid=30; xplot=linspace(-xmax,xmax,ngrid); [x,y]=meshgrid(xplot); vplot=eval(v); [explot,eyplot]=gradient(-vplot); clf; subplot(1,2,1),meshc(vplot); xlabel('x'); ylabel('y'); zlabel('电位');

subplot(1,2,2),axis([-xmax xmax -ymax ymax]); cs=contour(x,y,vplot); clabel(cs); hold on quiver(x,y,explot,eyplot) xlabel('x'); ylabel('y'); hold off 3.电偶极子的场(等位线和梯度) clear; clf; q=2e-6; k=9e9; a=1.5; b=-1.5; x=-6:0.6:6; y=x; [X,Y]=meshgrid(x,y); rp=sqrt((X-a).^2+(Y-b).^2); rm=sqrt((X+a).^2+(Y+b).^2); V=q*k*(1./rp-1./rm); [Ex,Ey]=gradient(-V); AE=sqrt(Ex.^2+Ey.^2); Ex=Ex./AE; Ey=Ey./AE; cv=linspace(min(min(V)),max(max(V)),49);

三相半波整流电路论文设计

电力电子技术课程设计 题目:三相半波整流电路的设计 作者:伟龙 学号: 指导教师:宁 专业班级:13级电气工程及其自动化本科2班 工业学院 2015年12月21日

目录 一、目录 (1) 二、引言 1.1 什么是电力电子技术 (2) 1.2 整流电路的应用领域及分类 (2) 三、设计目的及意义 (3) 四、设计的要求和容 4.1 三相半波整流电路电阻负载原理组成 (3) 4.2 三相半波整流电路电阻负载原理图 (4) 4.3 三相半波整流电路原理波形分析 (4) 4.4 三相半波整流电路的保护电路 (6) 五、三相半波整流电路数量计算 5.1 输出值的计算 (7) 5.2 晶闸管电流有效值 (8) 5.3 晶闸管额定电流 (8) 六、Matlab软件电脑仿真原理图 6.1 电阻负载Matlab原理图仿真 (8) 6.2 阻感负载Matlab原理图仿真 (9) 6.3 电阻负载Matlab波形图仿真 (9) 七、心得体会 (11) 八、参考文献 (12) 九、致 (12)

二、引言 2.1 什么是电力电子技术 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统量应用。 2.2 整流电路的应用领域及分类 工业中广泛使用的整流电路的目的是把国家电网中的交流电能转换为直流电能。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用 当整流负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,又因为整流电路应用非常广泛,在三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波可控整流电路的基础上进行分析,因此本次我们要做的实践是三相半波可控整流电路。

三相半波可控整流电路

三相半波可控整流电路

1. 电阻负载 (1) 工作原理 三相半波可控整流电路如图1 a) 所示。为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。此时,三个二极管对应的相电压中哪一个的值最大,则该相所对应的 二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,波形如图1 d) 所示。在一个周期中,器件工作情况如下:在ωt1~ωt2期 间,α相电压最高,VD1导通,u d= u a;在ωt2~ωt3期间,b 相电压最高, VD2导通,u d= u b;在ωt3~ωt4期间,c 相电压最高,VD3导通,u d= u c。此后,在下一周期相当于ωt1的位置即ωt4时刻,VD1又导通,重复前一周期的工作情况。如此,一周期中VD1、VD2、VD3轮流导通,每管各导通120o。u d波形为三个相电压在正半周期的包络线。 在相电压的交点ωt1、ωt2、ωt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0o,要改变触发角只能是在此基础上增大,即沿时间坐标轴向右移。若在自然换相点处触发相应的晶闸管导通,则电

路的工作情况与以上分析的二极管整流工作情况一样。由单相可控整流电路可知,各种单相可控整流电路的自然换相点是变压器二次电压u2的过零点。 当α= 0o时,变压器二次侧 a 相绕组和晶闸管VT1的电流波形如图1 e) 所示,另两相电流波形形状相同,相位依次滞后120o,可见变压器二次绕组电流有直流分量。 图1 f) 是VT1两端的电压波形,由3段组成:第1段, VT1导通期间,为一管压降,可近似为u VT1=0;第2段,在VT1关断后,,VT2导通期间,u VT1= u a-u b = u ab ,为一段线电压;第3段,在VT3导通期间,u VT1= u a-u c = u ac 为另一段线电压。即晶闸管电压由一段管压降和两段线电压组成。由图可见, α= 0o时,晶闸管承受的两段线电压均为负值,随着α增大,晶闸管承受的电压中正的部分逐渐增多。其他两管上的电压波形形状相同,相位依次差120o。 增大α值,将脉冲后移,整流电路的工作情况相应地发生变化。 图2 是α=30o时的波形。从输出电压、电流的波形可看出,这时负载电流处于连续和断续的临界状态,各相仍导电120o。 如果α >30o,例如α =60o时,整流电压的波形如图3 所示,当导通一相的相电压过零变负时,该相晶闸管关断。此时下一相晶闸管虽承受正电压,但它的触发脉冲还未到,不会导通,因此输出电压电流均为零,直到触发脉冲出现为止。这种情况下,负载电流断续,各晶闸管导通角为90o,小于120o 若α角继续增大,整流电压将越来越小,α=150o时,整流输出电压为零。故电阻负载时α角的移相范围为150o。 (2) 负载电压 整流电压平均值的计算分两种情况: 1) α≤30o时,负载电流连续,有 当α= 0 时,U d最大,为U d= U d0=1.17U2. 2) α >30o时,负载电流断续,晶闸管导通角减小,此时有

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

三相桥式整流电路实验报告

实验报告 实验名称三相桥式全控整流电路实验课程名称电力电子技术 院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.按图接好主回路。 2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (3)用万用表记录α=0O、30O、60O、90O、120O时对应的Uct(Ug)的值。在做下 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

三相半波有源逆变电路

a V 1 b V 2c V 3 u d R i d L M +- +-E D T 0u d α u a u b u c u a ωt 0 i d ωt i V1 i V2 i V3 i V1 (a)0 u d αu a 0i d ω i V3 三相半波有源逆变电路仿真 一、电路图及工作原理 当ɑ>90°时I d 的方向如图所示,E m 的极性与晶闸管的导通方向一致,且│E m │>│U d │,此时的U d 极性为负,电流由直流侧送到交流侧,电网吸收功率,实现逆变 三相半波有源逆变器(电阻负载)原理图 二、模型参数设置 1、电压源 三相交流电源通过三个频率为50Hz 、幅值为220V 、相位两两相差120°,A 相的设置如右图所示,另外两相设置为B

相相位滞后A相120°,Phase设置为-120°,C相相位超前A 相120°,Phase设置为120°,测量“measurements”三相都要选Voltage,以便使用万用表测量电压 2、电压电流测量 由于同步6脉冲触发器的AB,BC,CA端为同步线电压输入端,而三相电源提供的是相电压所以要通过三个电压表进行转换,其他电流电压测量无需设置直接使用 3、常量 本系统使用两个常量模块,一个提供触发角ɑ的值,一个设置为0连接同步6脉冲触发器的使能端Block,使其能

正常工作。如下图所示: 4、分路器和多路选择器 分路器输出Numbers of outputs选3 多路选择器输入Numbers of inputs选3 如图所示 5、同步6脉冲触发器 频率设置为50Hz,脉冲用宽脉冲设置为10°。 如图所示:

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

电磁波实验报告

电磁场与微波技术 实验报告 院系: 班级: 姓名: 学号: 指导老师:

实验一线驻波比波长频率的测量 一、实验目的 1、熟练认识和了解微波测试系统的基本组成和工作原理。 2、掌握微波测试系统各组件的调整和使用方法。 3、掌握用交叉读数法测波导波长的过程。 二、实验用微波元件及设备简介 1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。 3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。 图 1 隔离器结构示意图图2 衰减其结构示意图 4.谐振式频率计(波长表): 图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二 1. 谐振腔腔体 1. 螺旋测微机构 2. 耦合孔 2. 可调短路活塞 3. 矩形波导 3. 圆柱谐振腔 4. 可调短路活塞 4. 耦合孔 5. 计数器 5. 矩形波导 6. 刻度 7. 刻度套筒 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。 5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。 6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。 三、实验内容及过程 1.微波信号源的调整: 频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。 2.测量线探针的调谐: 我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。 3.用波长计测频率: (1)在测量线终端接上全匹配负载。 (2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常 高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。 (3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。 4.交叉读数法测量波导波长: (1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。 (2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

三相半波可控整流电路

《电力电子技术》课程设计说明书三相半波可控整流电路 学院:电气与信息工程学院 学生姓名:XXX 指导教师:XXX 职称副教授 专业:电气工程及其自动化 班级:XXXX班 学号: 完成时间:2015年06月

摘要 三相整流电路有三相半波整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。 本文主要介绍三相半波可控整流电路的主电路、触发电路和保护电路的原理及电路仿真图,输入电压为三相交流线电压380V,通过降压变压器后由晶闸管转换为直流。触发电路控制晶闸管的导通,通过调节脉冲的触发角可得到不同的输出电压。本文利用Simulink对三相半波整流电路进行建模,对不同控制角、故障情况下进行了仿真分析,在触发角的调节范围为97°~150°时输出电压为0~100V。既进一步加深了三相半波整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 关键词:三相半波整流电路;晶闸管;MATLAB仿真

目录 1 设计目的及要求 (1) 1.1 设计目的 (1) 1.2 设计要求 (1) 1.2.1 设计课题 (1) 1.2.2 设计内容 (1) 2 主电路设计 (2) 2.1 主电路原理分析 (2) 2.2 触发角分析 (3) 2.3 主要元器件选择 (3) 2.3.1 晶闸管参数计算与选择 (3) 2.3.2 触发电路芯片选择 (3) 3 触发电路的设计 (5) 4 保护电路的设计 (6) 4.1 过压保护 (6) 4.1.1 过压的原因 (6) 4.1.2 过压保护的措施 (6) 4.2 过流保护 (6) 4.2.1 过流的原因 (6) 4.2.2 过流保护的措施 (7) 4.3 保护电路选择 (7) 5 MATLAB仿真 (8) 5.1 仿真软件MATLAB介绍 (8) 5.1.1 MATLAB简介 (8) 5.1.2 Simulink简介 (8) 5.1.3 Simulink启动与退出 (9) 5.2 MATLAB仿真模型 (10) 5.3 MATLAB仿真结果及分析 (10) 心得体会 (12)

三相半波有源逆变实验二

实验二三相半波有源逆变电路实验 一、实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。 2、观察逆变失败现象,并研究逆变失败产生原因及预防措施。 二、预习内容 1、什么是有源逆变和逆变角?有何分类? 2、实现有源逆变的条件是什么? 3、试画出β=30°,60°时逆变电压的波形。 三、实验所需设备及挂件 四、实验线路原理图及原理流程图 1)实验线路原理图:见图X-1

2)实验原理流程图:见X -2 图X -2实验原理流程图 五、注意事项 (1)参照三相半波可控整流实验的注意事项(1) (2)电阻调节要缓慢进行,以防主电路电流过大,损坏晶闸管. 六、实验内容 三相半波整流电路在有源逆变状态工作下带电阻电感性负载的研究。 七、实验方法及步骤 1、DJK02和DJK02-1上的“触发电路”调试(与整流电路步骤与方法相同略)。 2、三相半波有源逆变电路实验 。 ①)按图X-1接线。 a) 晶闸管选用DJK02 上的正桥组VT1、VT3、VT5采用共阴极接法. b) 电感用DJK02 上的Ld=700mH c) 电阻R 选用D42 三相可调电阻,将两个900Ω接成串联,且放在最大阻值。 注意:以上器件图片见“三相半波可控整流实验”。

d)直流电源用DJK01 上的励磁电源,其中DJK10 中的心式变压器用作升压变压器使用,变压器接成Y/Y 接法,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出。 e)直流电压、电流表用DJK01和DJK02 上的均可。见上图。 ②将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器Rp ,使触发角α=150°(即β=30°),实际调到βmin 即可。当初始触发角定下后,在以后的逆变调节中只调节给定电压Uct ,这样确保不进入整流状态。这点很重要。 ③按下“启动”按钮,此时三相半波处于逆变状态,用示波器观察电路输出电压U d 波形,缓慢调节给定电位器,升高输出给定电压。观察电压表的指示,其值由负的电压值向零靠近,当到零电压的时候,也就是α=90°(即β=90°),记录β=βmin 、45°、60°、75°、90°时的电压值以及波形。 计算公式:Ud=-1.17U2cos β 注意:本实验中的U2实际是多少? 八、实验报告 (1)画出实验所得的各特性曲线与波形图。 (2)对可控整流电路在整流状态与逆变状态的工作特点作比较。

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

单相半波可控整流电路实验

单相半波可控整流电路实验

————————————————————————————————作者:————————————————————————————————日期:

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相半波可控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别2015级2班开出学期2016-2017下期 学生姓名袁志军学号201507144228 实验教师谢辉成绩 2017 年 4 月 30 日

填写说明 1、基本内容 (1)实验序号、名称(实验一:xxx);(2)实验目的;(3)实验原理;(4)主要仪器设备器件、药品、材料;(5)实验内容; (6)实验方法及步骤(7)数据处理或分析讨论 2、要求: (1)用钢笔书写(绘图用铅笔) (2)凡需用坐标纸作图的应使用坐标纸进行规范作图 实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 型号备注 序 号 1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个 模块。 2 DJK02 晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。 3 DJK03-1 晶闸管触发 该挂件包含“单结晶体管触发电路”模块。 电路 4 DJK06 给定及实验器 该挂件包含“二极管”等几个模块。 件 5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 四、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

基于Simulink的三相半波可控整流电路仿真

基于Simulink的三相半波可控整流电路仿真 一、实验目的: 通过Simulink进行三相半波可控整流电路仿真模型的建立,进一步理解其电路原理。并观察在不同负载情况下,改变晶闸管控制角α对电路输出的影响。 二、实验原理: 三相半波可控整流电路如图1所示。电路由三相交流电源、晶闸管、负载及触发电路组成。改变晶闸管的控制角可以调节输出直流电压和电流的大小。此次仿真实验过程分为建立仿真模型、设置模型参数和观察仿真结果。 图1 三、实验记录: (一)建立仿真模型: 在Simulink中将电路元件按相半波可控整流电路的原理图连接起来组成仿真电路。如图2所示。 图2 (二)设置模型参数: 设置三相电源电压幅值为220V,频率为50Hz,晶闸管采用脉冲触发器间隔120°交替触发,负载阻性时取R=5Ω,阻感负载时取R=5Ω,L=。 (四)模型仿真结果: 1、电阻负载(R=5Ω) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

(2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (3)α=60° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

2、阻感负载(R=5Ω,L=0.02H) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

相关文档
最新文档