仪器分析复习整理

仪器分析复习整理
仪器分析复习整理

仪器分析复习

1.仪器分析的定义:以测量物质的物理性质的分析方法。

特点:简便、快速、灵敏、易于实现自动化等特点

2.仪器分析的分类:电化学、光谱、色谱

3.色谱法的分类

1)按两相状态分类:可分为气固色谱、气液色谱、液固色谱、液液色谱等四类

2)按固定相分类:柱色谱(包括填充柱色谱和毛细管色谱)、纸色谱、薄层色谱或薄层层析

(TLC )。

3)按分离原理分类:

吸附色谱:利用固定相对不同组分的吸附性能的差别分离。

分配色谱:利用不同组分在两相中分配系数的差别分离。

离子交换色谱:利用不同离子在离子交换固定相上的亲和力的差别分离。

凝胶色谱:利用不同组分分子量的差别(即分子大小)先后被过滤进行分离。

4.气相色谱流程与气相色谱仪:

载气系统,进样系统,色谱分离系统,检测系统和数据处理系统

5.色谱流出曲线及有关术语

1)基线:为色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随

时间变化的线。

2)保留值

①保留时间R t :指被测组分从进样开始到柱后出现浓度最大值所需的时间。

②死时间M t :指不被固定相吸附或溶解的气体(如空气、甲烷),从这样开始到柱后出现浓

度最大值所需的时间。

③调整保留时间'R t :指扣除死时间后的保留时间'R t = R t -M t

④保留体积R V :指从这样开始到柱后被测组分出现浓度最大值时所通过的载气体积。

⑤死体积M V :指色谱柱在填充后柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接

头间的空间以及检测器的空间的总和。

⑥调整保留体积'M V :指扣除死体积后的保留体积。

⑦相对保留值 2112'1'221αγ===

k k t t R R :指某组分2的调整保留值与另一组分1的调整保留

值之比。

6.色谱峰区域宽度

标准偏差σ:峰高0.607h 处宽度的一半(保留时间定性,峰宽定量);

半峰宽Y 1/2 0.5h 处的宽度,Y 1/2=2.354σ;峰底宽 Y=4σ

7.气相色谱基本理论

1) 塔板理论n=5.54(t R /Y 1/2)2=16(t R /Y )2

n 有效=5.54(t R //Y 1/2)2=16(t R //Y )2

2) 速率理论 (范第姆特方程)

H=A+B/μ+C μ 式中:

A —涡流扩散;

B —分子扩散系数;

C —传质阻力系数;μ— 流动相线速度

结论:填充物粒度、填充物的均匀性,载气种类、流速,柱温等对柱效、峰扩张有关系

8.分离度(分辨率) )(21

R 211

2Y Y t t R R +-=

9.分离条件的选择

(1)载气流速:从H=A+B/μ+C μ可看出:

1)μ较小时,应选择分子量较大的载气(N 2、Ar )

2)μ较大时,应选择分子量较小的载气(H 2、He )

(2)柱温选择:沸点最高的组分可分析的最低温度,不能超过色谱柱允许的最高使用温度。

(3)固定液的性质和用量(选择色谱柱)

(4)担体的性质和粒度(选择色谱柱)

(5)进样量和进样时间:快进快出

(6)气化温度

10.气液色谱固定相

1) 担体的选择:作用:承担固定液

要求:①化学惰性;②多孔性;③热稳定好、不易破碎;④粒度均匀,大小合适。

种类:①硅藻土型 可分红色(非极性、弱极性)、白色(极性);

②非硅藻土型 可分为氟担体、玻璃微球、高分子多孔微球

选择原则:①固定液含量>5%,用硅藻土型;②固定液含量<5%,用表面处理的硅藻土型;③

高沸点样品,用玻璃微球;④强腐蚀性,用氟担体;

2) 固定液

要求:①挥发性小;②热稳定性好;③溶解性好;④高选择性;⑤化学稳定性好

3) 固定液的选择:利用相似相溶原理选择

11.气相色谱检测器

12.气相色谱定量计算方法:

③ 内标标准曲线法

Ai/As

Ax/As

④ 外标法(标准曲线法)

Ai

Ax

%Cx %C i

14.高效液相色谱的特点①高压;②高速;③高效;④高灵敏;⑤应用更广。

15.影响色谱峰扩展及色谱分离的因素: H=A+B/u+Cu

与气相色谱的速率方程在形式上是一致的,其区别在纵向扩散相可以忽略不计。

提高柱效的途径:减小填料粒度以加快传质速率;提高柱内填料装填的均匀性。

16.高效液相色谱法的主要类型:①液-液分配色谱法;②液-固色谱法;③离子交换色谱法;

④离子对色谱法;⑤离子色谱法;⑥空间排阻色谱法。

17.液相色谱固定相

1)液液色谱固定相:①固定液涂渍在担体上,分为全多孔型和表面多孔型

②化学键合固定相

常用的固定液有:极性的-氧二丙腈(ODPN ),非极性的十八烷(ODS )等。

2)液固色谱固定相:有薄膜型和全多孔型硅胶、氧化铝、以及分子筛和聚酰氨等。

3)离子交换色谱固定相:

①多孔型树脂:能分离复杂样品,进样量大,但耐压性差;

②薄壳型树脂:在玻璃微球上涂以薄层的离子交换树脂,耐压,柱效高,但容量小,进样少。

4)空间排阻色谱法(凝胶色谱法)固定相:

①硬质凝胶:硅胶、多孔玻璃珠等,适用于各种情况;

②半硬质凝胶:有机高分子凝胶,适用于非水流动相;

③质凝胶:、聚葡糖,适用于常压、水为流动相。

18.液相色谱流动相要求:①高纯度;②对样品各组分均有一定的溶解度;③不溶解固定相;

④粘度小;⑤与检测器相匹配;⑥不能有气体进入,不能有其他液体进入。

19.高效液相色谱仪高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、

进样器、色谱柱、检测器、恒温器、记录仪等主要部件。

1)高压泵:类型有:① 往复式柱塞泵;②气动放大泵

2)检测器:①紫外光度检测器;②荧光检测器;③差示折光检测器;④电导检测器;⑤蒸

发光散射检测器;

20.电化学分析法的分三类:电直接测定分析法,电容量分析法,电重量分析法。

21.电位分析法原理:能斯特方程式d Ox o d Ox nF RT

E Re Re /ln E αα+=

22.电极的种类: ①指示电极PH ②参比电极③工作电极④电位滴定

23.离子选择性电极的种类和性能

①原电极:a. 晶体 ( 膜电极 ): i. 均相膜电极 ii.非均相膜电极

b. 非晶体 ( 膜 ) 电极: i.刚性基质电极 ii.活动载体电极

②敏化电极 :a.气敏电极;b.酶(底物)电极

24.测定离子活度的方法

①标准曲线法: 缺点:适合于离子强度小或样品简单的测试,采用加入TISAB 或标准加入

法测定可克服。

②标准加入法:优点:只需一种标准溶液,可减少离子强度变化引起的误差(γ恒定)。

③格化作图法(连续标准加入法)

25.影响测定的因素:①温度的影响;②电动势测量误差;③干扰离子影响;

④pH 的影响;⑤浓度的影响;⑥响应时间的影响;⑦迟滞效应。

26.电位滴定法

1)原理:滴定过程中,接近等当点时,被滴定的物质浓度发生突变,由此,引起指示电极

的电极电位突变,导致电池电动势突变,从而指示终点。

2)特点:①准确度较电位测量法高,相对误差可≤0.2%;②可用于浑浊或有色溶液体系。

③可用于非水体系(有机物测定);④可连续和自动化,适用于微量分析;

3)缺点:到达平衡时间长,操作费时。

27.确定终点的方法:

①滴定曲线法(E-V 曲线法) E E-V 曲线上的拐点即为等当点。

②一级微商法 (ΔE/ΔV-V 曲线法) ΔE/ΔV ~V 曲线的顶点为等当点。

③二级微商法(Δ2E/ΔV 2~V 曲线法) Δ2E/ΔV 2=0的点为等当点。 28.电位滴定法的应用

①酸碱反应:PH 玻璃电极为指示电极,甘汞电极为参比电极,或用复合电极。

②氧化-还原反应:Pt 电极为指示电极,甘汞电极为参比电极。

③沉淀反应

④络合反应:可克服共存杂质离子对所用的指示剂的封密、僵化作用。

29.法拉第电解定律及库仑分析法概述

法拉第电解定律 9648796487it

n M

n MQ

m ?== (注意单位)

库仑分析必要条件:电极反应专一,电流效率100%,

30.库仑滴定的特点

①准确度高:相对误差约为0.2%,甚至可以达到0.01%以下,能作为标准方法。库仑滴定中的

电量容易控制和准确测量。

②由于滴定剂是通过电解产生的,产生后立即与溶液中待测物质反应(边电解边滴定),所

以可以使用不稳定的滴定剂,如,Cl 2、Br 2、Cu +等。

③不需要基准物质;④方法的灵敏度高。10-5-10-9 g/mL ;⑤易于实现自动化。

31.光谱分析定义(波长越长,能量越低)

32.原子发射光谱分析的基本原理:普朗克定律λνhc h E E E =

=-=?12

光谱范围:紫外(190nm —390nm )→可见→红外

33.光谱分析仪器

①光源

②光谱仪 (摄谱仪)

③观测设备(光谱投影仪(映谱仪))

34.光谱定性分析基本概念

①共振线:由激发态直接跃迁至基态时所辐射的谱线称为共振线。由第一激发态(最低能级)直接跃迁至基态时的谱线称为第一共振线,也是最灵敏线。

②灵敏线:是指各种元素谱线中强度比较大的谱线。通常具有最容易激发或激发电位较低的谱线。一般来说灵敏线多是一些共振线。

③最后线:元素的谱线强度随试样中该元素含量的减少而降低,并且在元素含量降低时其中有一部分灵敏度较低、强度较弱的谱线渐次消失,即光谱线的数目减少,最后消失的谱线称为最后线。

④分析线:用作鉴定元素存在及测定元素含量的谱线成为分析线。分析线一般是灵敏线或最后线。

35.光谱定性分析的方法:①标准试样光谱比较法;②铁光谱比较法(元素标准光谱图比较法);③比长仪测定法。

36.光谱定量分析:主要是根据谱线强度与被测元素浓度的关系来进行的。

lg I =b·lg c +lga 赛伯-罗马金公式。

内标法的基本公式。 A c b I I R lg lg lg lg 121

+==

37.对内标元素和分析线对的选择要求:

①原来试样内应不含或仅含有极少量所加内标元素。亦可选用此基体元素作为内标元素; ②要选择激发电位相同或接近的分析线对; ③两条谱线的波长应尽可能接近; ④所选线对的强度不应相差过大; ⑤所选用的谱线应不受其它元素谱线的干扰,应不是自吸收严重的谱线; ⑥内标元素与分析元素的挥发率应相近。

38.光谱半定量分析:①谱线呈现法;②谱线强度比较法;③均称线对法

39.原子发射光谱法的特点:①不必分离待分析的元素。可以在一个试样中同时测得多种元素的含量。③分析消耗试样量少,具有很高的分析灵敏度。④可测量的质量分数范围为0.0001%到百分之几十,适宜于作低含量及痕量元素的分析。

缺点:①不能用以分析有机物及大部分非金属元素;②对标准试样、感光板、显影条件要求严格;③分析时要配一套标准试样.因此定量分析不宜用来分析个别试样,而适用于经常的大量的试样分析。

40.原子吸收光谱分析基本原理:原子吸收分光光度法:利用物质所产生的原子蒸气对特征谱线的吸收作用来进行定量分析的一种方法。(锐线光源发射)

谱线轮廓与谱线变宽

①由于原子本身的性质决定(自然宽度)

自然宽度ΔV N :无外界因素影响的情况下,谱线具有的宽度,约10-5nm

②由外因引起(如热、压力等):a.热变宽度;b.压力变宽

41.原子吸收分光光度计:由光源,原子化器,单色器,检测器等四部分组成。

1)光源:作用:提供(锐线)共振线

要求:①锐线;②共振线;③强度足够,稳定性好

2)原子化系统:

①火焰原子化器:由雾化器和燃烧器两部分构成,是最常用原子化器。

火焰种类:a.空气-乙炔焰<2300℃适用于熔点较低金属原子化;

b.氧化亚氮-乙炔焰 3000℃;

c.氧-乙炔焰>2900℃

优点:重现性好,易操作,适应范围广。

缺点:灵敏度低(仅10%左右的试液被原子化)

②无火焰原子化器

优点:灵敏度高(试样全部原子化),检测限低。

缺点:干扰大,重现性差。

③氢化物原子化器:氢化物在较低温度(<1000℃),就可分解成原子蒸气。

优点:选择性高,干扰少,灵敏度高(10-9),原子化温度低。

缺点:适用范围窄。

④冷原子化装置(10-8以上)

3)光学系统;4)检测系统。

42.定量测试方法:

1)标准曲线法:

优点:简便、快速;缺点:基体效应(物理干扰)大,适用于组成简单的试样;

注意:①标准曲线应在线性范围;

②标准溶液应与试样用相同方法处理,使其组成尽可能一致;

③整个分析过程中工作条件始终保持一致;

④每次测定前应用标准溶液对标准曲线进行校正;

2)标准加入法:

优点:适合于组成复杂样品,可消除基体效应和某些化学干扰;

不足:不能消除背景吸收的影响;

注意:①测量应在线性范围内进行;②至少采用4点

43.干扰及其抑制

一、光谱干扰

1)与光源有关的干扰(相邻谱线干扰):①与分析线相邻的是待测元素的谱线,

②相邻线非待测元素谱线

2)光谱线重叠正误差,假吸收;3)与原子化器有关的干扰

二、物理干扰(基体效应):粘度、表面张力、溶剂等的改变的引起的干扰。

三、化学干扰:生成难挥发化合物,使原子化率下降。

消除方法:①加入消电剂②加入释放剂③加入保护剂(络合)④加入缓冲剂

44.原子吸收光谱主要测试条件有:

1)分析线选择:共振线或次灵敏线

2)灯电流的选择:①灯电流小,灵敏度高,但I过小则测量精确度差。

②灯电流大,谱线宽度变大,灵敏度下降,灯寿命缩短。

③实际工作中由A-i曲线选择

3)原子化条件选择(火焰法):①火焰类型;②燃烧器高度;③助燃气和燃烧气比例。4)狭缝宽度

45.灵敏度、特征浓度及检出限:

①灵敏度(S):被测元素浓度(C)或质量,改变一个单位时,吸光度(A)的变化量:即S=dA/dc 或S=dA/dm

②特征浓度(Sˊ):能产生1%吸收或0.0044吸光度值时,溶液中待测元素的质量浓度(ug·mL -1/1%)Sˊ=C×0.0044/A

石墨炉Sˊ=(CV×0.0044/A)Pg/1%

46.与有机化合物有关的价电子有σ、π和n电子,主要跃迁有:

①N-V跃迁:由基态跃迁至反键轨道:σ-σ*、π-π*

②N-Q跃迁:非键电子跃迁到反键轨道:n-σ*、n-π*

③N-R跃迁:σ电子激发到更高能级或电离

此外,与分光光度法有关的跃迁还有:④电荷转移跃迁;⑤配位场跃迁,。

有机化合物一般主要有4种类型的跃迁:n-π*、π-π*、n-σ*和σ-σ*。

各种跃迁所对应的能量大小为σ-σ*> n-σ*>π-π*> n-π* π-π*强度最强

常用术谱:

①生色基团:含有π键的不饱和基团(为C=C、C=O、N=N、-N=O等)能产生π-π*跃迁,使得有机化合物分子在紫外-可见光区产生吸收的基团。

②助色基团:含有非键电子(n电子)的基团(为-OH、-NH2、-SH、-X等),其本身在紫外-可见光区无吸收,但能与生团中π电子发生n-π*共轭,使生色团吸收峰红移的基团。

③红移和蓝移:使分子的吸收峰向长波方向移动的效应称红移。使分子的吸收峰向短波方向移动的效应称蓝移。

47.有机化合物的紫外吸收光谱:

1)饱和烃类分子中只含有σ键,因此只能产生σ-σ*跃迁,即σ电子从成键轨道(σ)跃迁到反键轨道(σ*),所需能量最大。出现在远紫外区。

2)不饱和脂肪烃:①单烯:π-π*在170-200nm,不属一般意义紫外区②共轭烯:共轭使π-π*的ΔE↓,吸收峰红移,强度增大,这种吸收带称K吸收带(共轭带)。③醛、酮化合物:有σ、π、n电子,可产生n-σ*、π-π*、n-π*,其中n-π*跃迁在270-300nm。

3)芳香化合物:

①无取代:E

1吸收带在185nm ε=104(60000);E

2

吸收带在204nm ε=103(7900);

B吸收带(苯带)在254-260nm(230-270nm)

②单取代;③二取代。

48.溶剂对紫外吸收光谱的影响

溶剂效应:对于π-π*跃迁引起的吸收峰,溶剂极性变大,红移。

对于n-π*跃迁引起的吸收峰,溶剂极性变大,蓝移。

49.紫外及可见光分光光度计

光源:作用:提供入射光

种类:钨灯(卤钨灯)发光波长360-1000nm 适用于可见光区

氢(氘)灯波长范围180-375nm 适用于紫外区

吸收池(比色皿)种类:石英比色皿 => 紫外区;玻璃比色皿=> 可见光区

50.紫外吸收光谱的应用

1)定性分析:根据紫外可见光谱提供的信息可判断分子中生色基团和助色基团的性质。2)有机物分子结构推断:①结构骨架推断;②构型和构象(顺反式)

3)纯度检测(微量杂质);4)定量分析

51.红外吸收光谱产生的条件:①分子基团的振动频率和外界红外辐射的频率一致;②分子有偶极矩的改变

52.红外光谱振动的形式

1)伸缩振动:①对称伸缩振动;②反对称伸缩振动

2)变形或弯曲振动:①面内弯曲振动:a.剪式振动;b.面内摇摆振动;

②面外弯曲振动:a.面外摇摆振动 b.扭曲振动

对于非线形分子的振动形式为3n-6(n﹥3)种,对于线形分子的振动形式为3n-5种。53.红外光谱的特征性,基团征频率:通常将在种出现在一定位置,能代表某种基团的存在,且具有较高强度的吸收谱带称为基团的特征吸收带,其吸收系数最大值所对应的波数称为基团的特征频率。

基团的特征频率与红外光谱的关系:

在4000cm-1~1300cm-1之间区域称为基团频率区、官能团区或特征区。

在1800cm-1~600cm-1区域称为指纹区。

54.影响基团频率位移的因素:

1)外部因素:①物理状态;

②溶剂:极性增大,伸缩振动向低波数方向移动;

极性增大,变形振动向高波数方向移动

2)内部因素:①电效应:包括诱导效应、共轭效应和场效应三种。

②氢键:氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。3)振动耦合:相邻基团若振动频率相同使,振动相互影响使吸收峰分裂的现象。

4)费米共振;5)立体障碍;6)环张力

55.红外光谱定性分析程序:

1)样品的分离和精制:⑴提纯;⑵干燥除水;⑶试样浓度和厚度选择:使T在15%~70%;

⑷对不同状态样品的处理

①气体试样:抽真空后直接导入;②液体试样:液膜法或液体池法;③固体试样:可采用压片法、石蜡糊法、薄膜法或溶液法

2)了解其他结构数据;3)谱图解析;4)对照标准谱图

56.红外光谱仪:色散型红外分光光度计由光源、吸收池、单色器、检测器和记录显示系统等部分组成。

①光源:能斯特灯(ZrO

、Y2O3、ThO2等烧结而成)、硅碳棒(SiC)

2

②单色器;③吸收池:由碱金属卤化物制成,如:KBr;④检测器:热电偶或光导电池。

57.傅立叶变换红外光谱仪:由光源、干涉仪、A/D转换器、D/A转换器、计算机等组成。

干涉仪:将入射光信号经过干涉作用调制成干涉图函数(相当于色散型的单色器)

FTIR优点:没有狭缝的限制,光通量大,信噪比大,灵敏度高、扫描速度极快、波数准确。

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

仪器分析复习题

1、在反相液相色谱分离中,苯、甲苯、乙苯、联苯的流出顺序是? 乙苯、甲苯、联苯、苯 2、在AES分析中,把一些激发电位低、跃迁几率大的谱线称为? 灵敏线 3、在石墨炉原子化器中, 常采用哪几种气体作为保护气? 惰性气体(氩) 4、在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当? (1)提高火焰温度(2)加入稀释剂(3)加入保护剂(4)加入基体改进剂5、 pH 玻璃电极产生的不对称电位来源于? 这是由于膜内外两个表面情况不一致(如组成不均匀、表面张力不同、水化程度不同等)而引起的。 6. 在光学分析法中,共振线的定义是? 原子受到外界能量激发时,其外层电子从基态跃迁到激发态所产生的吸收线称为共振吸收线,简称共振线。 7、电磁辐射(电磁波)按其波长可分为紫外、可见、红外等不同区域,各区域的波长范围?p8页 8、原子发射光谱分析中光源的作用是? (1)使试样蒸发、分解、原子化 (2)使气态原子激发并发射特征光谱 9、在原子发射光谱分析中,直流电弧与交流电弧比较各有什么特性? 直流电弧的特点:直流电弧放电时,电极温度高,有利于试样蒸发,分析的灵敏度很高,而且电极温度高,破坏了试样原来的结构,消除了试样组织结构的影响,但对试样的损伤大。 交流电弧的特点:交流电弧既具有电弧放电特性,又具有火花放电特性。改变电容C2与电感L2,可以改变放电特性:增大电容,减小电感,电弧放电向火花放电转变;减小电容,增大电感,电弧放电特性增强,火花放电特性减弱。 10、说说空心阴极灯的基本构造? 它是由一个阳极和一个端封闭、一端敞口的圆筒状的空心阴极组成。 11、什么是谱线的多普勒变宽、罗伦兹变宽、共振变宽、自然变宽? 多普勒变宽:是由于原子在空间作无规则热运动产生的,又称热变宽。 罗伦兹变宽:由异种原子碰撞引起的变宽。 共振变宽:在共振线上,自吸严重时的谱线变宽。 自然变宽; 没有外界影响,谱线仍有一定的宽度称为自然宽度。 12红樱桃化工网 1~%T2w"{'v O12、原子吸收分光光度计的主要部件有哪几个部分组成? 由光源、原子化器、单色器和检测器等四部分组成。 13、在原子发射光谱分析中,有哪几种光源?各有什么有点? (1)直流电弧:绝对灵敏性高、背景小、适合定量分析 (2)交流电弧:a电弧温度高、激发能力强 B电极温度稍低、蒸发能力稍低 C电弧稳定性好,使分析重现性好,适用于定量分析(3)高压火花:(1)放电瞬间能量很大,产生的温度高,激发能力强,某些难激发元素可被激发,且多为离子线;(2)放电间隔长,使得电极温度低,蒸发能力稍低,适于低熔点金属与合金的分析;(3)稳定性好、重现性好,适用于定量分析;(4)ICP:激发能力强、灵敏度高、检测限低、精密度好、干扰小、线性范围宽。

(完整版)仪器分析知识点整理..

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题

仪器分析复习内容重点

第二章气相色谱分析 1.简要说明气相色谱分析的基本原 理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录系统. 气相色谱仪具有一个让载气连续运行管路密闭的气路系统. 进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中. 3.试以塔板高度H做指标,讨论气相色谱操作条件的选择. 解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。 (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。 (3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。 (4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。 (5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大) (6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL. (7)气化温度:气化温度要高于柱温30-70℃。

仪器分析复习题

一、选择题 1、原子吸收光谱仪用的换能器或检测器是(c ) A、热导检测器 B、电导仪 C、光电倍增管 D、热电偶 2、气相色谱仪用的换能器或检测器是(a ) A、热导检测器 B、电导仪 C、光电倍增管 D、热电偶 3、测定环境水样中的氟首选的仪器分析方法是(b ) A、GC B、ISE C、AAS D、UV 4、测定大气中的微量有机化合物(M大于400)首选的仪器分析方法是( a ) A、GC B、ISE C、AAS D、UV 5、测定试样中的微量金属元素首选的仪器分析方法是( c ) A、GC B、ISE C、AAS D、UV 6、直接测定鱼肝油中的维生素A首选的仪器分析方法是( d ) A、GC B、ISE C、AAS D、UV 7、氟离子选择性电极属于( a )电极。 A、晶体膜 B、硬质 C、气敏 D、活动载体 8、近紫外区的波长是( b )。 A、5~140pm B、200~400nm C、2.5~50um D、0.1~100mm 9、荧光分析仪器中,两个单色器的夹角是(c )度。 A、30 B、60 C、90 D、180 10、(a )先生采用锐线光源测量谱线峰值吸收的办法,一举解决了原子吸收光谱法测量中所产生的困难。 A、Walsh B、Doppler C、Lorentz D、Holtsmark 11、紫外光谱中,能量最小的跃迁是( d )。 A、σ→σ* B、n→σ* C、π→π* D、n→π* 12、在某色谱柱上,组分A的峰宽为30秒,保留时间为3.5分钟。由其计算所得的理论塔板数为( b )。 A、1176 B、784 C、407 D、271 13、为了提高pH玻璃电极对H+响应的灵敏性,pH玻璃电极在使用前应在(c )浸泡24小时以上。 A 稀酸中 B 稀碱中 C 纯水中 D 标准缓冲液中 14、pH玻璃电极的膜电位的产生是由于( b )的结果

仪器分析考试题及答案(整理).

气相色谱分析 一.选择题 1.在气相色谱分析中, 用于定性分析的参数是( ) A 保留值 B 峰面积 C 分离度 D 半峰宽 2. 在气相色谱分析中, 用于定量分析的参数是( ) A 保留时间 B 保留体积 C 半峰宽 D 峰面积 3. 使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好?( ) A H2 B He C Ar D N2 4. 热导池检测器是一种( ) A 浓度型检测器 B 质量型检测器 C 只对含碳、氢的有机化合物有响应的检测器 D 只对含硫、磷化合物有响应的检测器 5. 使用氢火焰离子化检测器, 选用下列哪种气体作载气最合适?( ) A H2 B He C Ar D N2 6、色谱法分离混合物的可能性决定于试样混合物在固定相中()的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 7、选择固定液时,一般根据()原则。 A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 8、相对保留值是指某组分2与某组分1的()。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 9、气相色谱定量分析时()要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 10、理论塔板数反映了()。 A.分离度; B. 分配系数;C.保留值;D.柱的效能。 11、下列气相色谱仪的检测器中,属于质量型检测器的是() A.热导池和氢焰离子化检测器; B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器;D.火焰光度和电子捕获检测器。 12、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)、(B)和(C) 13、进行色谱分析时,进样时间过长会导致半峰宽()。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性 14、在气液色谱中,色谱柱的使用上限温度取决于() A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 15、分配系数与下列哪些因素有关() A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 二、填空题 1.在一定温度下, 采用非极性固定液,用气-液色谱分离同系物有机化合物, ____________先流出色谱柱,

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法; 光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。 光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不 涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。 光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理; 2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。 原子发射光谱分析法的特点: (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低(5)准确度较高10?0.1 g x g-1(—般光源);ng x g-1(ICP ) 5%?10% (一般光源) ; <1% (ICP) ; (6)ICP-AES性能优越线性范围4?6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。 3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。 特点: (1)检出限低,10-10 ?10-14 g; (2)准确度高,1%?5%; (3)选择性高,一般情况下共存元素不干扰; (4)应用广,可测定70多个元素(各种样品中) ; 局限性:难熔元素、非金属元素测定困难、不能同时多元素测量 4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器)则在观察者看来,其频率较静止原子所发的频率低,反之,高。 5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s 后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90 度的方向上,测定荧光强度进行定量分析的方法。 6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 特点: (1)灵敏度高 比紫外-可见分光光度法高2? 4 个数量级;为什么? 检测下限:0.1?0.1 g/cm -3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱; (3)试样量少 缺点:应用范围小。 7、分子磷光分析法:处于第一最低单重激发态分子以无辐射弛豫方式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。 8、X射线荧光分析法:原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射

仪器分析复习总结

1.光谱范围:仪器能测量光谱的波长范围。 2.工作范围:仪器能按规定的准确度和精密度进行测量的吸光度或强度范围。 3.厚度:样品池的两个平行且透光的内表平面之间的距离。 4.光路长度:光通过吸收池内物质的入射面和出射面之间的路程。当垂直入射时,应与厚度相同。 5.仪器的准确度:在不考虑随机误差的情况下,仪器给出的读数与被测量的真值相一致的能力。考察系统误差。 6.仪器的重复性:在不考虑系统误差的情况下,仪器对某一测量值能给出相一致读数的能力 (短时间内) 。 7.仪器的稳定性:在一段时间内,仪器保持其精密度的能力 8.仪器的可靠性:仪器保持其所有性能(准确度、精密度和稳定性)的能力。 1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。 2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析:试样中各种组分(如元素、根或官能团等)含量的操作。 4精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。 9 分辨率:指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (4) 折射折射是光在两种介质中的传播速度不同;(7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。 原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。

仪器分析复习提纲(lastversion)

仪器分析复习提纲 Chapter 1 仪器分析定义:仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法, 测定时常常需要使用比较复杂的仪器,它是分析化学的发展方向。 分类:1、光学分析法(紫外-可见光谱法、红外光谱法、分子荧光(磷光)光谱法、原子吸 收光谱法、原子发射光谱法);2、电化学分析(极谱与伏安分析法、库仑分析法、电解分析 法、电位分析法);3、色谱分析法(气相色谱法、液相色谱法) ;4、其他方法(质谱法、流 动注射分析法、热分析法) 特点:1、选择性好;2、操作简便、分析速度快、容易实现自动化;3、灵敏度高;4、相对 误差大(不宜用于大量 分析) 分析仪器的组成: Chapter 2 光分析的三个基本过程:激发信号、信号转换、输出信号 (能源提供能量;能量与被测物之间的互相作用;产生信号) 光谱分析分类:原子 光谱(线状光谱)、分子光谱(带状光谱) 吸收光谱、发射光谱 电磁辐射的基本性质(波粒二象性) 电磁辐射的频率、波长、波数、速率的基本概念以及运算关系 入=1/波数E=hc/入=h v 波速=?入 (1eV=1.602,10 "J h=6.626 切 ) 光谱法仪器五个基本单元: 光源、单色器、样品、检测器、显示与数据处理 棱镜与光栅的分辨率与色散率的计算 1、棱镜色散率=偏向角对波长求导(角色散率)=谱线距离对波长求导(线色散率) 线色散率=角色散率X 焦距/sin 光轴夹角 分辨率=平均波长/波长差=棱镜总底边长X 色散率 2、光栅色散率=光谱级次/ (光栅常数X cos 衍射角)(角色散率) =角色散率X 会聚透镜焦距 分辨率=光谱级次X 光栅总刻痕数 各种光谱中样品池的选择 发射光谱一一激发源 紫外光区一一石英比色皿 可见光区——玻璃比色皿 红外光区一一NaCI 、KBr 、KRS-5固体试样与 KBr 做成的盐窗(混合压片) 荧光分析一一低荧光物质做成的比色皿 常用检测器的检测原理 1、硒光电池(光敏半导体); 2、光电管(光电效应); 3、光电倍增管(光电效应) 光源:原子发射一一原 子化器 原子吸收一一空心阴极灯(紫外-可见区锐线光源) 紫外吸收一一氢灯、氘灯(紫外区连续光源) 可见吸收一一钨灯(可见区连续光源) 红外吸收 ----- N ernst 灯、硅碳棒(中红外区连续光源) 分子荧光(磷光)一一高压汞灯(紫外 -可见区线光源) Chapter 3紫外-可见分光光度法 分子吸收光谱形成原因:价电子和分子轨道上的电子在电子能级间跃迁,并伴随有振动和 转动能级间的跃迁 △ E=h v 梁颖 2012

最新仪器分析复习题及答案

仪器分析复习题 一、选择题: 1对于下列关于1.0 mol L-1 CuSO4溶液的陈述,哪些是正确的? A A. 改变入射光波长,ε亦改变 B. 向该溶液中通NH3时,ε不变 C. 该溶液的酸度不同时,ε相等 D. 改变入射光波长,ε不变 2分子光谱是由于 B 而产生的。 A. 电子的发射 B. 电子相对于原子核的运动以及核间相对位移引起的振动和转动 C. 质子的运动 D. 离子的运动 3在分光光度法中,运用朗伯-比尔定律进行定量分析时采用的入射光为 B A. 白光 B. 单色光 C. 可见光 D. 紫外光 4溶剂对电子光谱的影响较为复杂,改变溶剂的极性 B A. 不会引起吸收带形状的变化 B. 会使吸收带的最大吸收波长发生变化 C. 精细结构并不消失 D.对测定影响不大 5光学分析法中使用到电磁波谱,其中可见光的波长范围约为 B A. 10~400nm B. 400~750nm C. 0.75~2.5mm D. 0.1~100cm. 6共振线是具有 B 的谱线 A. 激发电位 B. 最低激发电位 C. 最高激发电位 D. 最高激发能量 7波数(σ)是指 A A. 每厘米内波的振动次数 B. 相邻两个波峰或波谷间的距离 C. 每秒钟内振动的次数 D. 一个电子通过1V电压降时具有的能量

8下列羰基化合物中C=O伸缩振动频率最高的是 C A. RCOR’ B. RCOCl C. RCOF D. RCOBr 9原子发射光谱法是一种成分分析方法,可对约70种元素(包括金属及非金属元素)进行分析,这种方法常用于 D A. 定性 B. 半定量 C. 定量 D. 定性、半定量及定量 10下面几种常用的激发光源中,激发温度最高的是 C A. 直流电弧 B. 交流电弧 C. 电火花 D. 高频电感耦合等离子体 11下面几种常用的激发光源中,分析的线性范围最大的是 D A. 直流电弧 B. 交流电弧 C. 电火花 D. 高频电感耦合等离子体 12当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是 D A. K B. Ca C. Zn D. Fe 13带光谱是由下列哪一种情况产生的? B A. 炽热的固体 B. 受激分子 C. 受激原子 D. 单原子离子 14下列哪种仪器可用于合金的定性、半定量全分析测定 B A. 折光仪 B. 原子发射光谱仪 C. 红外光谱仪 D. 电子显微镜 15原子发射光谱是由下列哪种跃迁产生的? D A. 辐射能使气态原子外层电子激发 B. 辐射能使气态原子内层电子激发 C. 电热能使气态原子内层电子激发 D. 电热能使气态原子外层电子激发 16H2O在红外光谱中出现的吸收峰数目为 A A. 3 B. 4 C. 5 D. 2

仪器分析知识点复习

第一章绪论 1.解释名词:(1)灵敏度(2)检出限 (1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。 2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。 A.1倍 B.2倍 C.3倍 D.4倍 3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。 y=5.7554x+0.1267 R2=0.9716 第二章光学分析法导论 1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱; (1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。 分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。 (2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。 发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,

产生电磁辐射。 (3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。 线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。其谱线的宽度约为10-3nm,称为自然宽度。 2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。 第三章紫外-可见吸收光谱法 1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么? 2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B) A.吸收池厚度 B.入射光波长 C.吸收池材料 D.有色配合物的浓度 3. 物质的紫外-可见吸收光谱的产生是由于(B) A.分子的振动 B. 原子核外层电子的跃迁 C.分子的转动 D. 原子核内层电子的跃迁 4. 以下跃迁中那种跃迁所需能量最大(A) A. σ→σ* B. π→π* C. n→σ* D. n→π* 5. 何谓生色团和助色团?试举例说明。 从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团,人们通常将能吸收紫外,可见光的原子团或结构系统定义为生色团。此类基团为具有不

仪器分析期末试卷及复习资料

仪器分析 (分值100分,时间:180分钟) 一、单项选择题(46分,每小题2分,第9小题两空各1分) 1、在原子发射光谱分析(简称AES)中,光源的作用是对试样的蒸发和激发提供所需要的能量.若对某种低熔点固体合金中一些难激发的元素直接进行分析,则应选择(). ①直流电弧光源,②交流电弧光源,③高压火花光源,④电感耦合等离子体(简称ICP)光源 2、在AES分析中,把一些激发电位低、跃迁几率大的谱线称为(). ①共振线,②灵敏线,③最后线,④次灵敏线 3、待测元素的原子与火焰蒸气中其它气态粒子碰撞引起的谱线变宽称为(). ①多普勒变宽,②罗伦兹变宽,③共振变宽,④自然变宽 4、在原子吸收光谱(简称AAS)分析中,把燃助比与其化学反应计量关系相近的火焰称作(). ①中性火焰,②富燃火焰,③贫燃火焰,④等离子体炬焰 5、为了消除AAS火焰法的化学干扰,常加入一些能与待测元素(或干扰元素)生成稳定络合物的试剂,从而使待测元素不与干扰元素生成难挥发的化合物,这类试剂叫(). ①消电离剂,②释放剂,③保护剂,④缓冲剂 6、为了同时测定废水中ppm级的Fe、Mn、Al、Ni、Co、Cr,最好应采用的分析方法为(). ①ICP-AES,②AAS,③原子荧光光谱(AFS),④紫外可见吸收光谱(UV-VIS) 7、在分子吸收光谱中,把由于分子的振动和转动能级间的跃迁而产生的光谱称作(). ①紫外吸收光谱(UV),②紫外可见吸收光谱,③红外光谱(IR),④远红外光谱 8、双光束分光光度计与单光束分光光度计比较,其突出的优点是(). ①可以扩大波长的应用范围,②可以采用快速响应的探测系统,③可以抵消

仪器分析期末复习资料

紫外-可见分光光度分析法 基本原理 光谱分析法就是指物质与电磁辐射作用时,物质内部发生能级跃迁,测量由此产生的发射、吸收或散射辐射的波长与强度来进行分析的方法。 依据物质对光的选择性吸收而建立起来的分析方法称为吸光光度法,主要有: 红外吸收光谱:分子振动光谱,吸收光波长范围2、5~1000 μm ,主要用于有机化合物结构鉴定。 紫外吸收光谱:电子跃迁光谱,吸收光波长范围200~400 nm(近紫外区) ,可用于结构鉴定与定量分析。 可见吸收光谱:电子跃迁光谱,吸收光波长范围400~750 nm ,主要用于有色物质或与显色剂作用生成有色物质的定量分析。 吸收曲线(吸收光谱)就是吸光物质浓度与液层厚度一定的条件下,让不同波长的光依次透过溶液,测量每一波长下溶液的吸光度,然后以波长为横坐标,以吸光度为纵坐标作图而得。它描述了物质对不同波长光的吸收能力 紫外-可见分子吸收光谱与电子跃迁 物质分子内部三种运动形式: 1.电子相对于原子核的运动,2、原子核在其平衡位置附近的相对振动3、分子本身绕其重 心的转动。 分子具有三种不同能级:电子能级、振动能级与转动能级。 电子能量E e 、振动能量E v 、转动能量E r。ΔΕe>ΔΕv>ΔΕr 主要有四种跃迁所需能量ΔΕ大小顺序为:n→π*< π→π*< n→σ*< σ→σ* σ→σ*跃迁 如甲烷的λmax为125nm,乙烷λmax为135nm。 n→σ*跃迁 吸收波长为150~250nm,含非键电子的饱与烃衍生物(含N、O、S与卤素等杂原子)均呈现n →σ*跃迁。一氯甲烷、甲醇、三甲基胺n→σ*跃迁的λmax分别为173nm、183nm与227nm。 ⑶π→π*跃迁 不饱与烃、共轭烯烃与芳香烃类均可发生该类跃迁。如乙烯π→π*跃迁:λmax为162nm, n→π*跃迁 就是构成不饱与键中的杂原子上的n电子跃迁到π*轨道,所需能量最低,吸收波长多在270-300nm附近。如丙酮n→π*跃迁:λmax为275nm 生色团: 最有用的紫外—可见光谱就是由π→π*与n→π*跃迁产生的。这两种跃迁均要求有机物分子中含有不饱与基团。凡能吸收紫外或可见光而引起电子跃迁的基团,主要就是具有的不饱与键与未共用电子对的基团。 简单的生色团由双键或叁键体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙炔基、腈基—C三N等。 (2)助色团: 指那些带有杂原子的基团(如—OH、—OR、—NH2、—NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的光),但当它们与生色团相连时,就会发生n—π共轭作用,能增强生色团的生色能力(吸收波长向长波方向移动(红移),且吸收强度增加),这样的基团称为助色团。 由于取代基的引入或溶剂的改变,使有机化合物的λmax发生移动,向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。

仪器分析各章知识点

各章知识要点 第2章气相色谱分析 1.色谱法的分类(按两相状态) 2.何为GC法,GC定性定量的依据、定量方法及优缺点 3.GC分离原理(包括GSC法和GLC法) 4.气相色谱仪的构造 5.色谱流出曲线及其作用、色谱术语及换算关系 6.分配系数K和分配比k的定义、二者的异同点及相关计算 7.塔板理论的作用(包括H的n计算) 8.速率理论方程的作用(包括U最佳、Hmin的计算) 9.R的含义、作用 10.检测器的性能指标、四种检测器的适用特点及英文缩写 11.归一化法的使用条件、原理 12.内标法及内标物具备的条件 13.外标法的具体操作 第4章电位分析法 1.电化学分析法、电位分析法、电位滴定法的定义。 2.电位分析法的测定依据。 3.电位测定法如何测定溶液的pH值(包括计算)。 4.指示电极、参比电极。 5.电位滴定法的原理及终点确定方法(重点掌握E/V曲线法和ΔE/ΔV—V 法及相关计算)。 6.电位滴定法的优点。 第5章伏安分析法 1.极谱分析法及其特殊条件 2.极谱图及作用、极谱图上的各参数的定义及意义和作用 3.极谱分析定性定量的依据,半波电位的特性 4.极谱分析中的干扰及其消除方法 5.迁移电流 6、极谱分析的底液及其组成,各种物质的作用 7、极谱分析定量方法及其相关计算 8、单扫描极谱图的特征,单扫描极谱法定性、定量的依据(包括定性定量参数)

第8章原子吸收光谱分析 1.AAS及基本原理 2.与其它光谱分析法相比,AAS的干扰少,具有相对高选择性。为什么? 3.何为共振线?在AAS中,是否一定以共振线为分析线?选择分析线的原则是什么? 4.在AAS中,被测物质是何微粒形式? 5.原子吸收分光光度计的基本组成部件有哪些?各部件的作用,常用何种光源? 6.何为光电倍增管的疲劳现象?如何防止或消除? 7.影响空心阴极灯发射特性的因素有哪些?关系如何? 8.在火焰原子化中,影响火焰温度的因素、火焰温度与原子化效率的关系? 9.AAS法定量的基础、定量方法及相关计算 10.AAS法适宜于常量分析还是微量分析? 11.AAS分析中,需控制哪些测定条件? 12.AAS分析中,常见的干扰有哪些? 13.何为化学干扰?有哪些具体形式?如何消除? 14.何为释放剂、保护剂、消电离剂? 15.何为原子分析中的灵敏度、特征浓度、检出限?它们与仪器的检测性能有何关系? 16.干扰形式的判断 a.在进行原子吸收分析,若在试样前处理时使用了硫酸或磷酸,从而导致其对测定元素的干扰,此干扰属 于何种干扰形式? b.待测元素与试样中共存元素的分析线重叠,引起什么干扰? c.分析试液的粘度太大,使试液喷入火焰的速度不稳或降低,造成什么干扰? 第9章紫外吸收光谱分析 1.UV法的概念 2.UV吸收光谱是怎样产生的?在UV光谱分析中,物质处于何种微粒状态? 3.按物质微粒形式,紫外光谱属何种光谱?若按产生机理,紫外光谱又称何种光谱? 4.分子内价电子及其跃迁类型;哪些跃迁产生的吸收光谱在紫外可见光区?紫外可见光区的波长范围? 5.助色团、生色团、红移、蓝移 6.K吸收带、R吸收带及它们的跃迁类型、强度。 7.紫外吸收光谱法的作用及其定性、定量的依据。 8.利用紫外吸收光谱推断物质的结构,其主要信息依据有哪些? 9.顺反异构体的UV光谱有何不同? 10.溶剂效应、影响该效应的因素及其关系。 11.紫外可见分光光度计的组成部件。 12.能够根据物质结构特征指出跃迁类型;由吸收光谱特征推断物质分子中的特征官能团。

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴生光谱的物质类型不同:原子光谱、分子光谱、固体光谱; ⑵光谱的性质和形状:线光谱、带光谱、连续光谱; ⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 ⑷ 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。 发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a.若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一 致性。 b.被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c.分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线 对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d.分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合 适。 e.内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条

仪器分析知识点整理

分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

仪器分析考试复习题

1 生活饮用水方法标准GB/在无机离子分析需要的分析仪器和样品前处理技术原理及技术特点 根据 GB/《生活饮用水标准检验方法·无机非金属指标》内容,可以知道,各种指标的检验方法有分光光度法,离子色谱法,容量法及比色法等,其中我们最常用的是离子色谱法。 离子色谱法是将改进后的电导检测器安装在离子交换树脂柱的后面,以连续检测色谱分离的离子的方法。具有迅速、连续、高效、灵敏等优点。 所需仪器:离子色谱仪。离子色谱仪的典型结构由输液泵、进样阀、色谱柱、抑制柱、检测器和数据处理系统组成。 大概流程:泵液-进样-分离-检测(抑制)-记录。 前处理方法: (1)膜处理法:滤膜或砂芯处理法 滤膜过滤样品是离子色谱分析最通用的水溶液样品前处理方法,一般如果样品含颗粒态的样品时,可以通过或μm微孔滤膜过滤后直接进样。只能用于离线样品处理,去除颗粒态不溶性物质,无法去除极小颗粒或有机大分子可溶性化合物和金属水溶性离子。滤膜或砂芯中均会含有一定量的无机阴、阳离子,这类离子的存在对水溶液中痕量的阴、阳离子分析会产生干扰,影响测定的准确性。(2)固相萃取法 固相萃取是发生在流动相和固定相之间的物理过程。固相萃取也是基于分析物与样品基质在固定相上分配和吸附性质的不同来进行分离的。分析物要么被牢固地吸附在固定相上,要么在固定相上根本就没有保留。前者不仅用于基质干扰的消除,而且也用于分析物的富集;后者只用于消除基质影响。如同高效液相色谱,用于固相萃取中的很多固定相都是在硅胶上键合了其它基团制成的。 原理:固相萃取主要通过目标物与吸附剂之间的疏水作用,离子交换作用,物理吸附作用等作用力来保留和吸附的。 固相萃取分别利用反相、离子交换、螯合树脂等多种手段进行,从而萃取手段上也可以利用常规的固相萃取法和固相微萃取法。 (3)分解处理法 对于固体样品,首先需要将样品转化为溶液,然后再进行分析。我们测定得到酸根的含量,实际上对应着该固体化合物酸所对应的元素中得有形态的含量总和。而且如何将样品分解,对应元素的酸如何吸收,是离子色谱处理固体样品的关键。 (4)浸出法 对于固定样品,有时测定时并一定是非金属的总含量,而需要测定特定阴、阳离子的水的溶出形态,或者在一定条件下的形态特征,这就需要我们选择合适的浸出方法,即不破坏样品中的离子形态,又能够得到高的回收率。分为:普通水浸出法,直接蒸馏法。 实例:GB/T 5750?生活饮用水标准检验方法?中离子色谱法应用 此方法适合于氟化物,氯化物,硝酸盐和硫酸盐的测定。 分析步骤: 1.开启离子色谱仪:参照说明书,调节淋洗液及再生液流速,使仪器达平衡,并指示稳定的基线。 2.校准:根据所用的量程,将混合阴离子标准溶液及两次等比稀释的三种不同浓度标准溶液,依次注入进样系统。将峰值或峰面积绘制工作曲线。 3.样品的分析 预处理:将水样经μm滤膜过滤去除混浊物质。对硬度高的水样,必要时,可先经过阳离子交换树脂柱,然后再经μm滤膜过滤。对含有机物水样可先经过C18柱过滤去除。 将预处理后的水样注入色谱仪进样系统,记录峰高峰面积。

相关文档
最新文档