第五章 其他分离技术和分离过程

第五章  其他分离技术和分离过程
第五章  其他分离技术和分离过程

第五章其他分离技术和分离过程

简介:

蒸馏、吸收和萃取等单元操作主要用来进行气液和液夜两相间的传质。

特点:两相均为流体,两相在相对运动和相互接触的过程中形成自由界面,物质在扩散作用的作用下,从一相传递到另一相。

蒸馏:是使难挥发组分从气相扩散到液相,易挥发组分则以大致相等的传递速率按照相反的方向从液相扩散到气相的操作。

吸收:是使被吸收的组分从气相扩散到液相的操作。

萃取:是利用液体溶剂的选择作用来萃取液相混合物中的一种组分,组分经过两相间的边界层,由一相扩散到另一相。

三者传质过程的最终结果皆是达到相平衡,而相平衡只有在无限长的时间接触后,才可以实现。二实际生产过程中的接触时间是有限的,因而要研究在一定的接触时间内物质的传递量和强化这种传递过程的方法。

一、萃取的基本概念

1 萃取的定义

萃取——应用溶剂从混合物中提取某种物质的过程。

萃取过程和蒸馏、吸收等过程一样,都是属于两相之间的传质过程,即物质从一相转相另一相的过程。

广义理解分类:

(1)液相到液相:碘在水和四氯化碳中的溶解

(2)故相到液相:从大豆中提取豆油

(3)气相到液相:吸收

但是在科学研究和生产实践中,萃取通常是指液液萃取过程,而将故液传质过程称为:浸出,气液传质过程称为:吸收。

2 基本概念

液液萃取:也成为溶剂萃取,简称为萃取。

萃取过程:萃取是分离混合液的一种常用的单元操作。它是根据混合液体中的个组分在所选择的溶剂中的溶解度的差异,使混和液中预分离的组分溶解于溶剂中,而余下的组分完全不互溶或者部分互溶,从而达到与其他组分完全分离或部分分离的操作。

萃取剂:在萃取过程中所选择的溶剂。

溶质:混和液中预分离的组分。

稀释剂:混合液中的原溶剂。

萃取相:萃取操作中所得到的溶液,其组成是主要是萃取剂和溶质。分离萃取相中的溶质和萃取剂通常采用蒸馏或蒸发的方法,达到回收萃取剂和溶质的目的。

萃余相:被萃取后的原混合溶液,其成分主要是稀释剂和残余的溶质等组分。

萃取液:将萃取相脱去萃取剂的溶液。

萃余液:萃余相脱去萃取剂后的溶液。

二、萃取原理

萃取过程中所使用的溶剂对萃取物质有良好的溶解能力,而对液相中的其他物质则没有溶解能力(或仅仅部分溶解)。利用溶剂对物质溶解能力的差异,进行物质的分离是萃取操作的理论基础。

1 液液相平衡

萃取过程中被萃取混合物至少含有两个组分:溶质A和稀释剂B。因此,萃取过程中至少设计三个组分。由实验得到的平衡数据一般用三角形相图表示。

1.1三角形相图

三角形相图可以采用等腰直角三角形、不等腰直角三角形或等边三角形表示。其中以等腰直角三角形作图比较方便,而且可以使用一般的坐标纸绘图,所以用的比较多。如图所示:

横坐标表示萃取剂的质量分数,纵坐标表示溶质的质量分数。由图可知:

(1)三角形的三个顶点分别表示三种纯物质,如点A表示纯溶质,点B表示纯原溶剂(稀释剂),S 点表示纯萃取剂。

(2)三角形边上的任意点,表示混和液由两个组分组成,如aB边表示混和液由溶质A与原溶剂组成;BS边表示混和液由原溶剂B和萃取剂S组成;AS边表示混和液由溶质A和萃取剂S组成。

(3)三角形内任意一点,如图所示。M点,表示该混和液由三个组分组成:萃取剂的质量分数为0.3,溶质的质量分数为0.3,原溶剂的质量分数为0.4。

1.2 溶解度曲线和平衡线

在一定温度下,B和S为部分互溶,这两相的组成如图中A、J点所示。取一B、S二元体系,其组成位于L、J两点,如C点。逐渐加入组分A成为三元物系。此时体系中B和S的质量之比为常数,故组成点沿AC线变化。若加入A的量恰好使混合液由两相变为均一相,相应的组成点为C'。改变初始时B、S二元物系的组成,重复试验,得到一系列点C'、D'、F'……。将这些点连起来,成为一条曲线,即为在实验温度下该三元物系的溶解度曲线。

溶解度曲线将三角形内部分为两个区域。曲线以内的区域为两相区,以外的为单相区。平衡时二元物系的组成点位于两相区内时,该物系就存在两个液相,称为共扼相。代表共扼相组成的两点位于溶解度曲线上,联结此两点的直线称为联结线,又称平衡线。图ER线就是一条联结线,萃取操作只能在两相区进行。

一定温度下同一物系的联结线倾斜方向一般是一致的,但联结线互不平行。少数情况下联结线的倾斜方向会改变。

1.3 杠杆定律

共轭相E和R的量,可以从相图中求取。如图所示。设三角形内任一点M表示混合液的总组成,M点称为和点,可分为两个液层E、R。而E点和R点则称为差点。且E、M、R三点在一条直线上,其关系可用

杠杆规则来描述,即E相和R相的质量比为:

若上述三元混合物(M点)是由一双组分(A和B)混合物(F点)与组分S混合而成,则此双组分混合物的

质量与组分S的质量之比应为:

1.4 分配系数

一定温度下,某一溶质溶解在两个互不相容的溶剂中时,当两相达到平衡状态,次溶质将以一定比例分配在两相之中,溶质在萃取相(E 相)与萃余相(R 相)中的组成之比称为分配系数,以k 表示,即:

A

A x y =浓度溶质在萃余相中的平衡浓度溶质在萃取相中的平衡 k 式中:yA ——溶质在萃取相中的质量分数

XA ——溶质在萃余相中的质量分数

从分配系数的定义可知,K 越大溶质在萃取相中的浓度越大,也就越容易被萃取。不同的萃取体系,其分配系数差异很大。

分配系数k 的大小,即取决于溶质进入萃取相能力的强弱,即溶质和萃取剂本身的物理、化学性质,同时又取决于萃取过程的操作条件(如温度、压力)。

分配系数k 可以分为下列三种情况:

K>1,yA>xA; k=1, yA=xA; k<1,yA

2 萃取过程在三角形相图上的表示

萃取过程中的混合、分离等部分,可以用三角形相图表示,如图所示,为一单级萃取流程。将原料液和全部萃取剂在萃取器内,一次进行充分接触,经过一定时间后,将萃取相和萃余相分别取出,再进行溶剂回收,于是整个过程将原料分离称为含有A 较多的萃取液和含有A 较少的萃余液。

单级萃取过程在三角形相图上的表示

其计算分析如下:定总组成,求萃取相和萃余相,求萃取液和萃余液

(1)由原料液组成在三角形AB 边上,确定原料液组成点F ,再将原料液组成点F 和表示纯萃取剂组成点S 相连,FS 线表示混合过程。MS

MF F S =量原料液量萃取剂 (2)利用杠杆定律确定混和液组成点M 。

(3)由过M 点的平衡线可以确定萃取相的组成点E 和萃余相的组成点R ,并根据杠杆定律求出E 量和R 量。ME

MR R E =量萃余相量萃取相 (4)将萃取相的E 点和纯萃取剂点S 相连,得到ES 线,延长ES 线和AB 边相交于E ’,即萃取液的组成点。同样,将萃余相的组成点R 和S 相连,得到RS线,延长RS 线交AB 边于R ’点,即萃余液的组成点。可以根据杠杆定律求出萃余液量和萃取液量。

三、萃取剂的选择

(1)溶剂的选择性

溶剂的选择形就是溶剂对已知混合物中个组分的分离能力。再萃取中,所用的溶剂对混合物中萃取的溶质溶解能力要强,对其他物质溶解能力应很差。选择性好的萃取剂不仅用量少,而且产品质量也高。若再生产上找不到完全不互溶的溶剂,则应选择互溶性交差(即部分互溶)的溶剂为好,在此情况下,溶剂S 更多的溶解组分A ,较少的溶解组成B 。

萃取后,萃取相和萃余相,将依据密度的不同分成上下两层,因此,两层中的组分B 和溶剂的含量不同,故可以命名为富溶剂层和富稀释剂层。

(2)萃取剂和原溶剂的互溶度

一般来说,应选择互溶度小的萃取剂,组分B 和S 的互溶度愈小则两相区面积愈大,愈有利于萃取分离。对一物系当温度降低时,互溶度减小,但是溶液的粘度增大,不利于两相间的分散、混合和分离,因

此温度选择要合适。

(3)萃取剂的物化性质

1)萃取液和原料液应有较大密度差这样在操作条件下,萃取相和萃余相之间形成两个明显的液层,易于分离。

2)表面张力适当表面张力大,分离迅速,但是分散程度差,影响两相接触。表面张力小,液体容易乳化,影响分散效率,因此应该根据实际情况选择由适当表面张力的萃取剂。

3)萃取剂应完全不和被处理物料发生化学反应

4)萃取剂资源丰富价格低廉

5)萃取剂的回收

萃取剂通常应回收后循环使用,萃取剂回收的难易直接影响萃取操作的费用。用蒸馏方法回收萃取剂时,萃取剂,与其他被分离组分间的相对挥发度要大,并且不能形成恒沸物。若被萃取的物质,是不挥发的或者挥发度很低的物质,可以采用蒸发或闪蒸方法回收萃取剂,此时希望萃取剂的比汽化焓较低,以便减少热量消耗。

小结:

(1)掌握三角形相图

(2)熟练应用杠杆定律在三角形相图上解题

(3)熟悉萃取剂的选择要求

化工分离工程Ⅰ期末复习试试题库及答案

分离工程复习题库 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。

15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis提出了等价于化学位的物理量(逸度)。 18设计变量与独立量之间的关系可用下式来表示(Ni-Nv-Nc 即设计变量数-独立变 量数-约束关系) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越咼对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V - SL )。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递), (通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度 的质量传递或者不同化学位物流的直接混合) 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数), 为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。 29、分离要求越高,精馏过程所需的最少理论板数(越多)。 30、回流比是(可调)设计变量。 第二部分选择题 1下列哪一个是速率分离过程() a. 蒸馏 b.吸收 c.膜分离 d.离心分离

化工分离过程重点

1、相平衡:指混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态,从热力学上看,整个物系的自由焓处于最小的状态;从动力学看,相间表观传递速率为零。 2、区域熔炼:是根据液体混合物在冷凝结晶过程中组分重新分布的原理,通过多次熔融和凝固,制备高纯度的金属、半导体材料和有机化合物的一种提纯方法。 3、独立变量数:一个量改变不会引起除因变量以外的其他量改变的量。 4、反渗透:是利用反渗透膜选择性地只透过溶剂(通常是水)的性质,对溶液施加压力克服溶液的渗透压,使溶剂从溶液中透过反渗透膜而分离出来的过程。 5、相对挥发度:溶液中的易挥发组分的挥发度与难挥发组分的挥发度之比。 6、理论板:是一个气、液两相皆充分混合而且传质与传热过程的阻力皆为零的理想化塔板。 7、清晰分割:若馏出液中除了重关键组分外没有其他的重组分,而釜液中除了轻关键组分外没有其他轻组分,这种情况为清晰分割。 8、全塔效率:完成给定任务所需要的的理论塔板数与实际塔板数之比。默弗里板效率:实际板上的浓度变化与平衡时应达到的浓度变化之比。 9、泡点:在一定压力下,混合液体开始沸腾,即开始有气泡产生时的温度。露点:在一定压力下,混合气体开始冷凝,即开始出现第一个液滴时的温度。10、设计变量:设计分离装置中需要确定的各个物理量的数值,如进料流率,浓度、压力、温度、热负荷、机械工的输入(或输出)量、传热面大小以及理论塔板数等。这些物理量都是互相关联、互相制约的,因此,设计者只能规定其中若干个变量的数值,这些变量称设计变量。 简答题: 1、分离操作的重要意义 答:分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或者催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物起着分离提纯的作用,已得到合格的产品,并使未反应的反应物得以循环利用。此外,分离操作在环境保护和充分利用资源方面起着特别重要的作用。2、精馏塔的分离顺序答:确定分离顺序的经验法:1)按相对挥发度递减的顺序逐个从塔顶分离出各组分;2)最困难的分离应放在塔序的最后;3)应使各个塔的溜出液的摩尔数与釜液的摩尔数尽量接近;4)分离很高回收率的组分的塔应放在塔序的最后;5)进料中含量高的组分尽量提前分出。 3、精馏过程的不可逆答:精馏过程热力学不可逆性主要由以下原因引起:1、通过一定浓度梯度的动量传递;2、通过一定温度梯度的热量传递或不同温度物流的直接混合;3、通过一定温度梯度的质量传递或者不同化学位物流的直接混合。 4、填料塔的选择板式塔与填料塔的选择应从下述几方面考虑1)系统的物性:A当被处理的介质具有腐蚀性时,通常选用填料塔;B对于易发泡的物系,填料塔更适合;C对热敏性物质或真空下操作的物系宜采用填料塔;D进行高粘度物料的分离宜用填料塔;E 分离有明显吸热或放热效应的物系以采用板式塔为宜;2)塔的操作条件;3)塔的操作方式。 5、填料种类的选择:A填料的传质效率要高;B填料的通量要大,在同样的液体负荷条件下,填料的泛点气速要高;C具有同样的传质效能的填料层压降要低;D单位体积填料的表面积要大,传质的表面利用率要高;E填料应具有较大的操作弹性;F 填料的单位重量强度要高;G填料要便于塔的拆装、检修,并能重复利用。(简述)6.进料板位置的选择:答:从上往下计算时,如果 S j HK j LK R j HK j LK y y y y ? ? ? ? ? ? < ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , ,式中下标R和S分别表示用精馏段和提馏段操作线计算的结果,则第j级不是进料级,继续做精馏段的逐级计算; 如果S j HK j LK R j HK j LK y y y y ? ? ? ? ? ? > ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , ,则第j级是进料级。由精馏段操作线确定yi,j,再由平衡关系求出xi,j,而下一级的yi,j+1应由提馏段操作线计算; 当从下往上逐级计算时,进料位置的确定方法是: 如果S j HK j LK R j HK j LK x x x x ? ? ? ? ? ? < ? ? ? ? ? ? , , , , 和S j HK j LK R j HK j LK x x x x ? ? ? ? ? ? > ? ? ? ? ? ? + + + + 1 , 1 , 1 , 1 , 则第j级是适宜进料位置,xi,j+1应换成平恒精馏段操作线计算。第一章2、分离过程可以分为机械分离和传质分离两大类,传质分离又可分为平衡分离过程和速率分离过程。3、分离媒介可以是能量媒介(ESA)或物质媒介(MSA)。4、当分离组分间隔相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分离时,就要考虑萃取精馏。5、如果由精馏塔顶引出的气体不能完全冷凝,可从塔顶加入吸收剂作为回流,这种单元操作叫做吸收蒸出(或精馏吸收)。6、能形成最低共沸物的系统,采用一般精馏是不合适的,常常采用共沸精馏。7、离子交换也是一种重要的单元操作,采用离子交换树脂,有选择性的除去某组分,而树脂本身能够再生。第二章1、相平衡热力学是建立在化学位概念基础上的,lewis提出了等价于化学位的物理量——逸度。3、Φi s为校正处于饱和蒸汽压下的蒸汽对理想气体的偏离,指数校正项也称普瓦廷因子,是校正压力偏离饱和蒸汽压的影响。4、若按照所设温度T和求得∑K i X i>1,标明K i值偏大,所设温度偏高。根据差值大小降低温度重算;若∑K i X i<1,则重设较高温度。 第三章 1、设计分离装置就是要求确定各个物理量的数值,如进料流率、浓度、压力、温度、热负荷、机械功的输入量、传热面大小、理论塔板数等。2、N v是描述系统的独立变量数,N c是约束关系数,设计变量数N i,则有N i=N v-N c。3、约束关系式包括:1)、能量平衡式;2)、物料平衡式;3)、相平衡关系式;4)、化学平衡关系式;5)、内在关系式。 4、设计变量数N i可进一步区分为固定设计变量数N x e和可调设计变量数N a e。 5、不同装置的变量数尽管不同,其中固定设计变量的确定原则是共同的,只与进料物流数和系统内压力等级数有关。 6、轻关键组分:关键组分中相易挥发的那个组分;重关键组分:不易挥发的关键组分。 7、多组分精馏与二组分精馏在浓度分布上的区别可归纳为:a、在多组分精馏中,关键组分的浓度分布有极大值;b、非关键组分通常是非分配的,因此重组分仅出现在釜液中,轻组分仅出现在流出液中;c、重、轻非关键组分分别在进料板上下形成几乎恒浓的区域;d、全部组分均存在于进料板上,但进料板浓度不等于进料浓度,塔内各组分的浓度分布曲线在进料板是不连续的。 8、由于分离作用主要取决于液汽比L/V,流量相当大的变化对液汽比的影响不大,而对分离效果影响也小。级间饿两流量越接近于相等,即操作越接近于全回流,则流量变化对分离的影响也越小。

第五章提取、分离与精制

第五章提取、分离与精制 习题 一、选择题 【A型题】 1.浸提的基本原理是 A.溶剂的浸润与渗透,成分的溶解浸出 B.溶剂的浸润,成分的解吸与溶解 C.溶剂的浸润与渗透,成分的解吸与溶解,溶质的扩散与置换 D.溶剂的浸润,成分的溶解与滤过,浓缩液扩散 E.溶剂的浸润,浸出成分的扩散与置换 2.药材浸提过程中推动渗透与扩散的动力是 A.温度 B.溶媒用量 C.时间 D.浸提压力 E.浓度差3.与溶剂润湿药材表面无关的因素是 A.浓度差 B.药材性质 C.浸提压力 D.溶剂的性质 E.接触面的大小 4.浸提时,一般温度应控制在 A.浸提溶剂的沸点或接近沸点 B.100℃ C.100℃以下 D.100℃以上 E.150℃ 5.浸提过程中,溶剂通过下列哪一个途径进入细胞组织 A.毛细管 B.与蛋白质结合 C.与极性物质结合 D.药材表皮 E.细胞壁破裂 6.浸提药材时 A.粉碎度越大越好 B.温度越高越好 C.时间越长越好 D.溶媒pH越高越好 E.浓度差越大越好 7.下列哪一种方法不能增加浸提浓度梯度 A.不断搅拌 B.更换新鲜溶剂 C.连续逆流提取 D.动态提取 E.高压提取 8.在扩散公式中dc/dx代表 A.浓度差 B.扩散速率 C.扩散系数 D.扩散半径

E.扩散浓度 9.乙醇作为浸出溶媒不具备的特点是 A.极性可调 B.溶解范围广 C.可以延缓酯类药物的水解 D.具有防腐作用 E.可用于药材脱脂 10.浸提过程中加入酸、碱的作用是 A.增加浸润与渗透作用 B.增加有效成分的溶解作用 C.增大细胞间隙 D.增加有效成分的扩散作用 E.防腐11.下列关于单渗漉法的叙述,正确的是 A.药材先湿润后装筒 B.浸渍后排气 C.慢漉流速为1~5ml/min D.快漉流速为5~8ml/min E.大量生产时,每小时流出液应相当于渗漉容器被利用容积的1/24~1/12 12.渗漉法提取时,影响渗漉效果的因素是 A.与渗漉柱高度成正比,与柱直径成反比 B.与渗漉柱高度成反比,与柱直径成正比 C.与渗漉柱高度成反比,与柱直径成反比 D.与渗漉柱高度成正比,与柱直径成正比 E.与渗漉柱大小无关 13.回流浸提法适用于 A.全部药材 B.挥发性药材 C.对热不敏感的药材 D.动物药 E.矿物药 14.下列哪一种操作不属于水蒸气蒸馏浸提法 A.水中蒸馏 B.挥发油提取 C.水上蒸馏 D.多效蒸发 E.通水蒸气蒸馏 15.煎煮法作为最广泛应用的基本浸提方法的原因是 A.水经济易得 B.水溶解谱较广 C.可杀死微生物 D.浸出液易于滤过 E.符合中医传统用药习惯

生物分离工程复习

生物分离工程复习题 第一章导论 一解释名词 生物下游加工过程(生物分离工程),生物加工过程 二简答题 1 生物产品与普通化工产品分离过程有何不同?(生物下游加工过程特点是什么?生物分离工程的特点是什么?) 2 生物分离工程在生物技术中的地位? 3 分离效率评价的主要标准有哪些?各有什么意义? 4 生物分离工程可分为几大部分,分别包括哪些单元操作?(简述或图示分离工程一般流程及基本操作单元) 5 在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠? 6 下游加工过程的发展趋势有哪些方面? 7 纯化生物产品的得率是如何计算的?若每一步纯化产物得率为90%,共6步纯化得到符合要求产品,其总收率是多少? 第二章发酵液预处理 一解释名词 凝聚,絮凝,凝聚剂,过滤,离心,细胞破碎,包含体 二简答题 1 为什么要进行发酵液的预处理?常用处理方法有哪几种? 2 凝集与絮凝过程有何区别?如何将两者结合使用?常用的絮凝剂有哪些? 3 发酵液预处理中凝聚剂主要起什么作用?絮凝机理是什么? 4 细胞破碎的方法包括哪几类?工业上常用的方法有哪些?为什么? 5 沉降与离心的异同? 6 离心设备可分为哪两大类?按分离因子Fr不同,离心机一般分为哪几类? 7 常用的离心沉降设备有哪些?常用的过滤设备有哪些? 8 固-液分离主要包括哪些方法和设备? 9 试比较固液分离中过滤和离心分离技术的特点。 10 高压匀浆与高速珠磨破碎法各有哪些优缺点? 11 比较工业常用的过滤设备优缺点。离心与过滤各有什么优缺点?

第三章沉淀与结晶 一解释名词 沉淀,结晶,盐析,盐溶,盐析结晶,盐析沉淀,硫酸铵饱和度,晶种,晶核,晶型, 饱和溶液,过饱和溶液,饱和度 二简答题 1 根据加入沉淀剂的不同沉淀分离主要包括哪几类?) 2 常用的蛋白质沉淀方法有哪些?有机溶剂沉淀蛋白质的机理什么?用乙醇沉淀蛋白质时应注意哪些事项? 3 影响盐析的主要因素有哪些?在工艺设计中如何应用? 4 如何确定盐析过程中需要加入硫酸铵的量? 5 简述有机溶剂沉淀的原理。 6沉淀与结晶有何不同? 7 结晶操作的原理是什么?常用结晶器包括哪两种类型?如何选择结晶设备? 8 粒子大小与溶解度有何关系? 9 有哪些方法造成溶液过饱和? 10 绘制饱和温度曲线和过饱和温度曲线,并标明稳定区、亚稳定区和不稳定区。并简述其意义 11 影响硫酸铵盐析效果的主要因素有哪些?公式Ig S=β- Ks I 中β、Ks各与什么因素有关? 第四章萃取 一解释名词 萃取,反萃取,分配系数,有机溶剂萃取,分离因子,乳化,胶团,反胶团,反胶团萃取,临界胶束浓度,溶解度参数,介电常数,HLB 值,萃取因素,带溶剂,超临界流体,超临界流体萃取,双水相萃取,液膜萃取,多级逆流萃取 二简答题 1 生物物质的萃取与传统的萃取相比有哪些不同点? 2 溶剂萃取按参与溶质分配的两相不同而分为哪5类?有机溶剂萃取中产生乳化后使有机相和水相分层困 难,一般会出现哪两种夹带?各产生什么后果? 3 萃取过程(方式)设计分为哪几种类型? 4 pH 对弱电解质的萃取效率有何影响? 5 发酵液乳化现象是如何产生的?对分离纯化产生何影响? 影响乳浊液稳定的因素主要有哪些?如何有 效消除乳化现象?

化工分离过程课程设计

A B C 甲醇 23.4803 3626.55 34.29 乙醇 23.8047 3803.98 41.68 正丙醇 22.4367 3166.38 80.15 化工与制药学院 课程设计任务书 专业 化学工程与工艺 班级 学生姓名 发题时间: 2015 年 1 月 4 日 一、课题名称 用Willson 方程计算甲醇、乙醇、正丙醇三元物系相平衡常数和浮阀塔板结构设计 二、课题条件(文献资料、仪器设备、指导力量) 采用浮阀塔分离含甲醇0.60、乙醇0.30、正丙醇0.10(均为摩尔分数)的混合物,操作压力为101.3kPa ,气相看成理想气体,液相看成非理想溶液,假设100kmol/h 进料,塔顶采出为60kmol/h ,回流比为R=2.2。物料分配计算时,相对挥发度可取进料板值。用Willson 方程计算体系活度系数,描述相平衡方程计算式。对该塔进行塔板结构设计,进行水力学计算,绘出负荷性能图,找出该塔操作弹性。 三、设计任务(含实验、分析、计算、绘图、论述等内容) 1、查找基础数据(Willson 参数),计算活度系数,描述相平衡方程; 2、对该塔进行结构设计; 3、进行水力学计算,绘出负荷性能图,找出操作弹性; 4、对该塔结构设计进行讨论; 5、采用CAD 绘出精馏系统工艺流程图。 要求:提交设计说明书按论文格式书写,层次分明,书写工整,独立完成。 四、设计所需技术参数 1、题中各组分安托尼方程 ln S i B P A t C =- +(单位:t —K ;S i P —Pa)。 五、说明书参考内容 目录 中文摘要、关键词 英文摘要、关键词 前言(包括设计依据、主要内容、特点、意义等) 第1章 相平衡设计和塔板结构设计综述 第2章 相平衡方程计算

萃取过程及设备

萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,利用相似相溶原理,萃取有两种方式: 液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃;用CCl4萃取水中的Br2. 固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。 虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。 萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。 用溶剂从液体混合物中提取其中某种组分的操作称为液/液萃取。萃取是利用溶液中各组分在所选用的溶剂中溶解度的差异,使溶质进行液液传质,以达到分离均相液体混合物的操作。萃取操作全过程可包括: 1.原料液与萃取剂充分混合接触,完成溶质传质过程; 2.萃取相和萃余相的分离过程; 3.从萃取相和萃余相中回收萃取剂的过程。通常用蒸馏方法回收。 现以提取含有A、B两组分的混合液中的A组分为例说明萃取操作过程。选用一种适宜的溶剂S,这种溶剂对欲提取的组分A应有显著的溶解能力,而对其它组分B应是完全不溶或部分互溶(互溶度越小越好)。所选用的溶剂S称为萃取剂。待分离的混合液(含A+B)称为原料液,其中被提取的组分A称为溶质,另一组分B(原溶剂)称为稀释剂。 萃取过程的三个步骤:(1)首先将原料液(A+B)与适量的萃取剂S在混合器中充分混合。由于B与S不互溶,混合器中存在S与(A+B)两个液相。进行搅拌,造成很大的相界面,使两相充分接触,溶质A由原料液(稀释剂B)中经过相界面向萃取剂S中扩散。这样A 的浓度在原料液相中逐渐降低,在液相S中逐渐增高。经过一定时间后,两相中A的浓度不再随时间的增长而改变,称为萃取平衡。(2)在充分传质后,由于两液相有密度差,静置或通过离心作用会产生分层,以此达到分离的目的。以萃取剂S为主,并溶有较多溶质A 的一相称为萃取相,以E表示;以稀释剂B为主并含有少量未扩散的溶质A的一相称为萃余相,以R表示。(3)通常用蒸馏的方法回收S。脱除S后的萃取相称为萃取液;脱除S 后的萃余相称为萃余液。 选用的萃取剂的原则:

离心机离心分离的几种方法及特点

离心机离心分离的几种方法及特点 2009-07-10文字选择: 制备型超高速离心机的几种分离方法: A.差速离心:逐次增加离心力,每次可沉降样品溶液中的一些组份。 差速离心是一种最常用的方法。在这种方法中,离心管在开始时装满了均一的样品溶液。通过在一定速度下一定时间的离心后,就可得到两个部份:沉淀和上清液。 通常在第一次离心时把大部分不需要的大粒子沉降去掉。这时所需的组份大部分仍留在上清液中。然后将收集到的上清液以更高速度离心,把所需的粒子沉积下来。离心的时间要选择得当,使大部份不需要的更小的粒子仍留在上清液中。对于得到的沉淀和上清液可以进行进一步的离心,直到达到所需要的分离纯度为止。 差速离心的特点是操作简单,但分离纯度不高。 B.密度梯度离心法:可以同时使样品中几个或全部组份分离,具有很好的分辨率。 1)速率区带法(rate zonal): 根据样品中不同粒子所具有的不同的尺寸大小及沉降速度(S)。大致步骤如下: 在离心管中装入密度梯度溶液,溶液的密度从离心管顶部至底部逐渐增加(正梯度)。 将所需分离的样品小心地加至密度梯度溶液的顶部。样品在梯度溶液表面形成一负梯度。 由于不同大小的粒子在离心力作用下,在梯度中移动的速度不一样,所以经过离心后会形成几条分开的样品区带。 注意:样品粒子的密度必须大于梯度液注中任一点的密度。离心过程必须在区带到达管子底部前停止。2)等密度离心法(isopycnic): 根据粒子的不同密度来分离。离心过程中,粒子会移至与它本身密度相同的地方形成区带。 密度样度的选择要使梯度的范围包括所有待分离粒子的密度。样品可以在密度梯度液粒上面或均匀分布在密度梯度中。经离心后,样品粒子达到它们的平衡点。

★ 06116 《化工分离过程》考试大纲

《化工分离过程》考试大纲 课程代号:06116 课程名称:化工分离过程编写学校:南京工业大学 I课程的性质及要求 一、课程性质和特点 《化工分离工程》课程是我省高等教育自学考试化学工程专业的一门重要课程。化工分离工程是化学工程学科的重要分支,是研究化工及其它相关过程中物质的分离和纯化方法的一门技术科学。 许多天然物质都以混合物的形式存在,要从其中获得具有使用价值的一种或几种产品,必须对混合物进行分离;在许多加工工业中,例如化工、石油化工、炼油、医药、食品、材料、冶金、生化等,必须对中间体和产物进行分离和提纯,才能使加工过程进行下去,并得到符合使用要求的产品。分离过程还是环保工程中用于污染物脱除的一个重要环节。 分离工程的研究对象是化工及其相关过程中基本的分离单元操作过程。在相当多的生产过程中,它对生产的成本和产品的质量起到了关键甚至决定性的作用。在石油、化工等企业中,分离过程的投资和操作费用占有很高的比例。据统计,在典型的化工企业中,分离过程的投资一般要占总投资的三分之一左右。聚乙烯生产中,乙烯的分离提纯部分的设备投资和操作费用均占总费用的一半左右。而在炼油行业及某些生化产品的生产过程中,分离过程所占的投资要高达70%以上。而一些基因工程产品的生产过程中,分离提纯的成本甚至高达其总生产成本的90%。 现代科学技术的发展,尤其是以新能源、新材料、电子和信息技术、现代生物技术、环境保护技术、可再生资源利用技术等为代表的高新科技的兴起和发展向分离技术提出了新的艰巨挑战。这使得分离工程成为近半世纪来发展最为迅速的化学工程技术领域之一。各种膜技术、超临界流体技术、现代吸附和工业色谱技术、反应-分离耦合技术等应运而生并相继获得应用。分离工程已成为化学工程的前沿研究方向之一。 本课程以多组分、非理想、高浓度、有化学反应的、复杂体系的分离操作和过程为基本对象,以化工等过程工业为背景,以数学模型为工具,以分离单元操

超离心技术简介

超离心技术简介 超速离心机的离心速度为每分钟60000转或更多,离心力约为重力加速度的500000倍。在操作技术上,最常用的是差速离心和密度梯度离心。前者是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。欲分离沉降系数接近的物质,则广泛使用密度梯度离心法。这种方法使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。 一、差速离心 差速离心是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。离心速度较低,较大的颗粒沉降到管底,小的颗粒仍然悬浮在上清液中。收集沉淀,改用较高的离心速度离心悬浮液,将较小的颗粒沉降,以此类推,达到分离不同大小颗粒的目的。 原理:不同沉降系数的组分在不同的离心速度下沉降的速度不同,以此用来分离亚细胞组份。物体围绕中心轴旋转时会受到离心力的作用,离心力越大,被离心物质沉降得越快。 应用:此法多用于分离细胞匀浆中的各种亚细胞组分,用低渗匀浆、超声破碎或研磨等方法可使细胞质膜破损,形成细胞核、线粒体、叶绿体、内质网、高尔基体、溶酶体等细胞器和细胞组分组成的混合

匀浆,再通过差速离心将各种质量和密度不同的亚细胞组分和各种颗粒分开。

二、密度梯度离心 密度梯度离心使用一种密度能形成梯度(在离心管中,其密度从上到下连续增高)又不会使所分离的生物活性物质凝聚或失活的溶剂系统,离心后各物质颗粒能按其各自的比重平衡在相应的溶剂密度中形成区带。常用的密度梯度溶剂是蔗糖或氯化铯(CsCl)溶液。用蔗糖时,先将蔗糖溶液制成密度梯度溶液,再在其顶端加样品。离心后,如欲收集所分离的组分,可在离心管的下端刺一小洞,然后分部收集。如用CsCl这种密度大又扩散迅速的溶剂系统时,可将样品均匀地混合于溶剂中。离心达到平衡后, CsCl溶液形成密度梯度,样品中各组分也在相应密度处形成区带。 原理:离心介质以连续密度梯度分布,通过离心、每种物种悬浮到与自己密度相当的介质区。当不同颗粒存在浮力密度差时,在离心力场下,在密度梯度介质中,颗粒或向下沉降,或向上浮起,一直移动到与它们各自的密度恰好相等的位置,在这里颗粒没有重量,不管离心多长时间,它们再也不移动了,形成一系列密度区。从而使不同浮力密度的物质得到分离。 应用:此法常用CsCl、蔗糖、甘油等做介质,一般应用于物质的大小相近,而密度差异较大时。常用来分离提取核酸、富含AT和富含GC的DNA、亚细胞器和质粒等。

化工分离过程-课后标准答案刘家祺

化工分离过程-课后答案刘家祺

————————————————————————————————作者:————————————————————————————————日期:

化学工程与工艺教学改革系列参考书 分离过程例题与习题集 叶庆国钟立梅主编 化工学院化学工程教研室

前言 化学工程与工艺专业所在的化学工程与技术一级学科属于山东省“重中之重”学科,一直处于山东省领先地位,而分离工程是该专业二门重要的必修专业课程之一。该课程利用物理化学、化工原理、化工热力学、传递过程原理等基础基础知识中有关相平衡热力学、动力学、分子及共聚集状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系分离和提纯技术。传统的教学方法的突出的弊端就是手工计算工程量大,而且结果不准确。同时由于现代化化学工业日趋集成化、自动化、连续化,学生能学到的东西越来越少。所以,传统的教学模式不能满足现代化工业生产对高水平工业工程师的需求,开展分离工程课程教学方法与教学手段课题的研究与实践,对我们的学生能否承担起现代化学工业的重任,与该课程的教学质量关系重大,因此对该门课程进行教学改革具有深远意义。 分离工程课程的改革主要包括多媒体辅助教学课件的开发、分离工程例题与习题集、分离工程试题库的编写等工作。目前全国各高校化学工程与工艺专业使用的教材一般均为由化学工程与工艺专业委员会组织编写的化工分离过程(陈洪钫主编,化学工业出版社),其他类似的教材已出版了十余部。这些教材有些还未配习题,即便有习题,也无参考答案,而至今没有一本与该课程相关的例题与 习题集的出版。因此编写这样一本学习参考书,既能发挥我校优势,又符合形势需要,填补参考书空白,具有良好的应用前景。 分离工程学习指导和习题集与课程内容紧密结合,习题贯穿目前已出版的相关教材,有解题过程和答案,部分题目提供多种解题思路及解题过程,为学生的课堂以及课后学习提供了有力指导。 编者 2006 年3月

直观演示7大萃取设备的结构和原理

直观演示7大萃取设备的结构和原理 萃取(Extraction)是分离液体混合物的一种单元操作,依据液体混合物中各组分在溶剂中溶解度的差异分离液体混合物,俗称抽提。 萃取设备 ——离心萃取机—— ——混合·沉降萃取器——

——脉冲筛板萃取塔—— ——筛板萃取塔——

——填料萃取塔—— ——往复筛板萃取塔——

——转盘筛板萃取塔—— 萃取设备简介 萃取设备又称萃取器,其作用是实现两液相之间的质量传递。对萃取设备的基本要求是使萃取系统的两液相之间能够充分混合、紧密接触并伴有较高程度的湍动;同时使传质后的萃取相与萃余相能够较完善的分开。萃取设备的种类很多,按两相接触方式,可分为逐级接触式和连续接触式;按形成分散相的动力,可分为无外加能量与有外加能量两类,前者只依靠液体送入设备时的压力和两相密度差在重力作用下使液体分散,后者则依靠外加能量用不同的方式使液体分散;此外,根据两相逆流的动力不同,可分为重力作用和离心力作用两类。

常用的萃取塔型 ①转盘塔 在工作段中,等距离安装一组环板,把工作段分隔成一系列小室,每室中心有一旋转的圆盘作为搅拌器。这些圆盘安装在位于塔中心的主轴上,由塔外的机械装置带动旋转。转盘塔结构简单,处理能力大,有相当高的分离效能,广泛应用于石油炼制工业和石油化工中。 ②脉动塔 在工作段中装置成组筛板(无溢流管的)或填料。由脉动装置产生的脉动液流,通过管道引入塔底,使全塔液体作往复脉动。脉动液流在筛板或填料间作高速相对运动产生涡流,促使液滴细碎和均布。脉动塔能达到更高的分离效能,但处理量较小,常用于核燃料及稀有元素工厂。 ③振动板塔 将筛板连成串,由装于塔顶上方的机械装置带动,在垂直方向作往复运动,借此搅动液流,起着类似于脉动塔中的搅拌作用。 萃取塔设计主要是确定塔的直径和工作段高度。先从液体流量除以操作速度,得出塔截面,算出塔径。然后根据塔的特性以及物系性

离心分离技术

离心分离技术 离心分离技术是借助于离心机旋转所产生的离心力,根据物质颗粒的沉降系数、质量、密度及浮力等因子的不同,而使物质分离的技术。 一、离心机的种类与用途 离心机按用途有分析用、制备用及分析-制备之分;按结构特点则有管式、吊蓝式、转鼓式和碟式等多种;按转速可分为常速(低速)、高速和超速三种。 1.常速离心机 常速离心机又称为低速离心机。其最大转速在8000 rpm以内,相对离心力(RCF)在104g以下,主要用于分离细胞、细胞碎片以及培养基残渣等固形物,和粗结晶等较大颗粒。常速离心机的分离形式、操作方式和结构特点多种多样,可根据需要选择使用。 2.高速离心机 高速离心机的转速为1x104~2.5x104 rpm,相对离心力达 1x104~1x105g,主要用于分离各种沉淀物、细胞碎片和较大的细胞器等。为了防止高速离心过程中温度升高而使酶等生物分子变性失活,有些高速离心机装设了冷冻装置,称高速冷冻离心机。 3.超速离心机 超速离心机的转速达 2.5x104~8x104 rpm,最大相对离心力达5x105g 甚至更高一些。超速离心机的精密度相当高。为了防止样品液溅出,一般附有离心管帽;为防止温度升高,均有冷冻装置和温度控制系统;为了减少空气阻力和摩擦,设置有真空系统。此外还有一系列安全保护系统、制动系统及各种指示仪表等。 分析用超速离心机用于样品纯度检测时,是在一定的转速下离心一段时间以后,用光学仪器测出各种颗粒在离心管中的分布情况,通过紫外吸收率或折光率等判断其纯度。若只有一个吸收峰或只显示一个折光率改变,表明样品中只含一种组分,样品纯度很高。若有杂质存在,则显示含有两种或多种组分的图谱。 分析用超速离心机可用于测定物质的沉降系数。沉降系数是指在单位离心力的作用下粒子的沉降速度。以Svedberg表示,简称S, 单位秒,1S=1x10-13s。 S可通过超速离心,根据转速、离心时间和粒子移动的距离,按下列公式求出: 式中ω:角速度;t2-t1:离心时间(s);X2,X1:分别为t2和t1时,运动粒子到离心机转轴中心的距离(cm)。 沉降系数与相对分子质量有一定的对应关系。

萃取与分离技术 萃取基本概念及分离方法

模块三萃取技术 学习目标 知识目标 1.掌握萃取操作的基本知识、三角形相图、相平衡关系、单级萃取操作的工艺计算;掌握萃取操作的适用场合;掌握萃取操作、常见事故及其处理方法。 2.理解萃取过程的基本原理,理解萃取操作过程的控制与调节。 3.了解各种萃取操作的基本流程,了解各种萃取设备的结构、特点及其选择方法。能力目标 1.能够用三角形相图表示萃取操作过程,分析萃取操作过程的影响因素,并 能够进行萃取剂的选择,液—液萃取操作的选择。 2.能够了解萃取操作的开停车,常见事故及其处理方法。 素质目标 1.培养学生工程技术观念; 2.培养学生独立思考的能力,逻辑思维的能力; 3.培养学生能应用所学知识解决工程实际问题的能力。 任务单 东方化工集团有限分司,乙酸水溶 液中回收乙酸,这一过程中使用萃取 的方式进行,要求处理量为每批1t, 其中乙酸含量为50%(质量百分率 下同),要求最终乙酸的组成达70% 以上。完成下列任务: (1)确定回收方法; (2)选用适宜的萃取剂; (3)选用合适的萃取设备; (4)计算萃取剂用量。

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取: 萃取剂: 萃取相: 萃余相: 萃取液: 萃余液: 溶质: 原溶剂(稀释剂): 溶解溶解度曲线: 连接线(共轭线): 共轭液层(共轭相): 辅助曲线: 临界混熔点: 分配曲线: 分配系数: 萃取操作的分类及适用场合 萃取操作的分类 适用场合 建议选用分离方法 得分

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取:利用混合物中的各组份在溶剂中的溶解度的不同,而达到混合物分离的目的。萃取剂:萃取剂:所选用的溶剂。 萃取相:以萃取剂为主溶有溶质的相。E 萃余相:以原溶剂为主溶质含量较低的相。R 萃取液:除去萃取相中的溶剂而得到的液体。E’ 萃余液:除去萃余相中的溶剂而得到的液体。R’ 溶质:混合物中被分离出的组份。A 原溶剂(稀释剂):原混合物中与溶剂不互溶或仅部分互溶的组份。 溶解溶解度曲线:将代表诸平衡液层的组成坐标点连接起来的曲线。 连接线(共轭线):萃取相E和萃余相R两点的联线。 共轭液层(共轭相):二元混合物中加入适量的萃取剂,即形成了二个液层萃取相E和萃余相R,把达到平衡时的两个液层称为“共轭液层或共轭相”。 辅助曲线:分别过共轭液层的两点作三角形任意两条边的平行线,其交点的连线。 临界混熔点:辅助曲线与溶解度曲线的交点。 分配曲线:将三角形相图中各组相对应的平衡液层中溶质A的浓度转移到x-y直角坐标上,所到的曲线。 分配系数:组份在萃取相E中浓度与其在萃余相R中的浓度之比值。 萃取操作的分类及适用场合 萃取操作的分类物理萃取:利用溶剂对欲分离的组份具有较大的溶解能力,溶质通过扩散作用转移到溶剂中,从而达到分离的目的的过程。 化学萃取:由于化学作用,溶剂选择性地与溶质化合或络合,从而帮助溶质重新分配,达到分离目的的过程。 适用场合(1)原料液中各组分间的相对挥发度接近于1或形成恒沸物。若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分。若采用蒸馏方法须将大量稀释剂汽化,能耗较大; (3)原料液中需分离的组分是热敏性物质。这种物料蒸馏时易于分解、聚合或发生其它变化。 (4)高沸点有机物的分离。用萃取方法代替技术很高的真空蒸馏、分子蒸馏,可降低能量消耗。 建议选用分离方法 得分

1102012032;李士豪;离心分离技术综述

离心分离技术综述 学号:1102012032 姓名:李士豪班级:生工2 摘要 离心分离技术是借助于离心机旋转所产生的离心力,根据物质颗粒的沉降系数、质量、密度及浮力等因子的不同,而使物质分离的技术。离心分离是利用不同物质之间的密度形状大小的差异,用离心力场对悬浮液中的不同颗粒进行分离和提取的物理分离分析技术,它广泛用于生物学(生物工程和生物制品等)、医学、化学、化工等领域,而其设备——离心机是这些领域的必需设备。本文以离心机为起点,接着从离心分离方法、离心条件确定对离心分离技术进行了论述,最后再对我国的离心分离技术水平作出展望。 关键词:离心分离;离心机;分离方法;离心条件 ;展望 引言 离心技术是利用物体高速旋转时产生强大的离心力,使置于旋转体中的悬浮颗粒发生沉降或漂浮,从而使某些颗粒达到浓缩或与其他颗粒分离之目的。这里的悬浮颗粒往往是指制成悬浮状态的细胞、细胞器、病毒和生物大分子等。离心机转子高速旋转时,当悬浮颗粒密度大于周围介质密度时,颗粒离开轴心方向移动,发生沉降;如果颗粒密度低于周围介质的密度时,则颗粒朝向轴心方向移动而发生漂浮。根据离心原理,离心技术又可以分为差速离心法、密度梯度离心法和等密度梯度离心法。 离心机 离心机是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。 按分离因素Fr值分(分离因素Fr是指物料在离心力场中所受的离心力,与物料在重力场中所受到的重力之比值。) 1、常速离心机Fr≤3500(一般为600~1200),这种离心机的转速较低,直径较大。 2、高速离心机???Fr=3500~50000,这种离心机的转速较高,一般转鼓直径较小,而长度较长。

离心分离

离心分离 离心分离是按照两相的密度差进行分离的方法,其不同于沉降之处在于离心分离的推动力是高速旋转产生的离心力。离心力可由下式求出: F= mu2 式中m—旋转物体的质量,kg; u—旋转线速度,m/s; r—旋转半径,m; F—离心力,N; 由于 u=2πrn 60 得出 F= mr n2 式中n—转速,r/min。 有公式可看出,离心力与转速的平方成正比。 水分和机械杂质离心分离速度与沉降分离速度之比称为相对分离速度K: K= n r 例如,在一个r=0.09m,n=40000r/min的离心机中,相对分离速度为 K=400000.09 30 =400 其离心速度为自由沉降速度的400倍。 废油温度对离心分离速度的影响与沉降分离时相同。油的粘度及油与杂质的密度差都影响分离速度,它们又与油温有关,因此对粘稠油也宜适当加温,一般加温至70℃左右。 在离心分离的实际应用中,使用离心机和分离机两种设备。分离机一般直径较大,转速较低;离心机一般直径较小,转速较高。一般分离机在3000-8500r/min下操作。 根据油中杂质的特点,分离机有两种操作方法,一种叫澄清法,一种叫清洗法。 澄清法适用于从油中分离固体杂质、油泥、炭粒及少量的水,此时不连续引出杂质,分离出来的固体物逐渐聚集于转鼓的贮污器中。定期预以清除。 清洗法适于分离含大量水的污油,污油在分离机中分离成两个密度不同的液相,连续地分别离开分离机。 绝缘油一般都用澄清法,含机械杂质及少量水分(0.1%-0.3%)的汽轮机油也用澄清法,含水多的汽轮机油则用清洗法。当按照清洗法操作时,分离机的生产率要比清洗法操作高20%-30%。 离心机的操作也有两种,澄清法及分离法,适用于转子结构不同的离心机与处理不同的原料。 同一台离心机在

化工分离过程 教学大纲

教学大纲 课程名称:化工分离过程 英文名称:Separation Processes 学分:3.5 学时:48 教学对象:化学工程与工艺专业四年级本科生 预修课程:物理化学、化工原理、化工热力学、传递过程。 授课教材:刘家祺主编. 《传质分离过程》,高等教育出版社,2005年. 参考教材:陈洪纺,刘家祺编. 《化工分离过程》,化学工业出版社,1995年. J D Seader, E J Henley. Separation Process Principles, John Wiley and Sons, Inc., 2011年. 教学目的:利用已学的物理化学、化工原理、化工热力学、传递过程等课程中有关系相平衡热力学、动力学、分子及共聚状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系的分离和提纯技术。着重基本概论的理解,为分离过程的选择、特性分析和计算奠定基础。从分离过程的共性出发,讨论各种分离方法的特征。强调将工程和工艺相结合的观点,进行设计和分析能力的训练;强调理论联系实际,提高解决问题的能力。 总体要求:通过本课程学习,使学生掌握各种常用传质分离过程的基本原理,操作特点,简捷和严格计算方法,强化改进操作的途径,了解一些新分离技术。对于给定的混合物体系和产物分离要求,能够选择和设计适宜的分离过程。 教学内容: 第一章绪论本章包括3节,共3 学时 第1节课程概述 本节为1 学时的课堂教学 第2节传质分离过程的分类 本节为1 学时的课堂教学 第3节分离过程的研究开发现状与发展趋势 本节为1 学时的课堂教学

基本要求:了解分离过程在化工生产中的重要性;分类过程的分类;常用的化工分离操作过程;分离过程研究和技术开发的现状和未来。 重点:平衡分离过程和速率分离过程 难点:工业上常用的基于平衡分离过程的分离单元操作及其基本原理;分离媒介;典型应用实例。 第二章传质分离过程的热力学基础本章包括6 节,共9 学时 第1节相平衡基础 本节为3 学时的课堂教学 2.1.1汽液平衡 2.1.2液液平衡 第2节多组分物系的泡点和露点计算 本节为2 学时的课堂教学 2.2.1 泡点温度和压力的计算 2.2.2 露点温度和压力的计算 第3节闪蒸过程的计算 本节为2 学时的课堂教学 2.3.1 等温闪蒸和部分冷凝过程 2.3.2 绝热闪蒸过程 第4节液液平衡过程的计算 本节为0.5 学时的课堂教学 第5节多元相平衡过程 本节为0.5 学时的自主学习 第6节共沸系统和剩余曲线 本节为1 学时的课堂教学 基本要求:在“化工热力学”课程有关相平衡理论的基础上,较为全面的了解化工过程中经常遇到的多组分外系的气液平衡,即各种单级平衡过程的计算问题。熟练掌握多组分非理想体系平衡常数计算方法;泡点和露点计算;等温闪蒸和部分冷凝过程的计算,了解绝热闪蒸过程的计算。 重点:多组分物系的相平衡条件;平衡常数;分离因子。多组分物系的泡点方程、露点方程;计算方法。等温闪蒸过程和部分冷凝过程。闪蒸方程;闪蒸过程的计算。 难点:多组分非理想体系平衡常数计算。多组分物系的泡点温度和泡点压力、露点温度和露点压力的计算。等温闪蒸过程和部分冷凝过程的计算。 第三章气液传质分离过程本章包括 5 节,共15 学时 第1节设计变量 本节为2 学时的课堂教学

相关文档
最新文档