铋基材料的发展综述汇总

铋基材料的发展综述汇总
铋基材料的发展综述汇总

环境友好型铋基材料的制备及其性能研究

1 概述

能源危机和环境问题的日益加重已成为影响全人类可持续发展的重要问题。近年来,可再生与不可再生资源日益枯竭,使得人们不得不高度重视排放物、废弃物的妥善处理和循环再生,减少不可再生资源的消耗和环境的污染,同时寻求绿色环保、可持续发展的新能源就逐渐受到世界各国的广泛关注。

光催化实际上是光催化剂在某些波长光子能量的驱动下,体内的空穴电子对分离,后又引发了一系列氧化还原反应的过程。光催化氧化技术由于其具有环境友好,能有效去除环境中尤其是废水中的污染物,且能耗少,无二次污染等优点已被慢慢重视起来。

自1972 年Fujishima等[1]在《Nature》报道了TiO2在紫外光照射下可以催化水的分解后,半导体光催化剂一直是广大学者们研究的热点。光催化被认为是解决能源问题的关键有效方法之一,近年来受到广大研究者的不断探究。

为了充分利用太阳光,人们对光催化材料进行了众多研究:一方面是对TiO2半导体进行改性,另一方面是寻求新型的非TiO2半导体光催化材料。含铋光催化材料属于非TiO2半导体光催化材料中的一种,电子结构独特,价带由Bi-6s和O-2p轨道杂化而成。这种独特的结构使其在可见光范围内有较陡峭的吸收边,阴阳离子间的反键作用更有利于空穴的形成与流动,使得光催化反应更容易进行。

本文将对近年来含铋光催化剂的研究进展进行综述。

2 铋类光催化剂的制备

2.1铋氧化物光催化剂

铋氧化物是很重要的功能材料,在光电转化、医药制药材料等方面有着很广泛的运用。其中,纯相还具有折射率高、能量带隙低和电导率高的特点。

Bi 2O 3有单斜、四方、体立方和面立方四种结构,只有单斜结构室温下可稳定存在,其他结构在室温下均会转变成单斜结构。

化学沉积法、声化学方法、溶胶-凝胶法、微波加热法等都是制备纳米Bi 2O 3的方法。产品的形态也可根据方法不同而不同,如颗粒状、薄膜状、纤维状等。Wang 等[2] 利用沉积法合成钙铋酸盐(CaBi 6O 10/Bi 2O 3)复合光催化剂,在可见光下(波长大于420nm )降解亚甲基蓝,催化效果显著。反应过程见下图,CaBi 6O 10的导带边比Bi 2O 3更接近阴极,当CaBi 6O 10受到太阳光照射后,产生的光生电子迅速转移到Bi 2O 3的导带边上,Bi 2O 3的光生空穴转移到CaBi 6O 10的价带上,有效实现了光生电子-空穴对的分离,减少了复合率,光催化活性大大提高。

2.2 卤氧化铋光催化剂

卤氧化铋BiO X (X=Cl 、Br 、I )因其较高的稳定性和光催化活性受到研究者的关注,发现光催化活性明显高于P25,并且随着卤素原子序数的增加,卤氧化物BiO X (X=Cl 、Br 、I )的光催化活性逐渐增大,表2.1列出了卤氧化铋光催化剂几种典型制备方法[3-6]。

表2.1 卤氧化铋光催化剂的制备方法与形貌

BiO X (X=Cl 、Br 、I )的晶型为PbFCl 型,是一种高度各向异性的层状结构半导体,属于四方晶系[7]。以BiOCl 为例,Bi 3+周围的O 2?和Cl ?成反四方柱配位,Cl ?层为正方配位,其下一层为正方O 2?层,Cl ?层和O 2?层交错

BiOX

制备方法 形貌和尺寸 BiOCl

水解法 珠光皮状,粒度5~10μm BiOBr

水热合成法 球状颗粒,2~10μm

软模板法 200~300nm 的纳米颗粒 BiOI 快速放热固态复

分解法 粒径约为70nm 复合而成的微米层

45°,中间夹心为Bi3+层。通过计算[8]表明:BiOF为直接带隙半导体,其他为间接带隙半导体,价带分别由O-2p和X-np(此处对于F、Cl、Br、I,n 分别为2、3、4、5)占据,而导带主要由Bi-6p轨道贡献。这种结构使得X-np上的电子吸收光子之后,极容易被激发到Bi-6p上,实现空穴-电子对的分离,被分离的电子和空穴必须通过结构的一些空隙才能进行复合,复合率大大降低,因此光催化活性较高。

制备具有小粒径、大比表面积、高催化活性的纳米卤氧化铋颗粒一直是研究的热点。常见的制备方法包括水解法、溶剂热法、电沉积法、软模板法和溶胶-凝胶法等[9-13];此外还包括一些特殊方法,如常温超声法[15]、微波法和电纺丝法[14]。

上述均是对制备方法的改良,卤氧化铋的改性体现在以下两方面:一是掺入其他的元素;二是形成铋基卤氧化物。

Chakraborty 等[15]在铋基卤化物BiOCl/Bi2O3表面负载WO3,并用其降解TPA(1,4-对苯二甲酸),当掺杂W的摩尔分数为0.6 %时,催化活性是BiOCl/Bi2O3的2.7 倍Xiao等[16]采用溶剂热法制得三维构型BiOCl/BiOI,当采用90 %的BiOI 进行复合反应时制得的催化活性最高,60min 内对双酚A的最大降解率可达97.8 %。Zhang[17]利用离子热液体法将BiOCl、BiOBr 复合获得花瓣状的复合物,光催化活性较复合前有显著提高。

总之,无论是卤氧化铋之间按某种比例的复合,还是氧化铋与卤氧化铋的复合,又或者卤氧化铋与含铋酸盐的复合[18],都在一定程度上提高了催化活性。

2.3 铋的含氧酸盐光催化剂

铋的含氧酸盐化合物具有独特的电子结构,并且在可见光区域内有较陡峭的能带吸收边,是一种新型高催化剂。

目前热门研究的分别有以下几类:

钛酸铋,最先由Aurivillus 在1949年发现,此系列主要包括Bi4Ti3O12、Bi2Ti2O7、Bi2Ti4O11、Bi12TiO20、Bi20TiO32等。其中,Bi4Ti3O12和Bi2Ti2O7由于具有比PZT 类铁电材料更好的铁电和高介电特性而被用于微电子器件的制备,Bi12TiO20由于光电和电光性质优良而被用作信息处理材料[19]。

钨酸铋,钨酸盐半导体材料广泛应用于磁性器件、闪烁材料和缓蚀剂等[20],同时作为可见光响应的光催化剂,具有良好的紫外和可见光响应、热稳定、低成本、环境友好等优点。Bi2WO6是最简单的Aurivillius型层状氧化物之一,Bi2O2层和WO6层沿着c轴交替组成Bi2WO6晶体,为典型的钙钛矿层状结构[23]。

钒酸铋,钒酸铋对可见光的吸收较大,但其在可见光下产生的光生电子和空穴极易复合,通常采用贵金属、碱土金属、过渡金属、稀土金属和非金属作为助催化剂或掺杂剂加入钒酸铋中以提高其催化活性。

铁酸铋,常见的铁酸铋类化合物有BiFeO3、Bi2Fe4O9等,其中BiFeO3具有较窄禁带能(Eg=2.2 eV),可吸收可见光,其在光催化领域的潜在应用引起了研究者的广泛关注,如图2.1所示。

图2.1 BiFeO3的结构

2.4 碱土金属铋酸盐

碱金属铋酸盐NaBiO3作为光催化性能优于Bi2O3的新型光催化材料,具有较大的潜在应用性[21-24]。Kako等[21]认为NaBiO3晶体中的Na-3s轨道与O-2p轨道杂化形成的高度分散的s-p轨道可增强光生电子的流动性,使得电子-空穴的复合率减少,因此具有较强的光催化活性。

谌春林等[22]研究了经过不同条件热处理的商品铋酸钠在可见光下对甲基橙、橙Ⅱ、亚甲基蓝和苯酚的降解作用,发现铋酸钠对几种有机物均有一定的降解作用,并且适当的热处理可以提高其光催化性能。

Chang等[23]用铋酸钠与氯氧化铋制备出复合NaBiO3/BiOCl光催化剂,发现复合物的催化活性均高于铋酸钠和氯氧化铋,经分析认为空穴-电子对

的有效分离增加了复合物的光催化活性。

碱土金属铋酸盐被称为最具潜力的可见光响应光催化剂,化合物中Bi3+的孤对电子使其具有Bi-O三维网络片状结构。

2.5 复合型铋催化剂

由于多元复合金属氧化物的晶体结构和电子结构呈现多样性,使得他们有可能同时具备响应可见光激发的能带结构和高的光生载流子移动性,因此被作为潜在的高效光催化材料得到了广泛研究铋与一些金属组成的复合氧化物就是这其中的代表,它们能被可见光激发且具有良好的光催化性能。Bi4NbO8C1就是这一类催化剂的典型代表。

3 铋类光催化剂在水污染领域应用的发展

3.1 传统污水处理方法

物理方法通过传统的处理技术,仅是把污染物从液相转移到固相或者气相当中,并不能从根本上将染料分子完全降解,难以使处理后的废水达到国家规定的排放标准,而且容易引起废物堆积和二次污染[25,26]。

化学氧化法主要采用臭氧,过氧化氢,过二硫酸盐,次氯酸盐等氧化一还原剂,色度去除率极高,但其耗能大,COD去除率小。电化学法对于量小的废水,具有设备简单、管理方便和工程效果较好的特点,但是其脱色率不高,耗电大,电极消耗较多,不适宜于水量大时采用。高温深度氧化法,具有良好的处理效果,但技术要求高、投资大、处理成本高,难以在实际中得到应用。

生物方法主要是活性污泥法,可分为好氧法、厌氧法、好氧一厌氧法。生物法是利用微生物酶和染料分子发生氧化还原反应,破坏不饱和键和发色基团,进行染料降解脱色。生物处理法具有应用范围广、处理量大、成本低等优点,但对处理印染废水也有着明显的缺点:传统生物处理法由于染料废水可生化性差,微生物对营养物质、pH值、温度等条件有一定要求,难以适应印染废水水质波动大、染料数量繁多、毒性高的特点。并且存在

占地面积较大,色度去除率不高,色度和COD浓度不易达标等缺点。3.2 光催化氧化污水处理方法

光催化氧化技术能耗低,操作简便,反应条件温和,可广泛降解目标物并减少二次污染,因此受到了人们的广泛关注。光催化对机污染物(如染料,农药,卤代物,表面活性剂和油类等)废水有良好的光催化降解作用,可以使大多数有机污染物完全破坏,最终生成无机小分子物质,消除其对环境的污染以及对人体健康的危害[27]。

3.2.1 含油废水的处理

刘婷等[28]以空心漂珠作为载体,用溶胶.凝胶法制备了以空心漂珠为载体的TiO2光催化剂,以100 mL 5 mg/L汽轮机油为水面模拟污染物,考察了其在日光照射下的降解效率。实验结果表明,以空心漂珠为载体,可制得能长期漂浮于水面的负载型TiO2光催化剂,通过浮油富集和光催化降解机制可对水面浮油进行有效的治理。余晟等[29]将TiO2附载在膨胀珍珠岩上,制备的以膨胀珍珠岩为载体的TiO2光催化剂可漂浮在水面上直接利用太阳光处理水面溢油,且光催化剂回收容易,使用寿命长,该催化剂在167W/cm2高压汞灯照射7 h,辛烷的光催化去除率为87 %。

3.2.2 印染废水的处理

邹晓兰等[30]用纳米Cu2O/珍珠贝壳复合光催化材料,研究光催化氧化法对活性大红染料B-3G溶液的降解脱色效果。染料浓度200 mg/L,催化剂浓度为2 g/L,pH为6.12,当紫外光照时间大于90 min时,色度去除率达到98 %,说明该纳米材料对染料的脱色效率高。罗洁等[31]对色度375、pH 值5.4、CODer 595.16 mg/L的模拟墨绿色印染废水采用紫外光光照处理后脱色率达90%,CODcr脱除率达80 %左右。说明TiO2光催化能有效降解印染废水,使其CODcr和色度显著降低。

3.2.3 造纸废水的处理

采用多相光催化氧化技术处理造纸漂白废水,可直接将所含的二恶英降解为CO2、H2O和C1-。以达到一次销毁这一有害物的目的。全玉莲等[38]

采用溶胶凝胶法制备出纳米TiO2粉末作为光催化剂,在高压汞灯的光源照射下对河北省某造纸厂废水进行了光催化降解。研究表明:经460 ℃热处理1 h的TiO2光催化效果较好,在COD浓度300 mg/L,溶液的初始pH值为3.0、光催化剂用量1.0 g/L、反应时间7 h条件下,COD去除率可达76.0%。经深度处理的造纸废水,可实现达标排放。黄泱等[32]研究了纳米TiO2光催化剂对造纸废水的暗吸附规律和光降解性能。结果表明:当纳米TiO2用量5 g/L,pH = 2,经过160 W高压汞灯光照反应120 min后,造纸废水可完全脱色且COD的去除率可达91.83 %,说明高分子化合物几乎全部被降解。

4 探究展望

想要实现含铋光催化材料在工业上的广泛运用,必须提高材料的整体性能。众多研究者以减小禁带宽度和抑制光生电子空穴的复合来提高材料的光催化活性。我认为,可在以下三个方面做进一步研究:

(1)目前催化材料的改性主要为单元素掺杂或二元复合材料的制备,可采用多元素掺杂、三元或以上复合材料的制备,或将复合材料再进行元素掺杂,形成重叠的杂化轨道使禁带宽度更窄,提高空穴-电子对的分离率。

(2)光催化材料的研究不应只限于降解有机污染物或者分解水产生氧气,只有导带底的电位值比标准氢电极的电位更负时,水分解产物中才有氢气产生,可以将满足这一条件的光催化材料与窄禁带宽度的光催化材料一起制备成能在太阳光下分解水产生氢气的复合材料,来实现在能源领域中的应用。

(3)目前生产的含铋光催化材料通常为超细粉末,在实际应用及回收方面仍存在难度。可以用堇青石、分子筛等负载来制备整体式光催化材料,以有利于催化材料的循环利用。

参考文献

[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor

electrode.[J]. Nature, 1972, 238(238):37-8.

[2]高国军, 汪国年, 胡丽丽. SiO2对Bi2O3-B2O3玻璃体系光学、热学及结构的影

响[C] 中国硅酸盐学会特种玻璃分会全国特种玻璃会议. 2008.

[3]Wang Y, He Y, Li T, et al.Photocatalytic degradation of methylene blue on

CaBi6O10/Bi2O3 composites under visible light[J]. Chemical Engineering Journal, 2012, 189–190(2):473–481.

[4]王云燕, 彭文杰, 柴立元,等. 硝酸铋转化水解法制备片状BiOCl粉末的研究[J].

金属材料与冶金工程, 2003, 31(3):20-23.

[5]Zhang X, Ai Z, Falong Jia A, et al. Generalized One-Pot Synthesis, Characterization,

and Photocatalytic Activity of Hierarchical BiO X(X = Cl, Br, I) Nanoplate Microspheres[J]. Journal of Physical Chemistry C, 2008, 112(3):747-753.

[6]J. Henle, P. Simon, A. Frenzel, et al. Nanosized BiO X(X = Cl, Br, I) Particles

Synthesized in Reverse Microemulsions[J]. Chemistry of Materials, 2007, 19(3):366-373.

[7]Perera S, Zelenski N A, Pho R E, et al. ChemInform Abstract: Rapid and Exothermic

Solid-State Synthesis of Metal Oxyhalides and Their Solid Solutions via Energetic Metathesis Reactions.[J]. Journal of Solid State Chemistry, 2008, 39(22):2916-2925. [8]Chang X, Huang J, Tan Q, et al. Photocatalytic degradation of PCP-Na over BiOI

nanosheets under simulated sunlight irradiation[J]. Catalysis Communications, 2009, 10(15):1957-1961.

[9]Huang W L, Zhu Q, Huang W L, et al. Electronic structures of relaxed BiO X (X=F, Cl,

Br, I) photocatalysts[J]. Computational Materials Science, 2008, 43(4):1101-1108. [10]刘红旗, 顾晓娜, 陈锋,等. BiOCl纳米片微球的制备及其形成机理[J]. 催化学报,

2011, 32(1):129-134.

[11]Dellinger T M, Braun P V. BiOCl nanoparticles synthesized in lyotropic liquid crystal

nanoreactors[J]. Scripta Materialia, 2001, 44(8):1893-1897.

[12]Li K, Tang Y, Xu Y, et al. A BiOCl film synthesis from Bi2O3, film and its UV and

visible light photocatalytic activity[J]. Applied Catalysis B Environmental, 2013, s 140–141(2):179-188.

[13]Xiang Ying Chen, Hyun Sue Huh, Soon W. Lee. Controlled synthesis of bismuth oxo

nanoscale crystals (BiOCl, Bi12O17Cl2, α-Bi2O3, and (BiO)2CO3) by solution-phase methods[J]. Journal of Solid State Chemistry, 2007, 180(9):2510-2516.

[14]宋春燕, 孙言飞, 简基康. 溶剂热法制备BiOCl单晶纳米片[J]. 新疆大学学报:自

然科学版, 2011, 28(4):463-466.

[15]Jun Geng, Wen-Hua Hou, Yi-Nong Lv,等. One-dimensional BiPO4 nanorods and

two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis,characterization, and growth mechanism.[J]. Inorganic Chemistry, 2005, 44(23):8503-9.

[16]Wang C, Shao C, Liu Y, et al. Photocatalytic properties BiOCl and Bi2O3, nanofibers

prepared by electrospinning[J]. Scripta Materialia, 2008, 59(3):332-335.

[17]Chakraborty A K, Rawal S B, Song Y H,et al.Enhancement of visible-light

photocatalytic efficiency of BiOCl/Bi2O3, by surface modification with WO 3[J].

Applied Catalysis A General, 2011, 407(s 1–2):217-223.

[18]Xin X, Rong H, Min L, et al. One-pot solvothermal synthesis of three-dimensional (3D)

BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A[J]. Journal of Hazardous Materials, 2012, 233-234(3):122-30.

[19]Zhang J, Xia J, Yin S, et al. Improvement of visible light photocatalytic activity over

flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J].

Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 420(9):89–95. [20]Cao J, Li X, Lin H,et al.Surface acid etching of (BiO)2CO3, to construct

(BiO)2CO3/BiO X (X=Cl, Br, I) heterostructure for methyl orange removal under visible light[J]. Applied Surface Science, 2013, 266(2):294-299.

[21]Skorikov V M, Zakharov I S, V olkov V V, et al.Optical Properties and

Photoconductivity of Bismuth Titanate[J]. Inorganic Materials, 2001, 37(37):1149-1154.

[22]王炳喜, 左正笏. 板条状钨酸铅的沉淀法合成及荧光特性[J]. 人工晶体学报, 2008,

37(5):1295-1299.

[23]邢光建, 李钰梅, 赵铮,等. 不同形貌的钨酸铋纳米材料的制备及其光催化性能[J].

人工晶体学报, 2010, 39(5):1265-1271.

[24]Kako T, Zou Z, Katagiri M, et al. Decomposition of Organic Compounds over NaBiO3,

under Visible Light Irradiation.[J]. Chinese Journal of Geochemistry, 2007, 38(38):405-412.

[25]谌春林, 彭峰, 王红娟,等. 商品铋酸钠的热稳定性与可见光光催化特性[J]. 工业

催化, 2009, 17(1):68-72.

[26]Xiaofeng Chang, Jun Huang, Cheng Cheng, et al.Photocatalytic decomposition of

4-t-octylphenol over NaBiO3, driven by visible light: Catalytic kinetics and corrosion products characterization[J]. Journal of Hazardous Materials, 2010, 173(1-3):765-772.

[27]Chang X, Yu G, Huang J, et al.Enhancement of photocatalytic activity over

NaBiO3/BiOCl composite prepared by an in situ formation strategy[J]. Catalysis Today, 2010, 153(3):193–199.

[28]刘婷, 朱志平, 沈栋梁,等. 负载型纳米TiO2对微量油的光降解[J]. 纳米科技,

2009(6):21-24.

[29]余晟, 井强山, 郑艳萍,等. 漂浮型TiO2/EP体系光催化降解水面烃类污染物研究

[J]. 信阳师范学院学报:自然科学版, 2007, 20(2):210-213.

[30]邹晓兰, 于艳卿, 李超峰,等. 纳米Cu2O/珍珠贝壳复合光催化材料的制备及其在

有机染料处理中的应用[J]. 催化学报, 2011, 32(6):950-956.

[31]罗洁, 陈建山. TiO2光催化氧化降解印染废水的研究[J]. 工业催化, 2004,

12(6):36-38.

[32]黄泱, 李顺兴, 傅碧玉. 纳米TiO2光催化降解制浆废水动力学研究[J]. 漳州师范

学院学报:自然科学版, 2011, 24(2):52-57.

浅析未来材料的发展趋势(1)

北京科技大学 本科生学术报告 题目:________________________ ________________________ 学院:________________________ 专业:________________________ 姓名:________________________ 学号:________________________ 指导教师签字:________________________ 年月日

目录 近现代材料的发展历史和作用 (3) 材料发展历史 (3) 材料的地位和作用 (4) 材料发展分析 (5) 电子材料 (5) 新型战略性材料 (6) 美国材料战略和发展趋势简略分析 (7) 日本材料战略和发展趋势简略分析 (8) 欧盟材料战略简略分析 (10) 其他部分国家材料发展计划 (10) 我国新材料发展战略 (11) 总结 (13) 参考文献 (14)

浅析未来材料的发展趋势 谢帅(北京科技大学,北京 2016) 摘要:步入21世纪后,科技的发展速度变得十分迅速,每时每刻都可能有新的科技成果出现。在这科技爆炸的年代,身为理工人,了解自己学科的发展状况、预测自己未来的发展方向是十分重要的。身为材料专业的学生,如果能很好的预测出未来材料的可能重点发展方向,不仅能够为选专业提供参考,还能更好了解材料这个学科,让自己成为自己未来的“指路人”。,要对材料有较为深刻的认识。材料是人类文明的里程碑,首先,我通过了解材料发展历程和地位,认识材料对国家、世界乃至人类文明发展的重要性。由于国情不同,不同国家会有不同的发展重点。所以之后对美国、日本、欧盟等国家的材料战略和其重点领域进行了解及简略分析,得出这些国家的材料发展趋势。最后当然要了解我国材料领域的重点和国家的关于材料的发展规划,展望新材料领域发展趋势:复合材料、生物材料、纳米材料、制造材料的新工艺、新流程及结构与性能的新测试方法、材料表证和评价科学技术、材料设计与性能预测科学技术。 关键词:新材料材料发展战略性材料 近现代材料的发展历史和作用 材料发展历史 材料是人类文明的里程碑,对材料的认识和能力决定着社会的形态和人类生活的质量。在人类社会发展的历程中,可以发现很多阶段都是以材料为主要标志或是材料起主导作用,如远古的旧石器时期、新石器时代、陶瓷时代、青铜器时代、铁器时代,到近现代的煤炭时代、蒸汽机时代、水泥时代、钢铁时代、石油时代、电气与化工时代、半导体时代,以及发展中的复合材料、纳米材料、绿色环保材料等新时代材料(图1)[1]4图

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

齿轮发展状况综述

摘要:齿轮传动是机械传动中最重要的传动之一,其形式很多,运用广泛大至宇宙飞船, 小至手表、精密仪器,从国防机械到民用机械,从重工业机械到轻工业、农业机械, 无不广泛地采用齿轮传动。本文旨在介绍齿轮的起源与发展历程以及发展趋势。 关键字:齿轮发展传动前景

概述: 齿轮传动是机械传动中最重要的传动之一,其形式很多,运用广泛大至宇宙飞船, 小至手表、精密仪器,从国防机械到民用机械,从重工业机械到轻工业、农业机械, 无不广泛地采用齿轮传动。齿轮的车主要有以下几大特点:1、传动效率高,在常用的机械传动中,以齿轮的传动效率最高,如一级圆柱齿轮的传动效率可以达到99%。这对大功率传动十分重要。2、结构紧凑,在同样的使用条件下,齿轮所需要的空间尺寸一般比较小。3、工作可靠寿命长,设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠寿命可以达到一二十年,这也是其他机械传动所不能比的。4、传动比稳定,传动比稳定往往是对传动性能的基本要求。 但是齿轮传动的制造以及安装精度要求很高,价格较贵,而且不适于传动距离较大的场合。 齿轮机构的类型很多,根据一对齿轮在啮合过程中及其瞬时传动比(i12=ω1/ω2)是否恒定,将齿轮机构分为圆形(i12=常数)齿轮机构和非圆形齿轮机构(i12≠常数)。应用最广泛的是圆形齿轮机构,而非圆形齿轮机构则应用与一些有特殊要求的机械传动中。根据齿轮两轴间的相对位置不同,圆形齿轮结构可以分成如下几类:1、用于平行轴间传动的齿轮机构。下图中(a)为外齿啮合齿轮机构(external meshing gears mechanism),两齿轮转向相反;图(b)为啮合齿轮机构(internal meshing gears mechanism),两转轮转向相同。图(c)为齿轮与齿条结构(pinion and rack mechanism),齿条

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

隐身材料发展历史综述和应用前景展望

1.绪论 1.1前言 随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,这不仅引发电磁波干扰、电磁环境污染,更重要的是导致电磁信息泄漏,军用电子设备的电磁辐射有可能成为敌方侦察的线索。为消除或降低导弹阵地的电磁干扰、减少阵地的电磁泄漏,需要大大提高阵地在术来战争中的抗电磁干扰及生存能力。高放能、宽频带的电磁波吸波/屏蔽材料的研究开发意义重大。 吸波材料是一种重要的军事隐身功能材料,它的基本物理原理是,材料对入射电磁波进行有效吸收,将电磁波能量转化为热能或其他形式的能量而消耗掉。该材料应该具备两个特性,即波阻抗匹配性和衰减特性。波阻抗匹配特性即入射电磁波在材料介质表面的反射系数最小,从而尽可能的从表面进人介质内部;衰减特性指进入材料内部的电磁波被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。吸波材料按材料的吸波损耗机理可分为电阻型、电介质和磁介质型。吸波材料的性能主要取决于吸波剂的损耗吸收能力,因此,吸波剂的研究一直是吸波材料的研究重点。 1.2隐身材料定义 随着人们生活水平的提高,各种电器的频繁使用,使我们周围的电磁辐射日益增强,电磁污染成为世界环境的第五害,严重的危害了人类的身体健康。电磁辐射对人的作用有5种:热效应、非热效应、致癌、致突变和致畸作用。因此,在建筑空间中,各类电子,电器以及各种无线通信设备的频繁使用,无时无刻不产生电磁辐射,电磁污染已经引起人们的广泛关注。 电磁吸波材料即隐身材料最早在军事上隐身技术中应用。隐身材料是实现武器隐身的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

高温超导材料的研究进展及前景展望论文正稿

兴义民族师范学院 2013届本科毕业生学位论文 高温超导材料的研究进展及 前景展望 姓 名: 马 关 爱 教 学 系: 物 理 系 专 业: 物 理 学 导师姓名: 张 星 中国﹒贵州﹒兴义 2013年5月

目录 摘要............................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论. (1) 1.1超导体的发现 (1) 1.2高温超导体的概述 (4) 第二章高温超导材料研究的内容 (6) 2.1高温超导材料的研究背景 (6) 2.2高温超导材料的特性 (7) 2.3高温超导材料的研究目标 (8) 2.4高温超导材料的研究状况 (9) 2.4.1高温超导的物理进展 (10) 2.4.2对BCS理论的修正[7] (11) 2.4.3RVB理论[7] (11) 2.4.4Luttinger液体理论[7] (12) 2.4.5铁磁自旋理论[7-10-11] (12) 2.4.6掺杂型高温超导体的研究进展 (12) 2.4.7高温超导材料其他方面的进展 (14) 2.5影响高温超导研究的因素 (14) 2.5.1交流损耗是一个影响高温超导材料应用的重要因素 (14) 2.5.2磁场是影响高温超导材料研究的一个重要因素 (15) 2.5.3量子限制效应对超导薄膜性质的影响 (15) 2.5.4超导体中的人工钉扎与磁通匹配效应 (15) 2.5.5薄膜表面等离子激元和增强透射效应 (15) 第三章高温超导材料的制备工艺 (16) 3.1高温超导材料的研究方法 (16) 3.1.1磁控溅射(MS)法 (16) 3.1.2脉冲激光沉积法 (16)

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

日本汽车新材料发展综述

日本汽车新材料发展综述 时间:2009-12-19 10:10来源:汽车与配件作者:王建萍 近年来随着全球经济的发展,能源问题和环保问题日益受到人们的关注,汽车行业面临一系列新的问题。诸如,一方面汽油价格在不断地创新高,安全法规越来越多,汽车排放指标的更新版本在不断地发布,另一方面全球化竞争愈演愈烈,降低汽车成 本压力越来越大。面对这些课题,人们对新材料技术研发寄予了厚望。近年来日本汽车行业在材料技术研发方面,诸如钢铁、有色金属、非金属等,出现了一些新的动向。 钢铁材料 1.钢板材料 车身与底盘的轻量化对于提高燃油经济性和削减CO2具有重要意义。目前,解决该问题的有效手段是使用具有高撞击安全性的高强度材料。 从车身高强度材料的应用情况来看,汽车外板如发动机罩、车门、行李箱、侧围外板等处已经应用了340MPa级烘烤硬化型钢板(以下称为BH钢板)和440MPa级高强度材料。车身骨架部件目前流行使用440MPa和590MPa级高强度材料。590MPa级 高强度材料大体分为析出硬化钢、双相钢(以下称为DP饮)和相变诱导塑性钢(以下称为TRIP钢)三种。DP钢比析出硬化钢的屈服强度低、延伸性高;TRIP钢比DP钢的延伸性高、能量吸收性能好。另外,还有一部分780MPa级和980MPa级的高强度材料也被应用,780MPa级高强度材料主要使用DP钢和TRIP钢,980MPa级的高强度材料主要使用DP钢。另外,随着高频淬火和热冲压成型技术等新的热处理技术的应用,零部件高强度化技术得到进一步发展。热冲压成型技术就是对加热的钢板进行冲压的同时 还进行冷却淬火,这样零部件抗拉强度可达1470MPa。 汽车行驶部位的部件形状复杂,强度要求高,焊接性能要求也很高,所以高强度钢板应用很困难。但是近年来人们为了提高成形性,开发了TRIP钢;为了提高扩孔加工性,开发了贝氏体钢;为了确保焊接接头疲劳强度,开发了耐HAZ(保持热影响区性能) 的软化钢板,其强度为590MPa级,有的可达780MPa。 以前汽车的耐腐蚀钢板多为各种镀锌钢板,近年来,热浸镀锌铜板(GA)成为了主流。为了提高冲压成形性,对GA上敷覆无机类或有机类起润滑作用的氧化膜,该工艺得到了推广应用。人们还进一步开发了耐腐蚀性好的Zn-AL—Mg镀锌板,主要为了省略后面的电镀工序,这已在汽车上得到了广泛应用,, 在环保方面,由于EU-ELU对报废汽车的规定)对特定的环境污染物进行了使用限制,人们开发了无六价铬表面处理技术代替以往的电镀钢板中使用含有铬酸盐“钝化”处 理的六价铬。油箱钢板不应含Pb,所以现在不再使用过去的Pb-Sn合金电镀钢板而 采用Sn-Zn电镀钢板、镀铝钢板。

铋基类钙钛矿铁电材料的合成及性质研究

铋基类钙钛矿铁电材料的合成及性质研究 【摘要】:近年来,铋基类钙钛矿铁电材料是铁电和固态电解质材料应用领域备受关注的功能材料之一,其应用研究已成为固态电子学领域的研究热点。它的高居里温度、低介电常数、良好的抗疲劳性、高氧离子导电率和环境友好,在铁电存储器和中低温固态氧化物燃料电池(SOFC)等应用上具有潜在的发展前景。但是,满足器件用的铋基类钙钛矿材料还面临若干问题,例如,铋基铁电薄膜的各向异性和结构稳定性问题,电解质材料满足器件集成的制备工艺和热稳定问题等。本论文以钒酸铋(Bi_2VO_(5.5),BVO)及其金属掺杂材料为研究对象,针对以上问题研究了BVO体系铁电薄膜和Bi_2ME_(0.1)V_(0.9)O_(5.5-δ)(BIMEVOX.10)电解质材料的制备及性能。主要研究结果如下:(1)采用化学溶液沉积(CSD)法,分别在LaNiO_3(LNO)/Si(100)、Pt/TiO_2/SiO_2/Si(100)衬底上制备了c轴取向的高质量BVO薄膜。并对CSD工艺做了改进,用钒无机盐替代最初采用的乙酰丙酮氧钒,成功解决了金属醇盐价格昂贵且不易保存的问题。深入研究了不同退火温度对BVO薄膜性能的影响。700℃退火后的BVO薄膜显示出最优的性能,具有高度c轴取向,剩余极化和漏电流密度提高到10.62μC/cm~2和 1.92×10~(-8)A/cm~2。分析了260-480K温度范围的介电特性,发现BVO薄膜中存在的多分散弛豫由氧空位等缺陷引起,传导机制主要为氧空位传导。(2)研究了BVO薄膜与p-Si(100)衬底集成所形成

MFIS(Metal-Ferroelectrics-Insulator-Semiconductor)结构的C-V特性,记忆窗大小约0.5V,这为BVO薄膜在场效应型铁电存储器的应用提供了优化的工艺条件。采用椭偏光谱获得了BVO薄膜的光学常数,有助于开发其光学特性上的应用。(3)首次用CSD法合成了具有良好铁电特性的混合铋基类钙钛矿铁电薄膜Bi_2VO_(5.5)-Bi_4Ti_3O_(12),薄膜剩余极化2P_r提高到12.46μC/cm~2,漏电流密度为1.17×10~(-8)A/cm~2。为提高BVO材料的铁电特性提供了新技术途径。(4)首次系统研究了不同比例La掺杂对BVO薄膜介电特性的影响。La掺杂使BVO薄膜的介电常数、介电损耗增加,在少量掺杂(0.025摩尔比)时表现最明显。其机理在于低浓度的La会先进行V位替换,La~(3+)和V~(5+)间的非等价替代及原子半径间的巨大相差,引起晶格体积膨胀和晶格扭曲的结构重排,引发氧空位V_o~¨等缺陷,造成介电常数、介电损耗的增加和弛豫程度的显著增强。(5)用CSD法成功制备了BIMEVOX.10(ME=Ti,Co,Fe,Ni,Mn)薄膜,研究了其结构和电学特性。重点讨论了BIMNVOX.10薄膜在300-485K温度范围的电特性,研究表明BIMNVOX.10薄膜的介电弛豫可能是由氧空位的短程扩散传导引起,属于多分散性弛豫。发现BIMNVOX.10薄膜具有室温弱铁磁特性。(6)深入研究了BIMEVOX体系电解质材料中具有最高电导率的Bi_2Cu_(0.1)V_(0.9)O_(5.35)(BICUVOX.10)粉体和薄膜材料的制备和特性。采用化学溶液法制备了BICUVOX.10纳米粉末,比常规固相法的合成温度降低了~300℃。研究了PEG4000表面活性剂、制备方法和粉末分散性间的联系。发现PEG4000能有效改变纳米颗

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

数控技术发展状况及策略综述

数控技术发展状况及策略综述 摘要:随着当前科学技术的进一步发展,数控加工已经成为国家机械化和工业 化水平的重要标志。这项技术涉及到的领域范围很多,包括机械制造技术、信息 处理技术、自动控制技术以及相应的计算机软件处理技术等新技术的使用,改变 了传统的制造业,在未来,数控加工技术会朝着更好的方向发展,将会促使我国 制造业的发展进步。 关键词:数控技术;发展状况;策略;综述 对于数控系统而言,一方面由于传统数控系统的各个模块相互耦合,使得结 构变更和功能扩展异常困难;另一方面由于数控系统结构的开放程度低,其研发 过程无法充分利用先进的电子信息技术,极大降低了数控系统的研发效率,同时 基于小团队的数控系统研发不能充分调动社会的有效资源和积极性,包括工艺过 程实现在内的各模块难以全面细致,使得开发的高端数控并不高端。我国数控行 业的发展很大程度上受限于数控系统自身的封闭性,数控系统的不开放以及制造 工艺流程未体现等问题成为目前制约我国数控行业发展的主要瓶颈。随着先进计 算机和电子信息技术的发展,充分利用组件式软件技术、通过互联网手段把全社 会乃至全球的资源集中起来,有效发挥掌握工艺经验的一线人员等社会资源参与 开发和甄别成为可能。 1数控木工机械的发展现状 1.1数控木工机械发展现状 数控机床具有高精度、质量好、加工性能强、生产效率高、稳定性强等优点,并受到了越来越多企业的青睐。其中木材加工行业广泛应用起数控机床,且相关 研究也在逐步深入,在近几年,我国数控木工机械发展迅速,以下将会对一些具 有代表性的数控技术进行分析。①数控木工机械硬件发展现状。当前我国木工机械硬件仍未建立起系统的体系,基本是由背景文泰垄断中低档数控镂铣机,其不 但销售软件,同时还出处全套硬件。②数控木工机械软件发展现状。当前主要是由中国台湾恩德控制了大部分高档数控镂铣机数控软件,其销售软件时通常都是 配套硬件一同销售,基本在我国大陆形成了垄断局面。③木工机械数控机床技术发展现状。当前我国的数据砂光机、数控阶段锯切设备以及数控带锯机技术等发 展极为迅速,就以砂光机为例,当前我国已成为了生产砂光机最大的国家,基本 垄断中低端砂光机市场,且逐步实现了中低端砂光机数字控制功能。 1.2数控技术发展概况 数控该技术在我国发展时间尚短,最早是将其应用在金属加工行业,从发展 至今共经历了3个发展阶段:①初始阶段(1958~1979),在该阶段我国生产的 数控系统可靠性不足,且应用范围极为有限;②发展阶段(1980~1993),经历 改革开放,我国有效吸收与借鉴外国优秀生产经验,并积极引进先进的数控系统,在很大程度上促进了我国数控技术的发展;③缓慢发展阶段(1994至今),在 全球金融危机影响下,在20世纪末我国出现了负增长的情况,发展到21世纪逐 步得到了恢复,当前我国机械加工设备数控化率在85~90%范围内,其中木工机 械制造业其设备数控率约45%。 2数控加工技术的应用 2.1数控车加工的应用 ①精度要求较高的零件,数控车床整体的刚性很好,制造的精度极高,因此 对于尺寸强度要求较高的零件这项技术的使用十分有效;②超精密、超低表面粗

超导材料的性能与应用综述

超导材料的性能及应用综述 班级:10粉体(2)班学号:1003012003 姓名:徐明明 摘要:回顾了超导现象的发现及发展,综述了超导电性的微观机理,超导物理学研究的历史和主要成果,介绍了超导电性的几种突出的应用,并指出目前对于超导电性的认识在理论、实验、研究上都是初步的 ,还需要进行更多的和更深入全面的研究。 关键词:超导电性;超导应用;BCS理论;应用 一、超导现象的发现及发展 1908 年, 荷兰莱登实验室在卡茂林- 昂尼斯的指导下, 用液氢预冷的节流效应首次实现了氦气的液化,从而使实验温度可低到4~1K 的极低温区, 并开始在这样的低温区测量各种纯金属的电阻率。1911 年,卡茂林- 昂尼斯[1] 发现Hg 的电阻在4. 2K 时突降到当时的仪器精度已无法测出的程度, 即Hg 在一确定的临界温度T c= 4. 15K 以下将丧失其电阻,这是人们第一次看到的超导电性。昂尼斯也凭这一发现获得了1913 年的诺贝尔物理学奖。后来的实验证明,电阻突变温度与汞的纯度无关,只是汞越纯,突变越尖锐。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度 Tc、临界电流 Ic、临界磁场 Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。应该指出,只是在直流电情况下才有零电阻现象。从此,诞生了一门新兴的学科——超导。 一直到20世纪50年代,超导只是作为探索自然界存在的现象和规律在研究,1957年Bardeen、Cooper和Schrieffer[2]提出了著名的BCS理论,揭示了漫长时期不清楚的超导起因。1961年Kunzler将Nb3Sn制成高场磁体,开辟了超导在强电中的应用,特别是 1962 年Josephson效应的出现,将超导应用推广到一个崭新的领域。到20世纪70年代超导在电力工业和微弱信号检测应用方面的进展显示了它无比的优越性,但由于临界温度低,必须使用液氦,这就极大地限制了它的优越性。从20世纪70年代起人们就将注意力转向寻找高温超导体上,在周期表

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

相关文档
最新文档