18Ni马氏体钢的性能及应用

18Ni马氏体钢的性能及应用
18Ni马氏体钢的性能及应用

18Ni(300)马氏体时效钢的特点及应用?

?admin引用

?摘要: 从18Ni马氏体时效钢的化学成分对该材料的的物理特点、、抗拉强度、拉伸性能、断裂韧性、疲劳强度、耐腐蚀性、焊接性、磁滞特性、时效机理、时效组织以及力学性能的性能进行的分析。同时18Ni马氏体时效钢具有优 ...

??从18Ni马氏体时效钢的化学成分对该材料的的物理特点、、抗拉强度、拉伸性能、断裂韧性、疲劳强度、耐腐蚀性、焊接性、磁滞特性、时效机理、时效组织以及力学性能的性能进行的分析。同时18Ni马氏体时效钢具有优良的特性,用途很广,本文对它的应用进行简朴的总结。

要马氏体时效钢自问世以来,以其高强度、高韧性和良好的工艺性能在航天航空等领域得到了广泛的研究和应用,与AISI4340高强钢和17-7PH不锈钢相比,它具有更高的强度和优良的韧性,制造加工容易,焊接性能优良等诸多的长处胜于其他超高强钢。在当今开发的所有材料中,它是强韧性最高的钢种。

1.成分和组织

18Ni马氏体时效钢的化学成分是在Fe—18Ni合金中添加Co、Mo、Ti、Al等元素一种钢,如表1。

屈服强度主要是通过Ti元素的添加量来进行调整。在18Ni马氏体时效钢中C 、Si、Mn等元素被视为杂质元素 P、S含量同样也极低故钢的纯度很高。

18Ni马氏体时效钢不仅有优良的机械性能而且淬火性能好在固溶处理(820℃)空冷后其组织为超低碳Ni高主的单相马氏体将它再进行时效处理(490-510℃ 空冷)后在马氏体区域的金属间化合物沉淀析出、细化、弥散使钢得以强化材料的强度、塑性及韧性匹配优良。关于时效处理过程组织变化的研究颇多有人认为是沉淀物细化(-100A)的说法比较合理但至今仍无定论。尽管如此但对Ni3Mo、Fe2Mo、Ni3Ti等金属间化合物沉淀强化仍是普遍的说法[1]。

2.组织和机械性能

2.1制造方法:

马氏体时效钢的熔炼方法有真空感应熔炼(VIM)真空电弧重熔(VAR) 以及电渣重熔(ESR)一次或两次组合的方法。各种熔炼方法与断裂韧性(KIC)的关系如图1所示。从图中可以清楚地看到采用真空双重熔炼可使钢的韧性得到大幅度的改善而且还能抑制在熔炼时混入的各种杂质元素和非金属杂质的残存量。因此对于象飞机那样要求零部件具有高强度、高韧性和高可靠性的材料来说就可以采用VIM十VAR组合的真空双重熔炼方法[1]。

马氏体时效钢轻易进行热加工其加工性同SUS304钢冷加工性也非常优良进行拉拨加工、冷轧、弯曲和深拉伸等都非常容易。在冷加工过程中90%以上可安排软化退火。加工硬化指数同一般钢材相比仅为0.02-0.03 约比一般钢材低一位数。18Ni钢冷加工度对机械性能的影响如图2所示。随着冷加工度的提高强度也随之增加伸长率却因冷加工而稍有降低韧性也有所卞降。因此马氏体时效钢以冷加工作为强化手段需要灵活有效地应用才能使材料达到超高强与高塑韧性相匹配的要求[1]。

18Ni钢Ni 的含量较高固溶处理时在奥氏体化后于通常的冷却速度空气或水下奥氏体转变为马氏体、(18Ni Ms=290℃)一般情况下马氏体转变不会受(ma3 shi4 ti3 zhuan3 bian4 bu4 hui4 shou4)到冷却速度的影响。18Ni马氏体时效钢所以能进行热处理的简单理由是它具有A=M可逆转变。一般出售马氏体时效钢都已经进行固溶处理。

用户一般都是进行机械加工后再施以时效处理。因它在时效处理中尺寸变化非常小(18Ni 一170的收缩率仅为0.07%) 所以在整个加工工艺流程中可省去精加工这是马氏体时效钢的最大优点。

2.2 物理性能:

2.3抗拉强度:

18Ni马氏体时效钢的抗拉强度。虽然在固溶处理后硬度(HRC)为27--34,抗拉强度高达

960--1120MN/m2,伸长率和断面收缩率也相称高,易进行冷加工,但同时出现韧性差、切削性能不好等若干问题。在时效处理后其屈服强度与抗拉强度相差很小,大体为

50--100MN/m2,由于加工硬化率小,均匀伸长率不大,但Ψ值仍然很大,故其延伸性仍很好,还能够得到很大的断面收缩率。

表4为应力集中系数为3.5时18Ni个钢的缺漏强度。由表可以知道,18Ni马氏体时效钢的缺口敏感性非常小,具有很高的缺口强度。可以认为马氏体时效钢具有缓解裂纹行核地点或裂纹形成后裂纹尖端应力集中的很高能力[1]。

2.4 拉伸性能的影响:

固溶处理温度对固溶态18Ni马氏体时效性能的影响如图4所示,由图可见,在固溶状态下,18Ni马氏体时效钢的强度随固溶态状态下,18Ni马氏体时效钢的强度随固(ma shi ti shi xiao gang de qiang du sui gu)溶温度的升高变化较小,同时,延伸率δ和面缩率φ也并未随着固溶温度的升高而减小,即分别保持在16%和70%以上。试样经1083K固溶处理后平均晶粒尺寸为5.2μm,强度保持较高值[2]。当试样经α/γ循环相变处理后,晶粒进一步细化到4.4μm时,强度进一步升高,延伸(shi _qiang du jin yi bu sheng gao _yan shen)率和面缩率也分别达到最高值(δ=18%,φ=77%)。可见当晶粒尺寸非常细小时,在固溶状态下马氏体时效钢才表现出一定的细晶强韧化作用。

2.5 断裂韧性:

马氏体时效钢与其他超高强度钢在σ0.2相同条件下比较,其KIc值最高,表征断裂抗力也很大。18Ni马氏体时效钢的断裂韧性与熔炼方法、杂质含量有关。此外也与时效处理条件有关,因此在加工制造过程中有必要不断地修正,找出最佳的工艺方法[3]。

2.6 疲惫强度:

影响18Ni马氏体时效钢疲劳强度的因素相当多,它可能由载荷性质(静载荷、冲击载荷、交变载荷),应力状态以及环境、材料表面状况等影响。18Ni-200钢的S-N曲线如图10所示。18Ni-200钢在不同温度下旋转弯曲强度如图11所示,以图中可以看到,随着温度的上升,疲劳强度也随之提高[1]。

2.7 耐腐蚀性:

18Ni马氏体时效钢在大气中(工业气氛)的腐蚀速度为0.0125mm~0.025mm/年,仅为一般低合金(nian _jin wei yi ban di he jin)钢1/2而且它对腐蚀性溶液的抗力比低合金钢更加优良,所以,马氏体时效钢在腐蚀环境下使用时,可以只对必要的表面防护加以考虑。

滞后断裂:将抗拉强度为1400MN/m2以上的超高强度钢放置在含水蒸汽的大气中或放置于水中加载,在某一时间后就会出现几乎不发生塑性变形的突然断裂,我们把这种现象称之为滞后断裂。滞后断裂受强度,应力集中系数和热处理调条件等的影响,其根本原因在于钢中有氢元素入侵,因此这种现象也叫做氢脆。

各种高强钢的KISCC与抗拉强度的关系如图6所示。由图可见,即使在同一强度水平,,马氏体时效钢随滞后断裂的敏感性也是最迟缓的。当马氏体时效钢的实效条件发生变时滞后断裂敏感性也随之变化,因此,达到最佳效果[1]。

当对滞后断裂的脆化环境作考虑时,则应对钢表面处理的效果进行研究和讨论,如图7所示,对18Ni马氏体时效钢表面镀Ni与不镀Ni进行比较后可知,马氏体时效钢镀Ni后氢脆现象会大幅度减少。因此,马氏体时效钢表面处理适宜条件的选择也是非常重要的。

2.8 焊接性:

马氏体时效钢的焊接性与原有的马氏体系超高强度钢的焊接性有所不同,马氏体时效钢焊接部需要预热或后热,不必担心会出现焊接裂纹,它具有优越的焊接性加之受热影响部分的硬化小,焊后时效温度低,故略变小,是一种加工且焊接性良好的材料。马氏体时效钢中含有与氧、氮易结合的Ti、Al元素,焊接方法主要采用TIG、MIG、电子束、惰性气体密封激光焊等。18Ni钢焊缝部位的抗拉强度。接缝率达95%以上[1]。

2.6 磁滞特性:

采用双时效处理工艺研究了热轧18Ni马氏(ma shi)体时效钢的磁滞性能。结果表明,820℃℃·1hA.C+(590~610℃)·3hA.C+510℃·3hA.C和

820℃·1hA.C+(690~710℃)·3hA.C+510℃·3hA.C处理具有较好的磁滞性能[4],逆转变奥氏体的含量是控制磁滞性能的要害,在含有20%~30%的逆转变奥氏体时,具有较高的磁滞

性能。在对大量数据进行二元线性回归的基础上得出了18Ni(350)马氏体时效钢磁滞性能的分段公式:

当0.3≤Bm/Bμ≤1.0时 Hm/Hμ=0.45+0.52 Bm/Bμ

当1≤Bm/Bμ≤1.2时 Hm/Hμ=0.290+0.74 Bm/Bμ

当0.7≤Bm/Bμ≤1.2时 Pro/Pμ= -0.69+1.69 Bm/Bμ

2.9 时效机理:

采用小角X射线散射、Mǎssbauer谱、透射电镜等方法研究了18Ni马氏体时效过程。结果表明,18Ni合金在固溶处理后500℃等温时效过程中,首先发生调幅分解,然后在调幅组织的Ni·Mo·Ti富集区以原位行核方式析出含Fe的NI3(Mo、Ti)型金属间化合物,随时效时间延长,Ni3Mo和Ni3Ti粒子聚集长大并部分溶解,同时析出球形Fe2Mo金属间化合物,并形成逆转变奥氏体[5]。其化学成分(wt-%)为:Ni 18.09 Co 12.16 Mo 4.54 Ti 1.27C 0.004Fe 余量,经真空感应熔炼、真空自耗电弧重熔,材料在氩气保护下经820℃,1h固溶处理够水冷作为时效用试样。

2.10 时效组织和机械性能:

18Ni马氏体时效个那个的实效温度与机械性能的关系如图3所示。当时效温度偏低,沉淀不完全,即为亚时效,当时效温度偏高析出物粗化[6]。,达不到提高强度的目的,即为过时效。其最佳时效温度为490--510℃[7]。

2.11 力学性能:

图2是18Ni合金铸件450℃的实效硬化曲线。由图可见,时效初期,硬度随时效时间的增加迅速提高,1h后变化趋于平缓,3.5h后的硬度已超过HRC50。图3表示经450℃时效处理后,抗拉强度与时间的(_shi2 xiao4 chu4 li3 hou4 _kang4 la1 qiang2 du4 yu3 shi2 jian1 de0)关系曲线。从图可知,马氏体时效钢铸件的抗拉强度随时效时间的增加而升高,2.5h 强度达到1200MP,但仍明显低于常规马氏体时效钢铸件,这与马氏体时效钢铸件的组织缺陷有着密切的关系[8]。时效时间对马氏体时效钢铸件模量的影响不大,弹性模量值分布在160—180Gpa之间。

3.应用

马氏体时效钢的冷、热加工性均非常优良,在市场上出售的马氏体时效钢形状繁多,,铸锻件就更不用说了,其它主要有厚板、薄板、线材、圆钢等。它的用途也极其广泛,可应用于H1宇宙航空[9-10]、海洋开发、原子能工业有关的零部件,到一般工业中用的结构材料和冶金工具以及弹簧材料等[11]。

具体地讲它可以做火箭发动机壳体,高压容器,飞机的起落架,浓缩轴用的离心分离高强度螺栓,挤压杆,铸铝件金属模[12],无极变速机(CVT)用多层钢带,发动机阀簧及其他板簧等。此处仅介两到三个实际应用的例子。

3.1 火箭上的应用:

为了降低火箭的发射成本,要求火箭发动机壳体重量轻,因此需要采用在超高强度下具有高韧性特点的材料[1]。科学家们便对马氏体时效钢应用于航天工业进行了研究,试验证明,它作为M型火箭的壳体材料已经取得成功,并确立了马氏体时效钢在火箭的应用上的可靠性。

火箭容器外形复杂,容器上焊缝很长。采用马氏体时效钢TIG焊接方法制造长1731mm,外径820mm,壁厚6mm,重量约400kg的容器。时效处理后,进行耐压试验,内压为2500MN/m2应力分布如图12所示,由图可见,由内压而产生的破坏应力与母材的单向抗拉强度几乎一致。所以可以确认它是优良的高压容器材料

3.2 铸铝件用金属模

马氏体时效钢与原有的工具钢相比,明显的优点是成型加工后的热处理变形非常小,可省去精加工工序,耐热裂性优良[1],即使产生热裂也可以用堆焊进行简单的修补。拓宽了作为热作工具钢的用途。

3.3 CVT用多层带

1970年荷兰的VDT公司发明了使用金属带的无极变速机[1]。1987年在日本CVT也付诸实用。这种金属带的结构和特征此处不阐述,主要谈金属所层带采用的马氏体时效钢。

这种金属带是2组多层带。共由10条薄型带组成。每条薄带的大致尺寸是t0.2*w10*φ200,带间隙为0.01mm。多层带随着带轮的旋转,受(_duo ceng dai sui zhe dai lun de xuan zhuan _shou)到曲率半径变化的反复弯曲、拉伸,所以要求带具有高疲劳强度。用18Ni-240钢制造的多层钢带表面有或无氮化处理的疲劳试验。试验表明,钢带表面氮化后可大大提高疲劳强度,在循环周次为107时,(shi _)其仍有1400MN/m2根据实际运行时的动能最大应力。结论是钢带采用马氏体时效钢的疲劳强度绰绰有余,其可靠性、耐久性能够得到保证。

1.结论

1.本文对马氏体时效钢性能特点等作了简单的论述,通过对材料的物理性能、抗拉性能、拉伸性能、断裂韧性、疲劳强度、耐腐蚀性、焊接性知道了18Ni马氏体时效钢具有较好的组织和机械性能;

2.通过对的磁滞性能的研究知道了18Ni马氏体时效钢在

820℃?1hA.C+(590~610℃)?3hA.C+510℃?3hA.C和

820℃?1hA.C+(690~710℃)?3hA.C+510℃?3hA.C热处理,具有较好的磁滞性能;

3.在时效机理研究中,18Ni合金在500℃等温时效过程可以分为3个阶段,即发生调幅分解,析出Ni3(Mo、Ti)型金属间化合物,析出Fe2Mo和形成逆转变奥氏体,同时18Ni合金在固溶处理冷却过程中已有相分解发生,在500℃时效时调幅分解继续进行,元素通过上坡扩散形成Fe-Co富集区和Ni-Mo-Ti富集区,500℃时效30min时在Ni-Mo-Ti富集区以原位方

式析出含Fe的Ni3(Mo、Ti)型金属间化合物,呈棒状,随着时效时间的延长,析出相逐渐长大。

4.在力学性能的研究中,知道了,马氏体时效钢铸件由于内部铸造缺陷和较多夹杂物的存在,在一定程度上消弱了材料强韧性,使其低于常规两次熔炼后锻造的马氏体时效钢。因此,如何调整材料成分、改进铸造工艺、减少夹杂物的含量,以获得性能优异的马氏体时效铸钢件是今后要进一步加以研究的问题

5.马氏体时效钢的优良特性多,用途广,但目前它的使用量较小,其主要原因是这种钢的价格非常昂贵。今后随着科学技术的飞跃发展,对机器的轻量化和高档化会有新的要求,因此,马氏体时效钢的用途将会进一步扩大。

材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能 1、 解释下列名词。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (三、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。

ASME第IX卷的最新变化及其应用

ASME第IX卷的最新变化及其应用 ——2010版与2007版的比较 赵孟显 一、2010版(与2007版的比较)的主要修改部分 1、将S-No.和组号转换为P-No.和组号 1)从2009增补开始,列于QW/QB422表中母材的S-No.重新指定为P-No.,取消了表中所列参照的S-No.和组号。原来“焊接”栏下的S-No.和组号转换成相当的P-No..和组号;而“钎接”栏下的S-No.转换成相当的P-No.。 在2007版的QW-420中规定:“对于P-No.和P-No.加组号材料的要求也同样适用于相应的S-No.或S-No.加组号的材料,但如工艺评定试验使用S-No.或S-No.加组号的材料,其评定范围限于有相同S-No.或S-No.加组号的材料(即:使用P-No.材料的评定也评定了相应的S-No.的材料;而使用S-No.材料的评定只评定了相应的S-No.的材料而没有评定相应的P-No.的材料)”。 而从2009增补开始,由于全部S-No.已经转换成相当的P-No.,则原来使用S-No..加组号的材料进行评定的单位(主要是使用管道规范规定的材料的单位,如B31.3),从2010年1月1日开始,这些评定在其它重要变素和有缺口韧性要求时,附加重要变素相同的情况下,可以使用于有相同P-No.加组号的材料。 这样就涉及原来使用S-No.加组号的材料进行评定的WPS如何处理的问题,因为原先的WPS只规定它适用于有相同的S-No.的材料,而现在已经没有S-No.的材料了,那么就要修改相应WPS的适用范围了。 这一修改涉及原来第IX卷中几乎所有提到S-No.的条款、表格和附录,包括QW-409.29、QW-420.1、QW-420.2、QW/QB422、QW-423.1、QW-424.1、QW-520、QB-402.1、QB-402.2、附录中的表格QW-484A、QW-484B、QW-485、QB-482、QB-483、QB-484等,上述条款、表格中的S-No.全部删去,只有附录E “许用的SWPS”例外,其中仍然有S-No.,因为SWPS是由AWS发布的,有一个滞后反应的问题,这在其他卷册中同样存在,如B31.3,在2010版中仍然存在S-No.。但我们只要知道从2010年1月1日开始,凡是存在S-No.的,将其转换为相同的P-No.就可以了。 2)修改QW-420 QW-420材料的分组 对母材指定P-No.或S-No.是为了减少焊接和钎接工艺评定的数量。 P-No.是以文字数字的顺序指定的,因此,每个P-No.应认为是一个单独的P-No.(例如:母材指定为P-No.5A,应认为与P-No.5B或P-No.5C都是不同的P-No.)。 另外,对于WPS按其它产品卷或规范要求冲击试验评定的铁基金属材料,在P-No.下再指定组号。这种分组主要是根据母材特性,例如成分、焊接性、钎接性和力学性能在逻辑上的类比来进行。这种分组并不意味着对于评定试验中所采用的某一母材可以不加区别地用别的一些母材来代替,而不从冶金性能、焊后热处理、设计、力学性能和使用要求等观点来考虑其适配性。下表表明了各种合金系统指定的分组: 母材焊接钎接 钢及钢合金P-No.1~P-No.15F P-.No.101~P-No.103 铝及铝合金P-No..21~P-No.26P-No.104~P-No.105 铜及铜合金P-No.31~P-No.35P-No.107~P-No.108 镍及镍合金P-No.41~P-No.49P-No.110~P-No.112 钛及钛合金P-No.51~P-No.53P-No.115 镐及镐合金P-No.61~P-No.62P-No.117

贝氏体的力学性能

贝氏体的力学性能 贝氏体的力学性能主要取决于贝氏体的组织形态。贝氏体中的铁素体和碳化物的相对含量、形态、大小、分布都会影响贝氏体的性能。 1、贝氏体中铁素体的影响 铁素体晶粒尺寸越小,贝氏体的强度和硬度越高,韧性和塑性也有所改善。钢的奥氏体化温度越低,奥氏体晶粒较小,贝氏体转变时的铁 素体尺寸越小;贝氏体转变温度越低,铁素体尺寸也越小。 铁素体形态对贝氏体性能也有影响,铁素体呈条状或片状比呈块状强度及硬度要高。随着贝氏体转变温度降低,铁素体形态由块状、条状向片状转化。 降低贝氏体转变温度,铁素体的过饱和度增加,位错密度增大,可以使贝氏体的强度及硬度升高。 2、贝氏体中渗碳体的影响 当碳化物尺寸一定时,钢中的含碳量越高,碳化物数量越多,贝氏体的强度及硬度升高,但塑性及韧性降低。 当含碳量一定时,转变温度越低,碳化物越弥散,贝氏体的强度和硬度提高,塑性和韧性降低不多。 当碳化物为粒状时,贝氏体的塑性和韧性较好,强度和硬度较低。 碳化物为小片状时,贝氏体的塑性及韧性下降;碳化物为断续杆状时,塑性、韧性及强度、硬度均较差。 由此可见,上贝氏体的形成温度较高,形成的铁素体和碳化物均较粗大,特别是碳化物呈不连续的短杆状分布于铁素体条中间,使铁素体和碳化物的分布呈现出明显的方向性。 在外力作用下,极易沿铁素体条间产生显微裂纹,导致贝氏体的

塑性和韧性大幅度下降。 下贝氏体的形成温度较低,生成的铁素体呈细小片状,碳化物在铁素体基体上弥散析出,铁素体的过饱和度以及位错密度均较大,使得下贝氏体具有较高的强度和硬度以及良好的塑性和韧性。 通过等温淬火获得下贝氏体组织是提高材料强韧性的重要方法 之一。

1高强度钢中马氏体时效钢的综述

上海大学2010~2011学年冬季学期研究生课程考试 小论文 课程名称:汽车刚强度钢板研究课程编号:101101909 论文题目: 高强度钢中马氏体时效钢的综述 研究生姓名: 尹学号: 10721 论文评语: 成绩: 任课教师: 评阅日期:

高强度钢中马氏体时效钢的综述 摘要马氏体时效钢是以无碳( 或超低碳) 铁镍马氏体为基体的经时效生产金属间化合物沉淀硬化的。超高强度钢。该钢在高强度时效处理前具有良好的成形性,时效处理几乎不变形,时效处理后有高强韧性。文中论述了典型Ni2Co2Mo2Ti2Al 马氏体时效钢和Ni2Mo2Ti(2Cr2Al) 无钴马氏体时效钢的化学成分和力 学性能,阐述了马氏体时效钢在400~500 ℃时效时马氏体基体内产生大量强化效果极高、韧性损失极小的金属间化合物沉淀相的时效结构和强化机制,以及Ni、Co、Mo、Cr、Mn、Ti 等元素在马氏体时效钢中的合金化作用。概述了马氏体时效钢的生产工艺,应用和发展趋向。 关键词马氏体时效钢;沉淀析出;强化机制;力学性能 The description of ultrahigh strength steel -Maraging steel Abstract Maraging steel is a kind of ultrahigh strength steel strengthened by ageing precipitation hardening of intermetallics in carbon2free or extra2low carbon ferronickel martensite matrix. It has excellent formability before ageing treatment and almost non2deforming during ageing , after ageing the steel has high strength and toughness. The chemical compositions and mechanical properties of typical Ni2Co2Mo2Ti2Al maraging steel and Ni-Mo-Ti (-Cr-Al) cobalt-free maraging steel are reviewed,and the ageing structure and strengthening mechanism of mass intermetallics precipitation phases produced in martensite matrix of maraging steel ageing at 400-500℃ which has high strengthening effect and minimal toughness loss and the alloying effect of alloy elements such as Ni ,Co ,Mo ,Cr ,Mn and Ti in maraging steel are presented in this article.The production process, application and developing trend of maraging steel are also summarized. Keyword:Maraging Steel; Precipitation; Strengthening Mechanism;Mechanical Properties 一、引言 1.1超高强度钢的背景 超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600-1900MPa。马氏体时效钢强化作用是通过马氏体相变和等温时效析出金属间化合物Ni3Mo来达到的。马氏体时效钢的基本化学成分是18%Ni-8%Co-5%Mo。随着钛含量从0.20%提高到1.4%,屈服强度可以在1375-2410MPa之间变化。为了获得高韧性,应尽量降低钢中的磷、硫、碳和氮含量。 除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。高洁净度保证Aer-Metl00钢(0.23%C-3%Cr-11.1%Ni-13.4%Co-1.2%Mo)具备目前最佳的强度和韧性配合。AerMet310(0.25%C-2.4%Cr-11%Ni-15%Co-1.4%Mo)是最近Carpenter公司在AerMetl00的基础上开发的高强高韧钢。与AerMetl00相同,AerMet310也是双真空冶炼的含镍钴钢,它具有良好的韧性和塑性。AerMet310的抗拉强度是2172MPa,比AerMetl00高出200MPa。与Marage300相比,AerMet310的屈强比较小,因而可在断裂前吸收较多的塑

马氏体不锈钢性能介绍

马氏体不锈钢 马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 铬是马氏体铬不锈钢最重要的合金元素。铬是铁素体形成元素,足够的铬可使钢变成单一的铁素体不锈钢,铬和碳的相互作用使钢在高温时具有稳定的γ 或γ+α相区,铬可以降低奥氏体向铁素体和碳化物的转变速度,从而提高淬透性;在大气H2S及氧化性酸介质中。它能提高钢的耐蚀性能,这与铬能促使生成一层铬的氧化物保护膜有关,但在还原介质中,随着铬含量的提高,钢的耐蚀性下降;铬含量的提高,钢的抗氧化性能也明显提高。 碳是马氏体铬不锈钢另一重要的合金元素。为了产生马氏体相变,碳含量要视钢中的铬含量而定,一般充分考虑碳、铬两者相互关系及碳的溶解极限(见图1-5)。在给定的铬量下,碳含理提高,强度、硬度提高,塑性降低,耐蚀性下降。

塑性成形过程中相场法及其应用

塑性成形过程中相场法及其应用 学生姓名: 学号: 学生所在院(系):

第1章相场法的特点 1.1 相场法的概念 相场法是一种基于经典热力学和动力学理论的半唯象方法[1]。该方法具有以下优点: 可以通过场变量简单明了地表征出任何一种复杂组织的几何形貌,包括单个区域或晶粒的几何形状,区域或晶粒的空间分布、体积分数等;可以考虑内部场和外加场(如应变场、电场和磁场) 对组织变化的影响;并且在2维和3维系统的应用并不增加模型的复杂性[2]。相场法已经十分成熟地应用于模拟凝固过程[1,3,4],但是在固相-固相转变模拟的应用正处在活跃发展的阶段[5]。 1.2 相场法的特点 微观组织演化的经典动力学通过将有着固定结构和成分的晶粒严格区分的尖锐界面的几何形状来描述多相微观组织。然后微观组织的演化可以通过求解一系列非线性偏微分方程获得,其中移动界面满足自相容边界条件[6]。然而,对于复杂的微观组织,利用传统方法无法求出移动或自由界面的解析解,即使是其数值解也很难求出[7]。因此有关粒子形状、粒子数量的问题无法利用传统方法解决。为了解决大部分传统方法面临的困难,最近人们越来越有兴趣利用场动力学理论描述任意介观和微观组织以及其随时间的演化,其主要原因就是与其它模拟方法相比相场法具有一些其它模拟方法所不具备的独特之处:首先,相场法通过场变量可以简单明了地表征出任何一种复杂组织的几何形貌,而且包括单个区域或晶粒的几何形状,区域或晶粒的空间分布、体积分数、局部表面曲率(如表面的坡口角和二面角)和内界面这样的细节在内[8]。 其次,相场法可以对与长程和短程相互作用有关的各种热力学驱动力加以考虑,所以利用相场法可以研究内部场和外加场(如应变场、电场和磁场)对组织变化的影响。 第三,相场法可以在相同的物理和数学模型下模拟诸如:形核、长大、粗化和外场诱发的组织变化等不同的现象。 第四,相场法中的时间,尺寸和温度的标度可以根据卡恩一希利阿德扩散方程和金兹博格一朗道方程中采用的半唯象常数来确定。从原理上来说,这些标度可以和所研究系统的实验测量数据或者更基本的模拟数据相对应。 第五,相场法是一种相对简单的方法而且它在二维和三维系统的应用并不增加模型的复杂性。

9SiCr钢的低温贝氏体组织与力学性能

9SiCr钢的低温贝氏体组织与力学性能 摘要 本文对9SiCr钢进行低温等温处理,通过光学显微镜、透射电镜和X射线衍射仪对处理后的9SiCr钢进行了组织分析,并对其硬度和冲击韧性进行测定。结果表明,9SiCr钢经等温转变处理后,得到由板条状贝氏体铁素体和残留奥氏体组成的低温贝氏体组织,其硬度较高,且韧性较正常淬火和低温回火的高,其试样断裂方式为脆性断裂。 关键词9SiCr钢;低温贝氏体;冲击韧性;硬度 1.引言 含碳量在0.75~0.98%的Fe-Si-Mn-Cr-Mo-V钢及其添加Co或Al的高硅高碳低合金钢的铸态组织经高温均匀化退火和奥氏体化后在稍高于MS点温度(125~200C)等温转变,可获得较高的硬度、强度以及韧性且具有纳米尺度(20~40nm)的条状相间无碳化物贝氏体铁素体和高碳残余奥氏体两相组织[1-4]。9SiCr钢是一种常用的冷作模具钢,为提高其使用寿命,有必要对其进行低温等温转变处理,以获得具有较高的综合力学性能。 本文对9SiCr钢进行低温等温处理,并对微观组织和力学性能进行了分析测定。 2.实验材料及方法 实验材料为9SiCr钢,其化学成分(质量分数)为0.85~0.95%C,1.20~1.60%Si,0.30~0.60%Mn,0.90~1.25%Cr。用Formastor-F 型膨胀仪测量试样的各临界点得Ac1为770℃,Accm为870℃,MS为170℃。将样品分别在SX-4-10型箱式电阻炉内进行870℃、910℃、950℃,保温15min后再进行200℃保温不同时间的等温处理。等温处理设备为盐浴炉, 盐浴剂为50%NaNO2+50%KNO3。将处理后的试样加工成尺寸为10 mm×10 mm×55 mmU型缺口的冲击试样。用HV-5型小负荷维式硬度计和ZBC-300B冲击试验机测试其硬度和冲击韧性。用光学显微镜和H-800型透射电子显微镜、Rigaku D/max-2500/PC型X射线衍射仪(CuK辐射)以及KYKY-2800型扫描电镜对试样显微组织、相组成及冲击断口进行分析。 3.结果与分析 3.1组织观察

弹簧力学性能

弹簧力学性能

弹簧钢丝和弹性合金丝(上) 东北特殊钢集团大连钢丝制品公司徐效谦 弹性材料是机械和仪表制造业广泛采用的制作各种零件和元件的基础材料,它在各类机械和仪表中的主要作用有:通过变形来吸收振动和冲击能量,缓和机械或零部件的震动和冲击;利用自身形变时所储存的能量来控制机械或零部件的运动;实现介质隔离、密封、软轴连接等功能。还可以利用弹性材料的弹性、耐蚀性、导磁、导电性等物理特性,制成仪器、仪表元件,将压力、张力、温度等物理量转换成位移量,以便对这些物理量进行测量或控制。 1 弹性材料的分类 1.1 按化学成分分类 弹性材料可分为:碳素弹簧钢、合金弹簧钢、不锈弹簧钢、铁基弹性合金、镍基弹性合金、钴基弹性合金等。 1.2 按使用特性分类 根据弹性材料使用特性,可作如下分类: 1.2.1 通用弹簧钢 (1)形变强化弹簧钢:碳素弹簧钢丝。 (2)马氏体强化弹簧钢:油淬火回火钢丝。 (3)综合强化弹簧钢:沉淀硬化不锈钢丝 1.2.2 弹性合金

(1)耐蚀高弹性合金 (2)高温高弹性合金 (3)恒弹性合金 (4)具有特殊机械性能、物理性能的弹性合金 2 弹簧钢和弹性合金的主要性能指标 2.1 弹性模量 钢丝在拉力作用下产生变形,当拉力不超过一定值时,变形大小与外力成正比,通常称为虎克定律。公式如下: ε=σ/E 式中ε—应变(变形大小) σ—应力(外力大小) E —拉伸弹性模量 拉伸弹性模量(又称为杨氏弹性模量或弹性模量)是衡量金属材料产生弹性变形难易程度的指标,不同牌号弹性模量各不相同,同一牌号的弹性模量基本是一个常数。 工程上除表示金属抵抗拉力变形能力的弹性模量外(E),还经常用到表示金属抵抗切应力变形能力的切变弹性模量(G)。 拉伸弹性模量与切变弹性模量之间有一固定关系:G = E,μ称为泊桑比,同一牌号的泊桑比是一 + ) 1(2μ

马氏体耐热钢的性能和制造工艺

马氏体耐热钢的性能和制造工艺 摘要:马氏体耐热钢是一种具有热强性耐热钢,其中C和Cr含量较高,通常含铬量为10-13%,可以通过弥散强化机理假如第二相获得蠕变强度高的马氏体耐热钢,少量的镍、钼、钒等合金元素来进行合金化处理,铬、硅主要提高钢的抗氧化性,而镍、钼、钨、钒、锰等则用以提高钢的高温强度。因此,马氏体耐热钢具有高的蠕变强度、耐蚀性和热强性,是火力发电厂设备制造的主要材料。 本文从马氏体耐热钢的性能、成分、热处理工艺、脆性等方面做了简单介绍。关键字:马氏体耐热钢、火力发电厂、高温脆性. Abstract: The martensitic steel is a kind of intensity of heat resistant steel, in which C and Cr content is high, usually chromium content of 10-13%, dispersion strengthening mechanism can be obtained if the creep strength of the second phase high martensitic steel, a small amount of nickel, molybdenum, vanadium alloys for alloying elements, chromium, silicon, mainly to improve the oxidation resistance of steel, and nickel, molybdenum, tungsten, vanadium, manganese, etc. are used to improve high temperature strength of steel. Therefore, the martensitic steel has high creep strength, corrosion resistance and thermal strength, and is a major power plant equipment manufacturing materials. In this paper, the performance of martensitic steel, composition, heat treatment, brittle and so do a brief introduction. Keywords: martensitic steel, power plants, high temperature brittleness. 目录

2012山东大学考研材料科学基础

860材料科学基础考试大纲 一、考试目的 《材料科学基础》是材料学科专业硕士研究生的入学专业基础考试课程。本课程着重讲述材料的微观组织与性能之间的关系,重在掌握基本概念及其应用,强调晶体材料中的共性基础问题,对于理解现有材料和开发新材料都具有重要的指导意义。本课程考试的目的是考查学生对《材料科学基础》基本理论的掌握程度以及应用基本理论分析材料问题的能力。 二、考试要求 本课程满分150分,考试时间180分钟,闭卷笔试。包括概念、选择、填空、判断正误、计算和分析论述等不同形式的题目。考生需要携带笔、尺、计算器。 三、考试内容 第一章晶体结构 1.1 原子的结合方式 1.2 晶体学基础 1.2.1 空间点阵与晶体结构 1.2.2 晶胞 1.2.3 布拉菲点阵 1.2.4 晶向指数与晶面指数 1.3 典型晶体结构及其几何特征 1.4 多晶型性 第二章晶体缺陷 2.1 点缺陷 2.1.1 点缺陷的类型 2.1.2 点缺陷的平衡浓度 2.1.3 点缺陷的产生及其运动 2.1.4 点缺陷与材料行为 2.2 线缺陷(位错) 2.2.1 位错的基本类型

2.2.2 位错的性质 2.2.3 柏氏矢量 2.2.4 位错的运动 2.2.5 位错的应力场及其与其他缺陷的作用2.2.6 位错的增值、塞积与交割 2.2.7 位错反应 2.2.8 实际晶体中的位错 2.3 面缺陷(界面) 2.3.1 晶界 2.3.2 相界 2.3.3 表面 2.3.4 界面特性 第三章凝固 3.1 金属结晶的基本规律 3.2 金属结晶的热力学条件 3.3 均匀形核 3.4 非均匀形核 3.5 晶核的长大 3.6 凝固理论的应用 3.7 无机材料的热力学与动力学(可选)第四章固体中的相结构 4.1 固溶体 4.2 金属间化合物 4.3 陶瓷晶体相 4.4 陶瓷玻璃相(熔体与非晶体)(可选)4.5 高聚物的结构 第五章相图 5.1 相图基本知识 5.2 二元相图

马氏体与贝氏体转变异同点

马氏体与贝氏体转变有哪些异同点? (1)二者转变都有一个转变温度区,马氏体转变对应于M s~M f,贝氏体转变与B s~B f点。 (2)贝氏体转变可等温进行,而钢中马氏体转变是非恒温性的,即马氏体转变是在不断降温的条件下才能进行。由此可见,马氏体转变量是温度的函数,而与等温时间无关。 (3)马氏体转变只有点阵改组而无成分的改变,如钢中的奥氏体转变为马氏体时,只是点阵由面心立方通过共格切变改组成体心立方(或体心正方),因而马氏体的成分与奥氏体的成分完全一样。这种母相(奥氏体)以均匀切变方式转变为新相(马氏体)的转变称为无扩散型相变—现在各种合金中广泛地叫做马氏体转变。此时钢中的铁、碳原子均无扩散,而贝氏体转变只有碳原子的扩散,而无铁原子和合金元素的扩散。这种中温转变包含着两种不同机制的转变,贝氏体为两相混合物组织,而马氏体是单相组织。 (4)贝氏体中铁素体在形成时,与马氏体转变一样,在抛光面上均引起浮凸。所不同的是马氏体浮凸呈“N”形,而贝氏体中铁素体的浮凸呈“V”形或“A”形。贝氏体的晶体学特征,其中包括位向关系与惯习面等与马氏体接近。 (5)二者转变均存在不完全性,即转变不能进行到终了。马氏体转变还具有可逆性,即快速反向加热不到A1点发生逆转变 珠光体、贝氏体和马氏体的组织和性能有什么区别? 珠光体转变是奥氏体在过冷度不大的情况下发生的共析转变,C和金属原子都可以的扩散;珠光体组织是铁素体和碳化物的机械混合物,通常形态为层片装状碳化物加铁素体组织,其层片的厚度及完整程度主要取决于转变过冷度,在特殊情况 下也生产碳化物也生产粒状,形成粒状珠光体。 马氏体转变是奥氏体快速冷却到马氏体转变点以下,发生切变,形成过饱和C的α-Fe固溶体,转变中C和金属原子都来不及扩散,由于过饱和的C使晶格发生畸变,钢在受力时位错运动受到阻碍,由此提高钢的强度。贝氏体转变介于珠光体与马氏体转变之间,但目前对此转变的机制还存在争议,但在贝氏体转变中主要C可扩散,金属原子不发生扩散,根据奥氏体过冷度的不同和C扩散能力的不同等条件,生成各种形态贝氏体组织。 45钢退火:铁素体+珠光体;45钢正火:铁素体+珠光体;45钢淬火:马氏体; 45钢回火:回火马氏体(低温回火),回火屈氏体(中温回火),回火索氏体(高温回火)。 比较共析钢过冷奥氏体等温转变曲线图和连续转变曲线图的异同点 1.等温转变在整个转变温度范围内都能发生,只有孕育期有长短;但是连续冷却转变却有所谓不发生转变的 温度范围。 https://www.360docs.net/doc/8411336687.html,T图比TTT图向右下方移动,说明连续冷却发生在更低的温度和需要更长的时间。 3.共析碳素钢和过共析碳素钢在连续冷却转变中不出现贝氏体转变,只发生珠光体分解和贝氏体相变2.钢的过冷奥氏体等温转变曲线的开始温度和终了温度曲线像英文字母C,它描述了奥氏体在等温转变过程中,不同温度和保 温时间下的析出物的规律,称为C曲线或者TTT曲线,而连续冷却曲线是各种不同冷速下,过冷奥氏体转变开始和转变终了温度和时间的关系简称连续冷却转变图或者CCT图。 3.相同点是二者均是过冷奥氏体的转变图解,前者是在一定温度下的等温转变,后者是以一定的冷却速度时的连续转变,二者 在本质上是一致的,转变过程和转变产物的类型基本相互对应。 4.二者的区别在于冷却条件的不同,其显著的区别主要有: 5.一,连续冷却时,过冷奥氏体是在一个温度范围内完成组织转变的,其组织的转变很不均匀,先转变的组织较粗,而后转变 的组织较细,往往得到几种组织的混合物。 6.二,共析钢连续冷却时,只有珠光体的转变而无贝氏体的转变。原因在于当冷却速度缓慢时,过冷奥氏体将全部转变为珠光 体,当冷却速度过快时,则过冷奥氏体在中温区停留时间还未达到贝氏体转变的孕育区,已经降到Ms点开始转变为马氏体。 7.

工程材料力学性能-第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、金属的弹性模量主要取决于什么因素为什么说它是一个对组织不敏感的力学性能指标 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别为什么 4、决定金属屈服强度的因素有哪些【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 7、何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 第二章金属在其他静载荷下的力学性能

18Ni马氏体时效钢强化方法概述_陈建刚

第16卷 第4期 2009年8月 金属功能材料 M etallic Functional M aterials Vol 16, No 4Augu st, 2009 18Ni 马氏体时效钢强化方法概述 陈建刚,张建福,卢凤双,张敬霖,张建生 (钢铁研究总院,北京 100081) 摘 要:18N i 马氏体时效钢是以无碳(或超低碳)铁镍马氏体为基体的,主要是经时效产生时效强化的高强度钢。本文简要概述了18N i 马氏体时效钢的发展过程,介绍了固溶强化、相变强化、时效强化、细晶强化、形变强化方法和发展趋势。 关键词:马氏体时效钢;强化方法;固溶强化;相变强化;时效强化;细晶强化;形变强化中图分类号:T G 142 7 文献标识码:A 文章编号:1005-8192(2009)04-0046-04 Outline of Strengthening Ways in 18Ni Maraging Steel CH EN Jian g ang,ZH A N G Jian fu,LU Feng shuang, ZH A N G Jing lin,ZH A N Jian sheng (Centra l Ir on &Steel R esear ch Institute,Beijing 100081,China) Abstract:18Ni marag ing steel is a kind of high strength steel strengthened by ageing precipitation hardening of intermetal lics in carbon free o r ex tre low carbon ferronickel martensite matrix T he main strengthening ways of 18N i mar ag ing steel,such as solution strengthening,transfo rmation streng thening ,aging strengthening,fine g rain strengthening,deformation strengthening,are include in the review T he development trend of 18N i maraging steel ar e also presented Key words:ma rag ing steel;st rengthening w ay;so lutio n str eng thening ;tr ansfo rmation st rengthening ;ag ing strength ening;fine gr ain strengthening;defo rmatio n str eng thening 作者简介:陈建刚(1978-),男,主要从事金属功能材料的研究。 1 前 言 18Ni 马氏体时效钢是以无碳(或超低碳)铁镍马氏体为基体,500 左右时效能产生金属间化合物时效强化的高强度钢[1],广泛应用于航空、航天、原子能等领域 [2~5] 。具有工业应用价值的马氏体时 效钢,是20世纪60年代初由国际镍公司(INCO)首先开发出来的[1]。1961~1962年间该公司Decker 等人发现,在Fe Ni 马氏体合金中同时加入Co 、M o 可使马氏体时效强化效果显著提高,并通过调整Co 、M o 、T i 含量得到屈服强度分别达到1400M Pa 、1700M Pa 、1900M Pa 的18Ni (200)、18Ni(250)、 18Ni(300)的马氏体时效钢[4] ,并首先将18N i(200)和18Ni(250)应用于火箭发动机壳体 [5] 。它的出 现,立即引起各国材料工作者的高度重视。20世纪60年代后期国际镍公司(INCO)和钨钒高速工具钢公司(Vasco )又研制出了屈服强度达到2400M Pa 的18Ni(350)钢。表1列出了典型18Ni 马氏体时效钢的标称化学成分和屈服强度。 表1 典型18Ni 马氏体时效钢的标称化学成分与屈服强度[4] Table 1 Nominal chemical compositions and yield strength of typical maraging steels [4] 合金化学成分/%(质量) Ni Co M o Al T i 屈服强度/M Pa 18Ni(200)18 08 53 30 10 2140018Ni(250)18 08 55 00 10 4170018Ni(300)18 09 05 00 10 7200018Ni(350) 17 5 12 5 4 2 0 1 1 6 2400

马氏体转变的主要特征

马氏体转变的主要特征 马氏体转变是在低温下进行的一种转变。对于钢来说,此时不仅铁原子已不能扩散,就是碳原子也难以扩散。故马氏体转变具有一系列不同于加热转变以及珠光体转变的特征。这里只提出几个最重要的转变特征,其它特征将在以后各有关的章节内讨论。 (一)马氏体转变的非恒温性 必须将奥氏体以大于临界冷却速度的冷却速度过冷到某一温度才能发生马氏体转变。也就是说马氏体转变有一上限温度。这一温度称为马氏体转变的开始温度,也称为马氏 体点,用M S 表示。不同材料的M S 是不同的。当奥氏体被过冷到M S 点以下任一温度,不需经过孕育,转变立即开始,且以极大的速度进行,但转变很快停止,不能进行到终了如下图1所示。为了使转变能继续进行,必须降低温度,即马氏体转变是温度的函数,如图2所示,而与等温时间与无关,或者说,马氏体量只取决于冷却所达到的温度。当温度降到某一温度以下时,虽然马氏体转变未达到100%,但转变已图1 马氏体等温转变曲线 图2 马氏体转变与温度的关系

不能进行。该温度称为马氏体转变终了点,用M f 表示(图 2)。如某钢的M S 高于室温而M f 低于室温,则冷却至室温时还将保留一定数量的奥氏体,称为残余奥氏体。如果继续冷至室温以下,未转变的奥氏体将继续转变为马氏体直到M f 点。深冷至室温以下在生产上称为冷处理。马氏体的这一特征称为非恒温性。 对于某些M S 点低于0℃ 的Fe-Ni-C 等合金来说,当 过冷至M S 点以下时,马氏体 可能爆发形成,即最初形成 的马氏体有可能促发一定数 量的奥氏体转变为马氏体, 未转变的奥氏体样必须在继续冷却的情况下才能转变,且有可能再次爆发形成。在此情况下,马氏体转变量与温度的关系如图3所示。 也还有少数M S 点低于0℃的合金,如Fe-Ni-Mn ,Fe-Ni-Cr 以及高碳高锰钢等可以发生马氏体等温度转变。其动力学特征与珠光体等温转变很相似,也有“C ”型曲线(图4),不同点是等温转变量不多,转变不能进行到底。 (二)马氏体转变的切变共格与表 面浮凸现象 图3 爆发式转变时的马氏体转变量与温度的关系 图4 Fe-23%Ni-3.7%Mn 合金 马氏体等温转变动力学

力学性能知识点

环面积:被金属所吸收的变形功。也表示循环韧性的大小。屈服现象与三个因素有关:材料变形前可动位错的密度很小,随塑形变形发生位移快速增值,位错运动速率与外加应力有强烈依存关系。材料屈服强度:表示材料对微量塑性变形的抗力。下屈服极限:再现性较好。S=ken n应变硬化指数 =1 完全理想弹性体=0 没有应变强化能力缩颈:塑变集中于局部区域的特殊现象。是应变硬化落后于截面减小的结果。当材料的应变硬化指数等于或大于最大真实均匀塑性应 变量是产生。断面收缩率>断后伸长率是形成缩颈差越大越严重缺口敏感度nsr>1 不敏感脆性材料总是小于1划痕法:表征金属切断强度回跳法:金属弹性变形力的大小压入发:金属塑性变形抗力及应变硬化能力Ki:可度量裂纹扩展时系统势能的释放量疲劳 缺口敏感度:qf=kf-1/kt-1(0-1)kf>1 大小决定开口明显曾度开口比不开口极限低0k=kmax-kmin 应力强度因子范围0kth 表示阻止疲劳裂纹开始扩展的性能金属 接触疲劳由最大综合切应力引起 第一章循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力 称为循环韧性。5.解理刻面:这种大致以晶粒大小为单位的解理 面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。韧性:指金属材料断裂前吸收塑性变形功和断裂 功的能力。7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以 极快速率沿一定晶体学平面产生 的穿晶断裂,因与大理石断裂类 似,故称此种晶体学平面为解理 面。10.穿晶断裂:穿晶断裂的裂 纹穿过晶内,可以是韧性断裂,也 可以是脆性断裂。沿晶断裂:裂纹 沿晶界扩展,多数是脆性断裂。11. 韧脆转变:具有一定韧性的金属材 料当低于某一温度点时,冲击吸收 功明显下降,断裂方式由原来的韧 性断裂变为脆性断裂,这种现象称 为韧脆转变12.弹性不完整性:理 想的弹性体是不存在的,多数工程 材料弹性变形时,可能出现加载线 与卸载线不重合、应变滞后于应力 变化等现象,称之为弹性不完整性。 弹性不完整性现象包括包申格效 应、弹性后效、弹性滞后和循环韧 性等2、说明下列力学性能指标的 意义。答: G切变模量 n 应变硬 化指数 3、金属的弹性模量主要 取决于什么因素?为什么说它是 一个对组织不敏感的力学性能指 标?答:主要决定于原子本性和晶 格类型。合金化、热处理、冷塑性 变形等能够改变金属材料的组织 形态和晶粒大小,但是不改变金属 原子的本性和晶格类型。组织虽然 改变了,原子的本性和晶格类型未 发生改变,故弹性模量对组织不敏 感。6、试述韧性断裂与脆性断裂 的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产 生明显的宏观塑性变形的断裂,这 种断裂有一个缓慢的撕裂过程,在 裂纹扩展过程中不断地消耗能量; 而脆性断裂是突然发生的断裂,断 裂前基本上不发生塑性变形,没有 明显征兆,因而危害性很大。7、剪 切断裂与解理断裂都是穿晶断裂, 为什么断裂性质完全不同?答:剪 切断裂是在切应力作用下沿滑移 面分离而造成的滑移面分离,一般 是韧性断裂,而解理断裂是在正应 力作用以极快的速率沿一定晶体 学平面产生的穿晶断裂,解理断裂 通常是脆性断裂。8、何谓拉伸断 口三要素?影响宏观拉伸断口性 态的因素有哪些?答:宏观断口呈 杯锥形,由纤维区、放射区和剪切 唇三个区域组成,即所谓的断口特 征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、 尺寸和金属材料的性能以及试验 温度、加载速率和受力状态不同而 变化。第二章金属在其他静载荷 下的力学性能一、解释下列名词: (1)应力状态软性系数——材料 或工件所承受的最大切应力τmax 和最大正应力σmax比值(2)缺 口效应——绝大多数机件的横截 面都不是均匀而无变化的光滑体, 往往存在截面的急剧变化,如键 槽、油孔、轴肩、螺纹、退刀槽及 焊缝等,这种截面变化的部分可视 为“缺口”,由于缺口的存在,在载 荷作用下缺口截面上的应力状态 将发生变化,产生所谓的缺口效 应。(3)缺口敏感度——缺口试 样的抗拉强度σbn的与等截面尺 寸光滑试样的抗拉强度σb的比 值,称为缺口敏感度(4)布氏硬 度——用钢球或硬质合金球作为 压头,采用单位面积所承受的试验 力计算而得的硬度。(5)洛氏硬 度——采用金刚石圆锥体或小淬 火钢球作压头,以测量压痕深度所 表示的硬度(6)维氏硬度——以 两相对面夹角为136。的金刚石四 棱锥作压头,采用单位面积所承受 的试验力计算而得的硬度。 (1)σbc——材料的抗压强 度 (2)σbb——材料的抗弯强度 (3)τs——材料的扭转屈服点 (4)τb——材料的抗扭强度 (5)σbn——材料的抗拉强度

相关文档
最新文档