直接展开法求解非线性运动微分方程

直接展开法求解非线性运动微分方程
直接展开法求解非线性运动微分方程

2.用直接展开法求解2-9

2.1问题描述:设数学摆作小而有限振幅的振动,其运动微分方程为

2

32d d 6g g

t l l θθθ+=

2.2用直接展开法求解方程

设:2

0g w l

= 并考虑小参数,原方程化为:

22

2

3002d d 6

w w t εθθθ+= (1) 设2012θθεθεθ=+++??? (2)

将(2)代入(1)得:

2

2222

23001200120122d ()()()d 6

w w t εθεθεθθεθεθθεθεθ+++???++++???=+++??? 整理得:

222222222223

300000112000102222d d d ()()()()()d d d 62w w w w w o o t t t θεθεθθθθθεθεθεε++++++=++22322222222300000112000102222d d d ()()()()0d d 6d 2

w w w w w o t t t θθθθθθθεθεθε+++-++-+= 列出关于ε阶次的方程:

22

0002

d 0d w t

θθ+= (3) 2322

001012d d 6w w t θθθ+= (4) 22

22

0012022

d d 2

w w t θθθθ+= (5) 求解(1)得:00cos()a w t θ?=+ 由初始条件:0(0)1θ=,

d 0d t

θ=得:1a =,0?=

00cos w t θ= (6)

将(6)代入(4)得:

222

3010102d cos d 6

w w w t t θθ+=

222

0101002d 1(3cos cos3)d 64

w w w t w t t θθ+=?+ (7) 方程(7)的解由以下两个方程的解组合而成:

2

22

01101102

d cos d 8w w w t t θθ+= (8) 2

22

01201202d cos3d 24

w w w t t θθ+= (9) 设方程(8)的解为:

1100(sin cos )t A w t B w t θ=+

将其代入(8)得:

()()2

220

000

000

0002cos sin sin cos (sin cos )cos 8

w Aw w t Bw wt tw A w t B w t w t A w t B w t w t --+++=

20

00002cos sin cos 8

w Aw w t Bw wt w t -=

从而 0

16w A =

0B =

方程(8)的解为:0110sin 16

w t

w t θ=

设方程(9)的解为120cos3D w t θ=代入(9)得:

220

00

009cos3cos3cos324

w D w t w D w t w t -+= 20

008cos3cos324w D w t w t -=

20

196w D =-

20

120cos3196

w w t θ=-

方程(4)的通解为:

1121100sin cos E w t F w t θθθ=+++

代入初始条件:

1

d (0)0dt t θ== 1(0)0t θ== 0E =

20

196

w F =

所以22000

1000cos3sin cos 19616196

w w t w w t w t w t θ=-++ 将(4)的解代入(5)中得:

222

222

000020200002

d (cos3sin cos )cos d 219616196

w w w t w w w t w t w t w t t θθ+=-++ 424

2222

3000202000002424000000000440000d cos3cos sin cos cos d 39232392

cos 21cos 211

cos3sin (3cos cos3)

39223223924cos5c cos3784784w w t w w w t w t w t w t w t t w w t w t w t w w t w t w t w t w w w t w t θθ+=-?+?+++-?+?+?++--? = =220000004400

004444422000000000000os sin 3sin sin 2646423cos cos3156815683cos3cos cos5sin 3sin 1568784156815681568128128w t w t w t w t w t

w t w w w t w t

w w w w w w t w t

w t w t w t w t w t -++?

++????-+--

++ ? ????? = 44422

0000000000cos3cos cos5sin 3sin 15687841568128128

w w w w t w t

w t w t w t w t w t

-+-++ = (10)

方程(10)的解由21θ22θ23θ24θ25θ构成

4

22

02102102d cos3d 1568w w w t t θθ+=- (11) 4

22

02202202

d cos d 784w w w t t θθ+= (12) 242

23002302d cos5d 1568w w w t t θθ+=- (13) 2

22

02402402

d sin 3d 128w t w w t t θθ+= (14) 222

250025

02d sin d 128

w t w w t t θθ+= (15)

由(9)的求解过程得方程(11),(13)的解为:

20

210cos312544w w t θ=

30230sin 53136

w t

w t θ=-

由(8)的求解过程得方程(12)的解为:

30220sin 1568

w t w t θ=

所以方程的通解为:221222324251010sin cos E w t F w t θθθθθθ=++++++

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

运动微分方程

运动微分方程 弹性体体积V ,表面积S ,密度ρ,单位质量所受的体力为f,体力场为f(x,t),单位向量为n 的面元dS 的面力场为t(n,x,t),x 为原点到受力点的向量,t 为时间。弹性体在t 时刻的动量P (t) dV v dt d dV f dS t dt dP F f V f m F dV f dS t F F F dV v m v p V i V i s i i i V i s i i V i i ??????= += ?=?=+=+===ρρρρρ动量定理合力弹性体动量体体面 ******************************************************************************* 散度定理:散度定理是矢量场中体积分与面积分之间的一个转换。???=??s V S d F dV F 散度:表征矢量场A 产生的体积(三维)或面积(二维)的相对膨胀率,其表达式为▽·A 。 z R y Q x P R Q P z y x F ??+ ??+??=???????=??),,(),,( ,P,Q ,R 为F 在x,y,z 上的分量。 散度定理的证明:S d F dV F s V ?=???????。 令()R Q P F ,,= ,假设F =(0,0,R),则需要证明 dS n R dV R s V z ?? ????=),0,0( 如下图,投影区为U 。 dxdy y x z y x R y x z y x R dxdy dz R dV R U y x Z y x Z z D z ))],(,,()),(,,([)() ,() ,(底顶 顶底????????-== S=S 底+S 顶+S 侧面

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法

四川师范大学本科毕业论文 微分方程常用的两种数值解法:欧拉方法与龙 格—库塔法 学生姓名XXX 院系名称数学与软件科学学院 专业名称信息与计算科学 班级2006级 4 班 学号20060640XX 指导教师Xxx 四川师范大学教务处 二○一○年五月

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法 学生姓名:xxx 指导教师:xx 【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都 会遇到常微分方程的求解问题。当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。 关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性 Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta method Student Name: Xiong Shiying Tutor:Zhang Li 【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are the most typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stability has made the proof. At the same time, the article discuss the length of stride to the numerical method changing influence and the difference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

运动微分方程推导

以应力表示的黏性流体运动微分方程的推导 1. 黏性流体的内应力 黏性流体在运动时,表面力不仅有法向应力,还有切向应力,因此黏性流体的表面力不垂直于作用面。 如在任一点取一微小的正六面体,如图所示,作用在平面ABCD 上的力 有法向应力 xx p ,与切向应力xy τ和xz τ。应力符号的第一个字母表示作 用面的外法线方向,第二个脚标表示应力方向。 流体场内任一点的应力状况,即该点流体微团在任一方向的作用面上的应力,都可以用通过该点的三个相互垂直的作用面上的九个应力分量来表示。 2. 以应力表示的运动微分方程 在黏性流体中取一边长为dx,dy,dz 的长方体。各表面应力的方向如图所示。为清晰起见,其中两个面上的应力符号未标。各应力的值均为代数值,正直表示应力沿相应坐标系的正向,反之亦然。由于流体不能承受拉力,因此,

xx p yy p ,zz p 必为负值。 由牛顿第二定律,x 方向的运动微分方程为: Xdxdydz ρ+xx p dydz +[-(xx p - xx p x ??dy )dydz ]+ yx τdxdz +[-(yx τ- yx y τ??dy )dxdz ]+ zx τdxdy +[-(zx τ- zx z τ??dz )]x du dxdy dxdydz dt ρ= 等式两边分别除以 ρ,然后分别对x,y,z 求偏导,得到: 1 1 ( )zx x XX du P yx X X y z dt τρρ τ??+ + +=???? (1) 同理,在y 方向,由牛顿第三定律得:

[()][)][()] yy yy yy xy xy xy zy zy zy y Ydxdydz dxdz dy dxdz y dydz dx dydz x dxdy dz dxdy z dxdydz dt p p p du ρρττ τ ττ τ + +-- + ?+-- + ?+ +-- ?=??? 等式两边同时除以 ρ,然后分别对x,y,z 求偏导得: 1 1 ( )yy zy xy y Y y z x dt p du ρρ ττ+ ++ = ?????? (2)

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

有限差分法求解偏微分方程复习进程

有限差分法求解偏微 分方程

有限差分法求解偏微分方程 摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的 理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。 关键词:计算力学,偏微分方程,有限差分法 Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method. Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言 机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。 求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。 2 有限差分法理论基础 2.1 有限差分法的基本思想 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

微分方程数值解

微 分方程数值解及其应用 绪论 自然界中的许多事物的运动和变化规律都可以用微分方程来描述,因此对工程和科学技术中的实际问题的研究中, 常常需要求解微分方程.但往往只有少数较简单和典型的微分方程可求出其解析解,在大多数情况下,只能用近似法求解,数值解法是一类重要的近似方法.本文主要讨论一阶常微分方程的初值问题的数值解法,探讨这些算法在处理来自生活实际问题中的应用,并结合MATLAB 软件,动手编程予以解决. 1 微分方程的初值问题[1] 1.1 预备知识 在对生活实际问题的研究中,通常需要考虑一阶微分方程的初值问题 00(,)()dy f x y dx y x y ?=???=? (1) 这里(),f x y 是矩形区域R :00,x x a y y b -≤-≤上的连续函数. 对初值问题(1)需要考虑以下问题:方程是否一定有解呢?若有解,有多少个解呢?下面给出相关的概念与定理. 定义1 Lipschitz 条件[1][2]:矩形区域R :00,x x a y y b -≤-≤上的连续函数(),f x y 若满足:存在常数0L >,使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立,则称(),f x y 在R 上关于y 满足Lipschitz 条件. 定理 1 解的存在唯一性定理[1][3]:设f 在区域()}{,,D x y a x b y R =≤≤∈上连续,关于y 满足Lipschitz 条件,则对任意的[]00,,∈∈x a b y R ,常微分方程初值问题(1)当[],x a b ∈时存在唯一的连续解()y x . 该定理保证若一个函数(),f x y 关于y 满足Lipschitz 条件,它所对应的微分方程的初值问题就有唯一解.在解的存在唯一性得到保证的前提下,自然要考虑方程的求

第九章 偏微分方程差分方法

170 第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

微分方程数值解欧拉法

1.1、求解初值问题()?????=-=-1 0y y xe dx dy x ,已知精确解为 ()()x x x x y -+=22 12 当h=0.1时,解为: n x n y ()n x y ()n n y x y - 0 1 1 0 0.1 0.900000 0.909362 9.3616E-03 0.2 0.819048 0.835105 1.6057E-02 0.3 0.753518 0.774155 2.0637E-02 0.4 0.700391 0.723946 2.3555E-02 0.5 0.657165 0.682347 2.5182E-02 0.6 0.621775 0.647598 2.5823E-02 0.7 0.592526 0.618249 2.5723E-02 0.8 0.568034 0.593114 2.5080E-02 0.9 0.547177 0.571230 2.4053E-02 1.0 0.529051 0.551819 2.2768E-02 0.1 0.2 0.30.40.50.60.70.80.91 当h=0.05时,解为:

n x n y ()n x y ()n n y x y - 0 1 1 0 0.05 0.950000 0.952418 2.4185E-03 0.10 0.904878 0.909362 4.4835E-03 0.15 0.864158 0.870391 6.2326E-03 0.20 0.827406 0.835105 7.6996E-03 0.25 0.794223 0.803138 8.9155E-03 0.30 0.764247 0.774155 9.9084E-03 0.35 0.737147 0.747850 1.0704E-02 0.40 0.712621 0.723946 1.1324E-02 0.45 0.690397 0.702188 1.1791E-02 0.50 0.670223 0.682347 1.2124E-02 0.55 0.651876 0.664213 1.2338E-02 0.60 0.635148 0.647598 1.2450E-02 0.65 0.619855 0.632328 1.2473E-02 0.70 0.605829 0.618249 1.2420E-02 0.75 0.592918 0.605220 1.2302E-02 0.80 0.580985 0.593114 1.2129E-02 0.85 0.569909 0.581819 1.1909E-02 0.90 0.559579 0.571230 1.1651E-02 0.95 0.549896 0.561258 1.1362E-02 1.00 0.540771 0.551819 1.1048E-02 0.1 0.2 0.30.40.50.60.70.80.91

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/8510454402.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

五点差分法(matlab)解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

五点差分法解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

微分方程数值解欧拉法

dy??x??xey?1.1、求解初值问题,已知精确解为 ????x?2xx?y?2x2当h=0.1时,解为:?dx????01y?1 ????yxy?xyyx nnnnn 1 0 1 9.3616E-03 0.1 0.900000 0.909362 1.6057E-02 0.819048 0.2 0.835105 2.0637E-02 0.774155 0.753518 0.3 2.3555E-02 0.723946 0.4 0.700391 2.5182E-02 0.5 0.682347 0.657165 2.5823E-02 0.621775 0.6 0.647598 2.5723E-02 0.592526 0.618249 0.7 2.5080E-02 0.568034 0.8 0.593114 2.4053E-02 0.547177 0.9 0.571230 2.2768E-02 1.0 0.551819 0.529051

1 0.950.90.850.80.750.70.650.60.550.510.100.20.80.70.90.60.40.30.5时,解为:h=0.05 当. ????x xyy y?yx nnn nn 1 1 0 2.4185E-03 0.952418 0.05 0.950000 4.4835E-03 0.10 0.909362 0.904878 6.2326E-03 0.15 0.864158 0.870391 7.6996E-03 0.827406 0.20 0.835105 8.9155E-03 0.794223 0.25 0.803138 9.9084E-03 0.774155 0.764247 0.30 1.0704E-02 0.737147 0.747850 0.35 1.1324E-02 0.723946 0.40 0.712621 1.1791E-02 0.702188 0.45 0.690397 1.2124E-02 0.50 0.670223 0.682347

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

相关文档
最新文档