MDSP第六小波分析

MDSP第六小波分析
MDSP第六小波分析

小波的几个术语及常见的小波基介绍

小波的几个术语及常见的小波基介绍 本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。 一、小波基选择标准 小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。现实中到底选择使用哪一种小波的标准一般有以下几点: 1、支撑长度 小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。 这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。 2、对称性 具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。 3、消失矩 在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。消失矩越大,就使更多的小波系数为零。但在一般情况下,消失矩越高,支撑长度也越长。所以在支撑长度和消失矩上,我们必须要折衷处理。

小波理论

小波变换 一、小波变换的基本原理及性质 1、小波是什么? 小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平均值为0。这种定性的描述意味着小波具有两种性质:A 、具有有限的持续时间和突变的频率和振幅;B 、在有限时间范围内平均值为0。 2、小波的“容许”条件 用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许”条件非常重要,它限定了小波变换的可逆性。 小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零;本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足 3、信号的信息表示 时域表示:信号随时间变化的规律,信息包括均值、方差、峰度以及峭陡等,更精细的表示就是概率密度分布(工程上常常采用其分布参数)。 频域表示:信号在各个频率上的能量分布,信息为频率和谱值(频谱或功率谱),为了精确恢复原信号,需要加上相位信息(相位谱),典型的工具为FT 。 时频表示:时间和频率联合表示的一种信号表示方法,信息为瞬时频率、瞬时能量谱 信号处理中,对不同信号要区别对待,以选择哪种或者哪几种信号表示方法 ) ()(ωψ??x ∞ <=?∞ ∞-ωω ωψ?d C 2 ) (0 )()0(==?∞ ∞ -dx x ?ψ

平稳信号 非平稳信号 不满足平稳性条件至少是宽平稳条件的信号。 信号的时域表示和频域表示只适用于平稳信号,对于非平稳信号而言,在时间域各种时间统计量会随着时间的变化而变化,失去统计意义;而在频率域,由于非平稳信号频谱结构随时间的变化而变化导致谱值失去意义。 时频表示主要目的在于实现对非平稳信号的分析,同样的可以应用于平稳信号的分析。 4、为什么选择小波 小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT 方法,与STFT 方法比较具有更为明显的优势。 ) ,,,;,,,(),,,;,,,(21212121τττ+++=n n n n t t t x x x f t t t x x x f [][][] ??? ????∞<-=====?+∞ ∞-)(),()()(),()()(21 22121t x E t t R t x t x E t t R m dx x xf t x E x x x ττ时间幅度 小波变换 时间 尺度

小波工具箱常用函数

1.Cwt :一维连续小波变换 格式:coefs=cwt(s,scales,'wavename') coefs=cwt(s,scales,'wavename','plot') scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax] 2.dwt:单尺度一维离散小波变换 格式:[ca,cd]=dwt(x,'wavename') [ca,cd]=dwt(x,lo-d,hi-d) 先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d) 3.idwt:单尺度一维离散小波逆变换 4.wfilters 格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname') [f1,f2]=wfilters('wname','type') type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器) 5.dwtmode 离散小波变换模式 格式:dwtmode dwtmode('mode') mode:zdp补零模式,sym对称延拓模式,spd平滑模式 6.wavedec多尺度一维小波分解 格式:[c,l]=wavedec(x,n,'wname') [c,l]=wavedec(x,n,lo-d,hi-d)

7.appcoef 提取一维小波变换低频系数 格式:A=appcoef(c,l,'wavename',N) A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例: loadleleccum; s=leleccum(1:2000) subplot(421) plot(s); title('原始信号') [c,l]=wavedec(s,3,'db1'); ca1=appcoef(c,l,'db1',1); subplot(445) plot(ca1); ylabel('ca1'); ca2=appcoef(c,l,'db1',2); subplot(4,8,17) plot(ca2); ylabel('ca2'); 8.detcoef 提取一维小波变换高频系数 格式:d=detcoef(c,l,N),N尺度的高频系数 d=detcoef(c,l,) 最后一尺度的高频系数 例:

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

小波变换函数(自己总结)

2.1小波分析中的通用函数 1 biorfilt双正交小波滤波器组 2 centfrg计算小波中心频率 3 dyaddown二元取样 4 dyadup二元插值 5 wavefun小波函数和尺度函数 6 wavefun2二维小波函数和尺度函数 7 intwave积分小波函数fai 8 orthfilt正交小波滤波器组 9 qmf镜像二次滤波器(QMF) 10 scal2frg频率尺度函数 11 wfilters小波滤波器 12 wavemngr小波管理 13 waveinfo显示小波函数的信息 14 wmaxlev计算小波分解的最大尺度 15 deblankl把字符串变成无空格的小写字符串 16 errargn检查函数参数目录 17 errargt检查函数的参数类型 18 num2mstr最大精度地把数字转化成为字符串 19 wcodemat对矩阵进行量化编码 20 wcommon寻找公共元素 21 wkeep提取向量或矩阵中的一部分 22 wrev向量逆序 23 wextend向量或矩阵的延拓 24 wtbxmngr小波工具箱管理器 25 nstdfft非标准一维快速傅里叶变换(FFT) 26 instdfft非标准一维快速逆傅里叶变换 27 std计算标准差 2.2小波函数 1 biorwavf双正交样条小波滤波器 2 cgauwavf复Gaussian小波 3 cmorwavf复Morlet小波 4 coifwavf Coiflet小波滤波器 5 dbaux Daubechies小波滤波器 6 dbwavf Daubechies小波滤波器 7 fbspwavf频率分布B-Spline小波 8 gauswavf Gaussian小波 9 mexihat墨西哥小帽函数 10 meyer meyer小波11 meyeraux meyer小波辅助函数 12 morlet Morlet小波 13 rbiowavf反双正交样条小波滤波器 14 shanwavf 复shannon小波 15 symaux计算Symlet小波滤波器 16 symwavf Symlets小波滤波器 2.3一维连续小波变换 1 cwt一维连续小波变换 2 pat2cwav从一个原始图样中构建一个小波函数 2.4一维离散小波变换 1 dwt但尺度一维离散小波变换 2 dwtmode离散小波变换拓展模式 3 idwt单尺度一位离散小波逆变换 4 wavedec多尺度一维小波分解(一维多分辨率分析函数) 5 appcoef提取一维小波变换低频系数 6 detcoef提取一维小波变换高频系数 7 waverec多尺度一维小波重构 8 upwlex单尺度一维小波分解的重构 9 wrcoef对一维小波系数进行单支重构 10 upcoef一维系数的直接小波重构 11 wenergy显示小波或小波包分解的能量 2.5二维离散小波变换 1 dwt2单尺度二维离散小波变换 2 idwt2单尺度逆二维离散小波变换 3 wavedec2多尺度二维小波分解(二维分辨率分析函数) 4 waverec2多尺度二维小波重构 5 appcoef2提取二维小波分解低频系数 6 detcoef2提取二维小波分解高频系数 7 upwlev2二维小波分解的单尺度重构 8 wrcoef2对二维小波系数进行单支重构 9 upcoef二维小波分解的直接重构 2.6离散平稳小波变换 1 swt一维离散平稳小波变换 2 iswt一维离散平稳小波逆变换 3 swt2二维离散平稳小波变换 4 iswt2二维离散平稳小波逆变换

小波分析简述

第一篇:小波分析发展历史简述 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。 1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1991年,Alpert用多项式构造了第一个多小波。Geronimo等利用分形插值函数构造了正交、对称、紧支撑、逼近阶位2的GHM多小波。1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Bamberger和Smith提出无冗余且能完全重构的方向滤波器(Directional Filter Banks,DFB,也即2D-DFB),DFB能有效地对二维信号进行方向分解。具有不可分性,把DFB从二维扩展多维,至今没有完美的实现方法。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。

第6章 气象上常用小波及其应用

第6章 气象上常用小波及其应用实例(1) 前面五章讲述了小波分析方法的由来和原理,这些基本知识为气象上实际应用奠定了基础。本章将介绍气象上常用的几种小波,特别是Haar 小波和墨西哥帽(Mexihat )小波,以及小波分析的应用实例。 6.1 二进小波 二进小波的产生基于第4章的“二分法”。它的基本思路是把连续型函数)(t f 及其连续小波变换),(b a W f 离散化,以便于实际应用。作为一种方便和常用的形式,是对小波参数中的放(伸)缩因子a 进行二进制离散。若小波函数系的表达式 {} Z m,n n t a m ∈-- ),(ψ (?? ) 中的放缩因子)(2Z j a j ∈=,则称)(t ψ为二进小波。把经过这种离散化后的二进小波的变换, 称为二进小波变换。 强调说明:在应用时所用的小波函数系(式(??))与前面第4章第3节的式(?)有所不同。比照这两式: ),()(),2(2 )(,2 /,b at a t k t t b a j j k j -= -=ψψψψ 或 (?) ),()(,n t a t m n m -=-ψψ (?? ) 可以看出,二者主要的不同点是t 的系数a 指数正负号恰好相反。所以,用式(?)的小波作变换时,随着a (或者j )的增大,W 曲线变窄;而用式(??)的小波作变换时,随着a (或者j )的增大,W 曲线变宽。 定义6.1 函数)()(2R L t ∈ψ被称为二进小波,若存在两个常数∞<≤

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

五种常见小波基函数及其matlab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。 Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。Haar 函数 的定义如下: 1 021121(t)-1 t t ≤≤≤≤ψ=?????其他 Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点: 1. 计算简单。 2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此, 在2j a =的多分辨率系统中,Haar 小波构成一组最简单的正交归一的 小波族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j Haar 小波的时域和频域波形

Daubechies(dbN)小波 Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。小波(t)ψ和尺度函数(t)φ中的支撑 区为12-N ,(t)ψ的消失矩为N 。除1=N (Harr 小波)外,dbN 不具有

第六章 小波变换的几个典型应用

第六章 小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 ???????≤≤++-≤≤++-=1000501)()3.0sin(500 10005001)()3.0sin(500 1 )(t t b t t t t b t t t s 应用db5小波对该信号进行7层分解。xiaobo0601.m 100 200 300 400500600 700 800 900 1000 -4-3-2-1012345 6样本序号 n 幅值 A 图6-1含躁的三角波与正弦波混合信号波形 分析: (1) 在图6-2中,逼近信号a7是一个三角波。 (2) 在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4) 与正弦信号相关。

01002003004005006007008009001000 -101a 7 01002003004005006007008009001000 -202a 6 01002003004005006007008009001000 -202a 5 01002003004005006007008009001000 -202a 4 01002003004005006007008009001000 -505a 3 01002003004005006007008009001000 -505a 2 010******* 4005006007008009001000 -5 05a 1 样本序号 n 图6-2 小波分解后各层逼近信号 01002003004005006007008009001000 -101d 7 01002003004005006007008009001000 -101d 6 01002003004005006007008009001000 -101d 5 01002003004005006007008009001000 -202d 4 01002003004005006007008009001000 -202d 3 01002003004005006007008009001000 -202d 2 010******* 4005006007008009001000 -5 05d 1 样本序号 n 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波分析理论简介

小波分析理论简介 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数 )(t f ,都可以用三角级数表示: )(t f = ∑∞ -∞=k ikt k e C = 20 a + ∑∞=1cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21 ? -π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= )(k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: )(t f =2 0a + )sin cos (12 1∑-=+N k k k k k t b t a ωω+t a N N 2 2cos 21 ω=∑-=1 0N k t i k k e C ω (4) 其中 ∑-== 1 02cos 2 N m m k N km x N a π ,=k 0,1,2,…,2N (5) ∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ? ∞ ∞ --= dt e t f f t i ωω)()( =t i e f ω, (9) ωωπ ωd e f t f t i )(21 )(? ∞ ∞ -= (10)

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

相关文档
最新文档