抽油机井系统效率计算公式word精品

抽油机井系统效率计算公式word精品
抽油机井系统效率计算公式word精品

机采系统节能指标

、抽油机井系统效率

抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。

P i

其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现

场测试取得,抽油井的有效功率可由以下公式计算:

Q? H- p ?g

P e= -------------------

86400

式中:P e——有效功率,KW;

Q油井日产液量,vn/d ;

H—有效扬程,m

3

p ――油井液体密度,t/m ;

g --- 重力加速度,g=9.8m/s ;

其中有效扬程:

(Po- Pt )x 1000

H=Hd + - ------------------------

p ?g

式中:H ------------ 油井动液面深度,m;

Po ---------- 井口油压,MPa;

Pt ----------- 井口套压,MPa;

二、抽油机井平衡合格率

1、抽油机井平衡度

抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时

最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)

平衡度=(1下行峰值/I上行峰值)x 100%

采液用电单耗:油井采出每吨液的用电量,单位Kw.h/t

采液用电单耗=W/Q

式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d

2、抽油机井平衡度合格率:抽油机井平衡度达标的井数占总开井数的比值。

抽油机井平衡度合格率=(S合格/S总)X 100%

式中:S合格一抽油机井平衡度达标的井数;

S 总—抽油机开井总数。

三、抽油机井泵效抽油机井的实际产液量与泵的理论排量的比值叫做泵效。

n = (Q实/Q 理)X 100%

式中:n—泵效(%) Q实一指核实日产液量(m3/d);

Q理一泵理论排液量(m3/d);

其中:Q理=1.1304 X 10-3X S X NX D2

式中:S—冲程(m) N —冲数(n/m) D —泵径(mm);

四、采液用电单耗

油井采出每吨液的用电量,单位Kw.h/t

采液用电单耗=W/Q

式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d

抽油机平衡判断方法与调整方案比较

抽油机平衡判断方法与调整方案比较 发表时间:2015-02-05T15:37:53.943Z 来源:《科学与技术》2014年第12期下供稿作者:宋先龙 [导读] 油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。 中石化胜利油田分公司胜利采油厂宋先龙 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析了评价抽油机平衡的3个基本准则,指出3个评价标准均可通过提取抽油机单冲程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3个基本准则时,可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法 由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3个基本准则。若抽油机运行中能同时满足3个平衡准则时,则抽油机工作状态最佳,处于较节能的状态。 1 抽油机平衡判断原则 根据《游梁式抽油机平衡的评价标准》中规定,电流法和平均功率法是抽油机调平衡的方法,但这2种方法都可归于基本准则:1)准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转矩的均方根值最小。(1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准则可计算出平衡装置所储存或释放的能量A0为 A0=(Au+Ad)/2 (1) 式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所做的功。A0可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包围面积和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有 (2) 式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数;t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。(2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近 似成正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。 (3)准则三。调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为 从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动机的电流取决于载荷转矩。因此,要求电动机载荷转矩的均方根值最小。只要保证曲柄轴转矩的均方根值最小,就能保证电动机负载转矩均方根值及电流的均方根值最小,即电动机工作在节能状态。因此,曲柄轴的均方根转矩最小时,抽油机可安全节能地工作。电动机的载荷转矩通常不易测量,但功率容易测量。对于转差不大,转速变化较小的电动机,近似认为电动机转速与曲柄轴角速度是常数,曲柄轴转矩与电动机输入功率大体成正比。 可利用电动机的均方根功率的极小值作为判据对抽油机平衡率进行调节。只有当功率曲线傅里叶级数的正弦分量占主要作用时,这种调节方式才能起到较好的效果。 2 调整判断方法 2.1 电流法 尽管电流法测试抽油机平衡时会出现假平衡状态,但这种方法简单,仍被采油单位所采用。实际应用时对非平衡抽油机进行调整,(3) 式中:ΔR为达到平衡时平衡块的移动量;Mmax为抽油机最大转矩;Wb为平衡块重;Wmax、Wmin为悬点最大和最小载荷;S为冲程;n为冲次。该方法适用于现场抽油机平衡状态较好情况,当抽油机严重不平衡时,此方法无法有效调整平衡。 2.2 功率法 功率法是通过测量电动机的功率变化曲线,分析抽油机的平衡情况,当下冲程和上冲程最大功率的百分比在80%~100%之间时,则认为功率平衡,此值通常不大于100%。这种判断方法与电流法原理相同,但该方法可以克服抽油机的假平衡现象,即当抽油机带动电动机发电时,测量的功率曲线为负值。 3 调整原则比较 由以上分析可知:准则一采用抽油机上、下冲程功率曲线的面积比;准则二采用上、下冲程功率曲线的峰值比;准则三是对功率曲线进行傅里叶级数展开,使抽油机工作时电动机均方根功率取得极小值。任何一种平衡准则都与电动机功率曲线相关,因此,通过对功率曲线进行分析可实现抽油机平衡率调节。当抽油机处于良好平衡状态时,曲柄轴转矩曲线等效于功率曲线。抽油机的上、下冲程是对称的,采用准则一和准则二来判断平衡率将得到相同的结果,而准则三需要滤除曲线的一阶正弦分量,得到不同的功率曲线。若对新功率曲线

如何提高抽油机平衡率

如何提高抽油机平衡率 一、立项的目的、意义、现状 随着油田节能形势的要求,如何使抽油机井达到平衡状态,节能降耗显愈来愈为重要,我队有抽油机井146口,每月开井近134口,但抽油井平衡率只有70%左右,一直以来达不到厂矿要求,为改变这种状况,我们小组选择这一课题进行活动,力争取得较好的效果。 二、主要研究内容及解决的主要问题 1、通过活动分析造成抽油机井平衡率低的各种因素,并针对要因采取对策。 2、通过活动加深了员工对抽油机井管理重要性,加强管理,提高抽油井管理水平。 3、强化管理制度的执行,杜绝违反操作规程和不严格执行质量标准现象。 三、预期目标及成果验收条件 经开展本课题活动使目前抽油机井平衡率有所提高,降低影响抽油机井不平衡因素。 四、抽油机井平衡率简介 抽油机井平衡率作为油井管理中的重要指标,抽油机悬点在工作中承受着脉动负荷,由于其在工作过程中的不对称性,上下冲程相差很多,一般来说,上冲程载荷大,下冲程载荷小,使得上冲程电机所受负荷很大,电机做功大,而下冲程电机做功小,还会呈现出负功状态,造成悬点紧拉着旋转口使得电机受力不均而造成的抽油机失去平衡。因而会对抽油机产生损害。这种损害表现在:第一,浪费电能,降低抽油机的工作效率及使用寿命。这是由于抽油机在工作中担负的负荷过大,下冲程带着电机运转造成的。第二,由于抽油机在工作中,载荷很不均匀,致使抽油机发生震动,进而对其使用寿命产生影响。第三,会使曲柄旋转不平衡,失去均匀的转动速度,进而影响到抽油机以及泵体工作,从而对油井产量产生影响。因此,在抽油机工作过程中,在单井必须要保持其平衡率在85%

以上。 五、抽油机不平衡造成的危害 1、对电机:由于抽油机不平衡引起电机负荷不均匀,上冲程中电动机承受着极大的负荷,下冲程中抽油机带动电机运转,造成功率的浪费,降低了效率缩短了电机寿命。’ 2、对抽油机:由于抽油机曲柄运转不平衡,使抽油机发生振动,导致各连接螺丝松动,易出现故障,影响抽油机装置的使用寿命。 3、对抽油泵及抽油杆:由于运转速率不平衡,影响了抽油杆和泵的正常工作。 六、抽油机平衡方法 按照平衡原理和平衡装置所安装的位置不同,可分为机械平衡和气动平衡两类(一)机械平衡 1、游梁平衡:游梁的尾部装设一定重量的平衡板以达到平衡的目的。这是一种简单的平衡方式。 优点:平衡块重量轻,螺丝固定,谪书考便; 缺点:安装位置高,平衡过重会产生较大的损性力,所以平衡块不宜加得太多。适用;驴头悬重在3吨以下的轻型抽油机。 2、曲柄平衡:将平衡块安装在曲柄上来进行平衡的方式叫曲柄平衡。 优点:调整方便,通过调整其在曲柄上的位置及平衡块重量就可以完成。 缺点:重量大,离心力大,易发生机械事故。 适用:驴头悬重在10吨以上的重型抽油机 3、复合平衡:是在同一台抽油机上,既有游梁平衡,又有曲柄平衡的叫复合平衡。 优点:调节方便,小范围调整时,可调整游梁平衡块,大范围调整时,则调整曲柄平衡块。 缺点:惯性力和离心力依然存在 (二)气动平衡 利用气体的可压缩性储存和释能量,来达到平衡目的的方式叫气平动平衡。优点:减少了抽油机的动负荷及震动,平衡效率高。

影响抽油机系统效率的因素分析

影响抽油机系统效率的因素分析 首先电动机和抽油机对地面效率影响较大。在抽油机选型时,由于过分考虑设备的“储备”能力,部分油井选择的抽油机型过大(包括装机功率),发生“大马拉小车”的现象,这种“大马拉小车”的结果是抽油机额定载荷与实际载荷相差较大,电机负载率较低,地面效率明显下降,对提高抽油机井系统效率极为不利。这种工况下电动机自身工作效率低,一般运行效率在额定效率50%以下。 行,地面效率较低。调节抽油机平衡,可以降低单井耗电量,降低电机功率,减少空耗损失,提高地面效率。抽油机要达到100%的平衡度是较困难的,但依据机型和井况的不同,应尽力把平衡度控制在80%~120%之间。调平衡是提高系统效率中投资小,见效快的一个办法。 测试表明,岔河集油田抽油机井平衡度小于80%和大于120%共有69口井,约占总井数的16%。 径、冲次等抽汲参数不合理。部分抽油机井的液面在井口,却仍用小泵径、慢冲次的工作制度,导致系统效率过低。此外,抽油机“五率”达标率低,电机皮带过松,盘根过紧等对油井整体效率也有一定影响。 泵况对井下效率的影响主要表现在:一是泵、管漏失严重影响井下效率。实际上,泵的正常漏失量(柱塞与衬套间的设计漏失量)很小,因而它对井下效率影响很小,这里的“漏失”是指除正常漏失外的所有漏失即非正常漏失。通过现场憋压等测试手段分析,岔河集油田30%以上的油井存在不同程度的管漏失及泵筒间隙磨大、游动凡尔、固定凡尔漏失。泵的非正常漏失,不仅会减少有效功率,而

且将增加井下损耗。二是气体影响井下效率。高气油比使得泵充满度降低,甚至气锁,影响了泵的排量系数,对井下效率影响很大。虽然测试井中高气油比井的井数不多,但因为其系统效率很低,平均系统效率仅为12%,远低于整体平均系统效率24.5%。三是供液不足影响井下效率。部分油井供液能力差,沉没度不够,导致泵充满度降低,泵效低下,影响了井下效率。 油井产液量与井下效率的关系 油井结蜡、出砂及抽油杆的磨擦导致杆柱载荷增大,造成杆柱有效功率降低,井下无功损耗增加,影响了井下效率。深泵挂及尼、扶杆的大规模应用也导致杆柱载荷增大。此外,井斜也加剧杆管偏磨,井下阻力损耗增加,导致井下功率损失。偏磨类油井比较多,占全部油井的32%。 抽汲参数(泵径、泵深、冲程、冲数等)的匹配有若干个,总有一个是投资省、系统效率高的最佳方案。因此必须对抽汲参数进行优选。即使同一区块的油井在油藏地质条件、供液能力、气油比等个体特征也往往存在明显的差异,落实到具体的单井上,必须根据每口井的具体条件进行单井优化设计。根据井况选择合理的泵,以适应含气、出砂、结蜡等井况的要求,同时应用配套技术,来解决抽油井受气、砂、蜡等影响泵效的矛盾。

抽油机井系统效率计算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P e P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q, H- p - g P e= ----------------------------- 86400 式中:P e——有效功率,KVV Q-一油井日产液量,m3/d ; H—有效扬程,m P——油井液体密度,t/m3; g --- 重力加速度,g=9.8m/s2; 其中有效扬程: (P L Pt)x 1000 H=Hd + - ------------------------ P - g 式中:H ------------ 油井动液面深度,m; P ------------ 井口油压,MPa; Pt ---------- 井口套压,MPa; 二、抽油机井平■衡合格率 1、抽油机井平■衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%? 平衡)

平衡度=(I下行峰值/I上行峰值)X 100% 采液用电单耗:油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,Kw, CH油井日产液量,t3/d 2、抽油机井平■衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S总一抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 = (Q实/Q 理)X 100% T] 式中:门一泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 x 10一3 x Sx NX D 式中:S一冲程(m) N 一冲数(n/m) D —泵径(mm); 四、米液用电单耗 油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,K^『油井日产液量,t3/d

抽油机井系统效率计算公式

一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 i e p p =η 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q·H·ρ·g P e =———————— 86400 式中:Pe ——有效功率,KW ; Q ——油井日产液量,m 3/d ; H ——有效扬程,m ; ρ——油井液体密度,t/m 3; g ——重力加速度,g=9.8m/s 2; 其中有效扬程: (Po —Pt )×1000 H=Hd + --———————— ρ·g 式中:Hd ————油井动液面深度,m; Po ————井口油压,MPa; Pt ————井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)。 平衡度=(I 下行峰值/I 上行峰值) ×100% 采液用电单耗:油井采出每吨液的用电量,单位t

采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d 2、抽油机井平衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)×100% 式中:S合格—抽油机井平衡度达标的井数; S总—抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。η=(Q实/Q理)×100%; 式中:η—泵效(%) Q实—指核实日产液量(m3/d); Q理—泵理论排液量(m3/d); 其中:Q理=×10-3×S×N×D2 式中:S—冲程(m) N—冲数(n/m) D—泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d

抽油机平衡判断标准与调整方法

抽油机平衡判断标准与调整方法 发表时间:2014-09-03T16:11:22.187Z 来源:《科学与技术》2014年第6期下供稿作者:单体琴于春兰 [导读] 为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。 现河采油厂采油一矿单体琴于春兰 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析了评价抽油机平衡的3 个基本准则,指出3 个评价标准均可通过提取抽油机单冲程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3 个基本准则时,可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。若抽油机运行中能同时满足3 个平衡准则时,则抽油机工作状态最佳,处于较节能的状态。 1 抽油机平衡判断原则根据《游梁式抽油机平衡的评价标准》中规定,电流法和平均功率法是抽油机调平衡的方法,但这 2 种方法都可归于基本准则:1)准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转矩的均方根值最小。 (1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准则可计算出平衡装置所储存或释放的能量A0 为A0=(Au+Ad)/2 (1)式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所做的功。A0 可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包 围面积和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有 式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数;t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。 (2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近似成正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。(3)准则三。 调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动机的电流取决于载荷转矩。因此,要求电动机载荷转矩的均方根值最小。只要保证曲柄轴转矩的均方根值最小,就能保证电动机负载转矩均方根值及电流的均方根值最小,即电动机工作在节能状态。因此,曲柄轴的均方根转矩最小时,抽油机可安全节能地工作。电动机的载荷转矩通常不易测量,但功率容易测量。对于转差不大,转速变化较小的电动机,近似认为电动机转速与曲柄轴角速度是常数,曲柄轴转矩与电动机输入功率大体成正比。 可利用电动机的均方根功率的极小值作为判据对抽油机平衡率进行调节。只有当功率曲线傅里叶级数的正弦分量占主要作用时,这种调节方式才能起到较好的效果。 2 调整判断方法2.1 电流法尽管电流法测试抽油机平衡时会出现假平衡状态,但这种方法简单,仍被采油单位所采用。实际应用时对非平衡抽油机进行调整, 式中:ΔR为达到平衡时平衡块的移动量;Mmax为抽油机最大转矩;Wb为平衡块重;Wmax、Wmin为悬点最大和最小载荷;S为冲程;n为冲次。该方法适用于现场抽油机平衡状态较好情况,当抽油机严重不平衡时,此方法无法有效调整平衡。 2.2 功率法功率法是通过测量电动机的功率变化曲线,分析抽油机的平衡情况,当下冲程和上冲程最大功率的百分比在80%~100%之间时,则认为功率平衡,此值通常不大于100%。这种判断方法与电流法原理相同,但该方法可以克服抽油机的假平衡现象,即当抽油机带动电动机发电时,测量的功率曲线为负值。 3 调整原则比较由以上分析可知:准则一采用抽油机上、下冲程功率曲线的面积比;准则二采用上、下冲程功率曲线的峰值比;准则三是对功率曲线进行傅里叶级数展开,使抽油机工作时电动机均方根功率取得极小值。任何一种平衡准则都与电动机功率曲线相关,因此,通过对功率曲线进行分析可实现抽油机平衡率调节。当抽油机处于良好平衡状态时,曲柄轴转矩曲线等效于功率曲线。抽油机的上、下冲程是对称的,采用准则一和准则二来判断平衡率将得到相同的结果,而准则三需要滤除曲线的一阶正弦分量,得到不同的功率曲线。若对新功率曲线采用准则一和准则二时,将与原功率曲线得到不同的平衡率;而准则二仅考虑上、下冲程的峰值功率,信息量偏少,在实际应用中与准则一得到的平衡结果存在差别。由此可见,采用3 种平衡准则分别调节抽油机时,将得到3 种不同的平衡效果,具体哪种情况

抽油机国内外研究现状与发展趋势

抽油机国内外研究现状与发展趋势 一.国内抽油机研发现状 油机是有杆抽油系统中最主要举升设备。根据是否有游梁,可分为游梁式抽油机和无游梁式抽油机。经过一百多年的实践和不断的改进创新,抽油机不管是结构形式还是在使用功能上,都产生了很大的变化。特别是近几十年来,世界对原油的需求量不断加大,对油田深度开采的能力有了更进一步的要求,在很大程度上加快了抽油机技术发展的速度,催生出多种类型。目前, 国内抽油机制造厂有数十家, 产品类型已多样化, 但游梁式抽油机仍处于主导地位。根据公开发表的资料统计, 我国现有6 大类共45 种新型抽油机[ 1] , 并且每年约有30 种新型抽油机专利, 十多种新试制抽油机[2] , 已形成了系列, 基本满足了陆地油田开采的需要。各种新型节能游梁式抽油机如双驴头式抽油机、前置式抽油机、异相曲柄平衡抽油机、前置式气平衡抽油机、下偏杠铃系列节能抽油机[ 3]和用窄V 形带传动的常规抽油机等均已在全国各个油田推广应用, 并取得了显著的经济效益。长冲程、低冲次的无游梁式抽油机的研制也取得了一些进展, 如由胜利油田研制的无游梁链条抽油机, 经过国内十几个油田稠油及丛式井的推广使用[4], 在低冲次抽油和抽稠油方面已初见成效。此外, 桁架结构的滑轮组增距式抽油机、滚筒式长冲程抽油机已在某些油田进行了工业试验[5]; 齿轮增距式长冲程抽油机的研制工作也取得了新的进展; 质量轻、成本低、便于调速和调整冲程的液压抽油机经过几年的研制和工业性试采油, 也积累了一定的经验[6]。其他型式新颖的抽油机如数控抽油机、连续抽油杆抽油机、车载抽油机、磨擦式抽油机、六连杆游梁式抽油机和斜直井抽油机等也正处于不断改造和试生产过程中[7]。然而,游梁式抽油机的缺点是不容易实现长冲程低冲次的要求,因而不能满足稠油井、深抽井和吉气井采油作业的需要。同时,长冲程低冲次的无游梁式抽油机的性能尚有待完善 (如油田正在使用的链条式抽油机还存在链条寿命短、换向冲击载荷大和钢丝绳易断、导轨刚.度不足容易变形等问题),而且品种规格还很少,不能适应当前石油工业的发展[8]。液压抽油机至今仍处在研制阶段[9] 二·国外抽油机的研发现状 目前,世界上生产抽油机的国家主要有美国、俄罗斯、法国、加拿大和罗马尼亚等[10]。为了减少能耗, 提高采油经济效益, 近年来国外研制与应用了许多节能型抽油机。例如异相型抽油机节电15%~ 35%; 前置式抽油机节电368% 前置式气平衡抽油机节电35% 轮式抽油机节电50%~ 80% 大圈式抽油机节电30%; 自动平衡抽油机节电30% ~ 50%; 低矮型抽油机节电5% ~20%; ROTAFLEX 抽油机节电25% 智能抽油机节电174%; 螺杆泵采油系统节电40%~ 50% [11]。近年来国外很重视改进和提高抽油机的平衡效果, 使抽油机得到更精确平衡。近年来, 为了节约能耗、提高采油经济效益, 国外研制与应用了许多节能型抽油机, 在采油实践中, 取得较好的使用效果。如变平衡力矩抽油机, 可使上冲程平衡力矩大于下冲程力矩。前置式气平衡抽油机, 由于可在动态下调节气平衡, 平衡效果较好。气囊平衡抽油机有90% 以上载荷得到平衡[12]。双井抽油机可利用两口油井抽油杆柱合理设计得到更精确的平衡。自动平衡抽油机可保证在上下冲程每一瞬间得到较精确的平衡效果[13]。近年来国外研制与应用了多种类型长冲程抽油机, 其中包括增大冲程游梁抽油机、增大冲程无游梁抽油机和长冲程无游梁抽油机[14]。 1 前置式气平衡抽油机美国工J uf kin 公司生产的A 系列前置式气平衡抽油机具有较好的技术经济指标, 抽油机重量减轻40 %, 尺寸缩小3 5 % , 动载荷

抽油机井系统效率计算公式word精品

机采系统节能指标 、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现 场测试取得,抽油井的有效功率可由以下公式计算: Q? H- p ?g P e= ------------------- 86400 式中:P e——有效功率,KW; Q油井日产液量,vn/d ; H—有效扬程,m 3 p ――油井液体密度,t/m ; g --- 重力加速度,g=9.8m/s ; 其中有效扬程: (Po- Pt )x 1000 H=Hd + - ------------------------ p ?g 式中:H ------------ 油井动液面深度,m; Po ---------- 井口油压,MPa; Pt ----------- 井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)

平衡度=(1下行峰值/I上行峰值)x 100% 采液用电单耗:油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d 2、抽油机井平衡度合格率:抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S 总—抽油机开井总数。 三、抽油机井泵效抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 n = (Q实/Q 理)X 100% 式中:n—泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 X 10-3X S X NX D2 式中:S—冲程(m) N —冲数(n/m) D —泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d

抽油机平衡扭矩与功率计算

第三节抽油机平衡、扭矩与功率计算 一、教学目的 掌握抽油机的平衡原理、平衡方式;熟悉机械平衡的计算方法、抽油机平衡的检验方法以及曲柄轴扭矩计算及分析方法;根据电动机的功率计算合理选用电动机。 二、教学重点、难点 教学重点: 1、抽油机平衡的原理及其计算方法; 2、曲柄轴扭矩的计算及分析。 教学难点: 1、扭矩因数的计算; 2、电动机功率的计算及选择。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和曲线。 四、教学内容 本节主要介绍三个方面的问题: 1.抽油机平衡计算. 2.曲柄轴扭矩计算及分析. 3.电动机的选择和功率计算. (一)抽油机平衡计算 不平衡原因: 上下冲程中悬点载荷不同,造成电动机在上、下冲程中所做的功

不相等。 不平衡造成的后果: ①上冲程中电动机承受着极大的负荷,下冲程中抽油机带着电动机运转,造成功率的浪费,降低电动机的效率和寿命; 1

2、平衡方式 3、平衡计算 1)复合平衡 平衡半径公式: ()cb c c cb b ub cb l r W W R W r b c W X W r b a W W R -+-??? ? ?'+'=2 2)曲柄平衡

ub r b X c a W W W -' +'=)2(1 4、抽油机平衡检验方法 1)测量驴头上、下冲程的时间 平衡条件下上、下冲程所用的时间基本相等。

如果上冲程快,下冲程慢,说明平衡过量。 2)测量上、下冲程中的电流 平衡条件下上、下冲程的电流峰值相等。 如果上冲程的电流峰值大于下冲程的电流峰值,说明平衡不够。 1ψ 图3-23 抽油机几何尺寸与曲销受力图 复合平衡抽油机:φβ α θsin sin sin )](cos ['r W r g a a c W b c P b a M c A b com ---= 曲柄平衡抽油机:φβ α sin sin sin r W r P b a M c cr '-= 游梁平衡抽油机:βα θsin sin )](cos [r g a a c W b c P b a M A b wb --=

抽油机平衡判断标准与调整方法

抽油机平衡判断标准与调整方法 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析 了评价抽油机平衡的3 个基本准则,指出3 个评价标准均可通过提取抽油机单冲 程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3 个基本准则时, 可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二 中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法由于游梁式抽油机复杂 的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机 平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会 出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流 表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法 无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转 矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。若 抽油机运行中能同时满足3 个平衡准则时,则抽油机工作状态最佳,处于较节能 的状态。 1 抽油机平衡判断原则根据《游梁式抽油机平衡的评价标准》中规定,电流 法和平均功率法是抽油机调平衡的方法,但这2 种方法都可归于基本准则:1) 准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、 下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转 矩的均方根值最小。 (1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准 则可计算出平衡装置所储存或释放的能量A0 为A0=(Au+Ad)/2 (1)式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所 做的功。A0 可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电 能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油 机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包围面积 和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数; t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。 (2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴 的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的 测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近似成 正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。(3)准则三。 调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平 衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周 期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动

抽油机井系统效率分析及提高措施探讨

抽油机井系统效率分析及提高措施探讨 本文以抽油机井系统效率为研究视角,从影响抽油机井效率的因素出发,探讨如何提高抽油机井系统的效率。 标签:抽油机井系统;效率;分析 抽油机井系统,就是对已经被勘探到的油田进行有效的开采,在系统当中的地下设备运行的主要目的就是将油田当中的石油资源吸取出来,然后沿着资源的输送管道运往到系统的地面设备当中进行加工处理。现阶段,石油资源在生产生活中扮演着越来越重要的角色,这就要求石油企业一定要提高抽油机井系统的效率,进而提高石油资源的开采效率。 1 影响抽油机井系统效率的因素 1.1 被抽原料 石油资源的形成是需要非常漫长的时间的,而在其形成的过程中,石油资源的质量会受到多种因素的影响,所以原油的品质是各不相同的。基于此,如果石油资源原油的粘度过高,就会使得系统内部的油井供应液体不足,这样就会导致抽油机设备处于不间断的运行状态,油泵自身的容器不满,抽油机系统不断的重复动作等相关问题,从而也就会使得大量的资源被浪费,降低抽油机井系统的运行效率,同時也会使得系统的磨损程度比较高。 1.2 抽油设备的运行 影响抽油机井系统运行的效率的主要因素是抽油机设备的运行,这主要包括两个方面。第一,外界因素对于设备的影响。这里所讲的外界因素是指油田内部的气体,在生产实践中为了有效确保抽油机井系统运行的效率,相关工作人员在实践当中,都会将石油抽管深埋到油田当中,从而最大限度的抽取石油资源,但是在这一过程中相关设备还是会受到外界因素的影响,进而也就会使得系统的运行效率受到影响。第二,设备的功率损失。结合石油开采的实践,抽油设备功率损失主要包括以下四个方面:①密封盒的功率损失;②油杆的功率损失;③抽油泵的功率损失;④管柱的功率损失。上述四种功率损失的根本原因是相同的,都是由于系统各个构建在运行的过程中,受到人为因素或者外界因素的影响,使得组件之间发生了一定的摩擦或者碰撞,进而使得除了正常摩擦功率以外的非正常摩擦功率出现,这样一来系统当中的各个组件就会受到大量的磨损,从而引发功率损失,最终也就导致了系统的运行效率降低。 1.3 抽油机的地面运行 所谓地面运行的问题主要就是地面设备在运行过程中所出现的系列问题,问题的类型非常多,在此笔者列出两种常见的问题。第一,与抽油机设备相匹配的

探讨抽油机平衡判断方法与调整措施

探讨抽油机平衡判断方法与调整措施 发表时间:2014-09-28T15:29:28.793Z 来源:《科学与技术》2014年第8期下供稿作者:马健米长东刘敏[导读] 由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。 中石化胜利油田临盘采油厂马健米长东刘敏摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析了评价抽油机平衡的3个基本准则,指出3个评价标准均可通过提取抽油机单冲程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3个基本准则时,可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油 机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3个基本准则。若抽油机运行中能同时满足3个平衡准则时,则抽油机工作状态最佳,处于较节能的状态。 1 抽油机平衡判断原则 根据《游梁式抽油机平衡的评价标准》中规定,电流法和平均功率法是抽油机调平衡的方法,但这2种方法都可归于基本准则:1)准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转矩的均方根值最小。(1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准则可计算出平衡装置所储存或释放的能量A0为 A0=(Au+Ad)/2 (1)式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所做的功。A0可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包围面积和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有 (2)式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数;t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。(2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近似成正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。 (3)准则三。调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动机的电流取决于载荷转矩。因此,要求电动机载荷转矩的均方根值最小。只要保证曲柄轴转矩的均方根值最小,就能保证电动机负载转矩均方根值及电流的均方根值最小,即电动机工作在节能状态。因此,曲柄轴的均方根转矩最小时,抽油机可安全节能地工作。电动机的载荷转矩通常不易测量,但功率容易测量。对于转差不大,转速变化较小的电动机,近似认为电动机转速与曲柄轴角速度是常数,曲柄轴转矩与电动机输入功率大体成正比。 可利用电动机的均方根功率的极小值作为判据对抽油机平衡率进行调节。只有当功率曲线傅里叶级数的正弦分量占主要作用时,这种调节方式才能起到较好的效果。 2 调整判断方法 2.1 电流法 尽管电流法测试抽油机平衡时会出现假平衡状态,但这种方法简单,仍被采油单位所采用。实际应用时对非平衡抽油机进行调整, (3)式中:ΔR为达到平衡时平衡块的移动量;Mmax为抽油机最大转矩;Wb为平衡块重;Wmax、Wmin为悬点最大和最小载荷;S为冲程;n为冲次。该方法适用于现场抽油机平衡状态较好情况,当抽油机严重不平衡时,此方法无法有效调整平衡。 2.2 功率法 功率法是通过测量电动机的功率变化曲线,分析抽油机的平衡情况,当下冲程和上冲程最大功率的百分比在80%~100%之间时,则认为功率平衡,此值通常不大于100%。这种判断方法与电流法原理相同,但该方法可以克服抽油机的假平衡现象,即当抽油机带动电动机发电时,测量的功率曲线为负值。

抽油机平衡率影响因素与治理对策

龙源期刊网 https://www.360docs.net/doc/852459437.html, 抽油机平衡率影响因素与治理对策 作者:张海春 来源:《中国科技博览》2013年第33期 【摘要】油田生产的举升方式包括抽油机、螺杆泵、电泵等,其中游梁式抽油机是油田 生产的主要设备,也是主要的电能消耗源之一,同时其利用效率很低,一般在20%~30%之间,甚至更低。在游梁式抽油机的工作过程中,它的平衡直接影响到其效能。井下载荷随着生产的进行会不断发生变化,如杆管之间摩擦的改变,含水量改变,沉没度的升降等从而不断打破游梁式抽油机原有的平衡。找出日常生产管理中影响抽油机井平衡率的各种因素,总结提高平衡率的有效方法。 【关键词】抽油机;平衡原理;平衡率;对策 中图分类号:TE933 前言 东辛油田经过多年高速开发,目前已进入开发中后期,含水急剧上升,注水水质差,生产油井井况差,地层水矿化度高,腐蚀、偏磨、地面管线结垢等一系列问题,导致近年来油井杆断脱、管泵漏失率增高,检泵维护频繁,开井时率降低,作业占产大等一系列问题,油井管理面临许多困难。而平衡率是衡量单井管理的重要指标,本文重点对如何提高油井平衡率展开论述。 1 抽油机平衡率 抽油机井平衡率是日常生产管理中的一项重要指标,抽油机在工作过程中悬点承受的是不对称的脉动载荷,上冲程载荷很大,下冲程载荷较小,这样就会造成上冲程电动机做功很大,下冲程电机做负功,即悬点拉着电机旋转口因此也就会造成抽油机不平衡。由于不平衡会对抽油机造成一系列的危害:一是上冲程过程中电机承受着极大的载荷,下冲程抽油机反而带者电动机运转做功,从而造成电能的浪费,降低电机的效率和使用寿命。二是由于承受的载荷极不均匀,会使抽油机发生激烈振动,从而影响设备的使用寿命。三是会破坏曲柄旋转速度的均匀性,使驴头上F摆动不均匀,影响抽油杆和泵的正常工作,进而影响油井的产量及检泵率,因此,抽油机在正常运转时必须采用调平衡的方式保证单井平衡率在85%以上。 2 需要的平衡 考虑睁载荷做功时,悬点在上冲程中做的功,则由上式得理论上需要的平衡功为: 3 抽油机平衡的原理与条件

相关文档
最新文档