关于Weierstrass定理的证明

关于Weierstrass定理的证明
关于Weierstrass定理的证明

高中数学公式定理大集中

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα 2cotα=1 sinα 2cscα=1 cosα 2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα 2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα 2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

勾股定理的逆定理专题练习

勾股定理的逆定理 专题训练 1.给出下列几组数:①111,,345 ;②8,15,16;③n 2-1,2n ,n 2+1;④m 2-n 2,2mn ,m 2+n 2(m>n>0).其中—定能组成直角三角形三边长的是( ). A .①② B .③④ C .①③④ D .④ 2.下列各组数能构成直角三角形三边长的是( ).A .1,2,3 B .4,5,6 C .12,13,14 D .9,40,41 3.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).A .8 B .10 C .11 个D .12个 4.如果一个三角形一边的平方为2(m 2+1),其余两边分别为m -1,m + l ,那么 这个三角形是( ); A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5.ABC ?的两边分别为5,12,另—边c 为奇数,且a + b + c 是3的倍数,则c 应为_________,此三角形为________. 6.三角形中两条较短的边为a + b ,a - b (a>b ),则当第三条边为_______时,此三角形为直角三角形. 7.若A B C ?的三边a ,b ,c 满足a 2+b 2+c 2+50=6a +8b +l0c ,则此三角形是_______三角形,面积为______. 8.已知在ABC ?中,BC =6,BC 边上的高为7,若AC =5,则AC 边上的高为 _________. 9.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为______,理由是_______. 10.一个三角形的三边分别为7cm ,24 cm ,25 cm ,则此三角形的面积为_________。 11.如图18-2-5,在ABC ?中,D 为BC 上的一点,若AC =l7,AD =8,CD=15,AB =10,求ABC ?的周长和面积. 12.已知ABC ?中,AB =17 cm ,BC =30 cm ,BC 上的中线AD =8 cm ,请你判断ABC ?的形状,并说明理由 .

高级中学数学公式定理一览表

高中所用重点公式汇总

公式口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》: 3.2 勾股定理的逆定理 填空题 1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长. (第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm. 3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米. (第4题)(第5题)(第6题) 5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号) 6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)

(第7题)(第8题)(第9题) 8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3) 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是. 10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米. (第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸. 13.观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= ,c= . 解答题 14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论; (2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

勾股定理的证明

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 2 142 142 2 2 ? +=? ++, 整理得 2 2 2 c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 2 1. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于() 2 b a +. ∴ () 2 2 2 14c ab b a +? =+. ∴ 2 2 2 c b a =+. D G C F A H E B a b c a b c a b c a b c b a b a b a b a c b a c b a c b a c b a c b a c b a

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

[整理]年高中数学定理汇总

124推论2 经过切点且垂直于切线的直线必经过圆心 125切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 126圆的外切四边形的两组对边的和相等 127弦切角定理弦切角等于它所夹的弧对的圆周角 128推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 129相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 130推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 131切割线定理从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 132推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 133如果两个圆相切,那么切点一定在连心线上 134①两圆外离d﹥r+r ②两圆外切d=r+r ③两圆相交r-r﹤d﹤r+r(r﹥r) ④两圆内切d=r-r(r﹥r) ⑤两圆内含d﹤r-r(r﹥r) 135定理相交两圆的连心线垂直平分两圆的公共弦 136定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 137定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 138正n边形的每个内角都等于(n-2)×180°/n 139定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 149正n边形的面积sn=pnrn/2 p表示正n边形的周长 141正三角形面积√3a²/4( a表示边长) 142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 143弧长计算公式:l=nπr/180 144扇形面积公式:s扇形=nπr2/360=lr/2 145内公切线长= d-(r-r) 外公切线长= d-(r+r) 146等腰三角形的两个底角相等 147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 148如果一个三角形的两个角相等,那么这两个角所对的边也相等 149三条边都相等的三角形叫做等边三角形 150两边的平方的和等于第三边的三角形是直角三角形 编辑本段数学归纳法 (—)第一数学归纳法: 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立 (2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 (二)第二数学归纳法: 第二数学归纳法原理是设有一个与自然数n有关的命题,如果:

勾股定理及其逆定理 一

勾股定理及其逆定理 一、知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2 ,那么这个三角形是直角三角形。 3、满足2 22c b a =+的三个正整数,称为勾股数。 二、典型题型 1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法. 例1已知 △ABC 中,∠ACB =90°,AB =5㎝.BC =3㎝,CD ⊥AB 于点D ,求CD 的长. (2)构造法.例8、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积. (3)分类讨论思想.(易错题) 例3在Rt △ABC 中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC 中,AB=15,AC=20,BC 边上的高线AD=12。试求BC 的长。 例5、在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 . 练习: 1、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

(5)方程思想. 例6如图4,AB 为一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐苹果,一只猴子从D 往上爬到树顶A 又沿滑绳AC 滑到C 处,另一只猴子从D 滑到B ,再由B 跑到C .已知两只猴子所经路程都是15米.试求大树AB 的高度. 例题7、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 例9. 如图,在Rt △ABC 中,CD 是斜边AB 上的高线,且AB=10,BC=8,求CD 的长。 练习: 1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。 C ' F E O D C B A 图4 C A

(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

勾股定理16种经典证明方法与在实际生活中的应用

2 证法 1】(课本的证明) 做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 . 从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即 证法 2】(邹元治证明) ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180 o ― 90o= 90 o. ∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的 面积等于 c 2. ∵ Rt Δ GDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o. ∴ ABCD 是一个边长为 a + b 的正方形,它的面积 等于 ∠HEF = 90 o. EFGH 是一个边长为 b ―a 的正方形,它的面积等于 1 ab 以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等 于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直 线上, 把这四个直角三 C 、G 、D 三点在一条直线上 b 2 4 12 ab c 2 4 1 ab 2 整理得 c 2 1 4 ab 2 c 2 a 2 b 2 c 2 【证法 3】(赵爽证明) 以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于 把这四个直角三 角形拼成如图所示形状 ∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o , ∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

高数中需要掌握证明过程的定理

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。 由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim (1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01 lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

相关文档
最新文档