管法兰强度计算书

管法兰强度计算书
管法兰强度计算书

法兰计算规则

法兰计算规则 1、低、中、高压管道、管件、法兰、阀门上的各种法兰,应按不同压力、材质、规格和种类,分别以“副”为计量单位。压力等级按设计图纸规定执行相应定额。 2、不锈钢、有色金属的焊环活动法兰安装,可执行翻边活动法兰安装相应定额,但应将定额中的翻边短管换位焊环。 3、中、低压法兰安装的垫片是按石棉橡胶板考虑的,如设计有特殊要求时可做调整。 4、法兰安装不包括安装后系统调试运转中的冷,热态紧固内容,发生时可另行计算。 5、高压碳钢螺纹法兰安装,包括了螺栓涂二硫化钼工作内容。 6、高压对焊法兰包括了密封面涂机油工作内容,不包括螺栓涂二硫化钼、石墨机油或石墨粉。硬度检查应按设计要求另行计算。 7、中压螺纹法兰安装,按低压螺纹法兰项目乘以系数1.2。 8、用法兰连接的管道安装,管道与法兰分别计算工程量,执行相应定额。 9、在管道安装的节流装置,已包括了短管装拆工作内容,执行法兰安装相应定额乘以系数0.8。 10、配法兰的盲板安装已包括在单片法兰安装项目中。 11、焊接盲板(封头)执行管件连接相应项目乘以系数0.6。 12、中压平焊法兰执行低压平焊法兰项目乘以系数1.2。 管件 说明 一、本章定额与第一章直管安装配套使用。 二、管件连接不分种类以‘个’为计量单位,其中包括弯头、三通、异径管、管接头、管帽。 三、现场在主管上挖眼接管三通及摔制异径管,均按实际数量执行本章项目。 四、在管道上安装的仪表一次部件,执行本章管件连接相应定额项目乘以系数0.7。 五、仪表的温度计扩大管制作安装,执行本章管件连接相应项目乘以系数1.5。 工程量计算规则 一、各种管件连接均按压力等级、材质、焊接形式,不分种类,以‘10个’为计量单位。 二、管件连接中以综合考虑了弯头、三通、异径管、管接头等管口含量的差异,应按设计图纸用量执行相应定额。 三、现场加工的各种管道,在主管上挖眼接管三通、摔制异径管,应按不同应力、材质、规格,以主管径执行管件连接相应定额,不另计制作费和主材费。 四、挖眼接管三通支线管径小于主管径1/2时,不计算管件工程量,在主管上挖眼焊接管接头、凸台等配件,按配件管径计算管件工程量。 五、管件用法兰连接时,执行法兰安装相应项目,管件本身安装不再计算安装费。 六、全加热套管的外套管件安装,定额按两半管件考虑的,包括二道纵缝和两个环缝。两半封闭短管可执行两半弯头项目。 七、半加热外套管摔口后焊在内套管上,每个焊口按一个管件计算。外套碳钢管如焊在不锈钢管内套管上时,焊口间需加不锈钢短管垫衬,每处焊口按两个管件计算,衬垫短管按设计长度计算,如设计无规定时,可按50mm长度计算。 八、在管道上安装的仪表部件,由管道安装专业负责安装:

法兰螺栓扭矩计算

法兰螺栓扭矩计算 关键词:法兰螺栓拉力扭矩计算法兰螺栓紧固力矩法兰螺栓的紧固螺栓紧固力矩 法兰紧固时如何确定螺栓的载荷及其扭矩,对于大家来说,可能都是一个比较感兴趣的话题。本人就此抛砖引玉,希望大家分享更多的经验和知识。首先提出两个问题: * 对于M36以下的螺栓,知道螺栓荷载,如何求对应的扭矩值? * 对于可以进行液压拉伸的螺栓,不进行法兰计算,如何查取对应的螺栓荷载? 大家在进行法兰设计时或查阅法兰的计算报告,都能找到法兰预紧和操作时的螺栓拉力。对于M36以下的螺栓,一般可以采用扭矩扳手。现在知道螺栓荷载,如何求对应的扭矩值呢?大家可以查阅GB/T16823.2-1997《螺纹紧固件紧固通则》或者相关的资料就能够找到相应的扭矩值。对于可以进行液压拉伸的螺栓,大家可以查阅相应的垫片生产厂家的数据,即可以知道螺栓的荷载。更简单的可以直接取螺栓材料45%的屈服强度来计算每个螺栓的载荷。 这是我计算出来的螺栓加载扭矩:采用力矩扳手、垫片为缠绕垫片(用钢圈垫可以类推),仅供参考。 根据GB150-1998《钢制压力容器》P94中‘9 法兰’的规定,求得垫片压紧力,再根据力与力矩的关系,算出每条螺栓的力矩。高压法兰尺寸为:DN6’ PN1500class(缠绕垫片密封),其法兰预紧力具体验算如下: 1、查HG20592~20635-97《钢制管法兰、垫片、紧固件》中HG20631-97法兰密封面外径d=216mm; 2、查HG20631-97中DN6’ PN1500class D型缠绕垫片缠绕垫内径D2=171.5mm,缠绕垫外径D3=209.6mm,垫片密封宽度N=19.05mm ,D3<d。 3、按照GB150-98 P91表9-1中1a垫片基本密封宽度b0=N/2=19.05/2= 9.525mm>6.4mm。 4、按照GB150—98 P94中9.5.1.1垫片有效密封宽度b=2.53 =2.53 =7.81mm。 5、按照GB150-98 P94中9.5.1.2垫片压紧力作用中心圆直径DG=D3-2b=209.6-2*7.81=193.98mm。 6、查GB150-98 P93表9-2中缠绕垫片的垫片系数m=3.00,比压力y=69MPa。管线的设计压力为15.85MPa,操作压力为14.4MPa。 7、按照GB150-98 P94中9.5.1.3中预紧状态下需要的最小垫片压紧力FG=Fa =3.14DGby=3.14*193.98*7.81*69=328236.4N。 8、按照GB150-98 P94中9.5.1.3操作状态下需要的最小垫片压紧力FG=Fb=6.28DGbmpc=6.28*193.98*7.81*3.00*14.4=411009N。 9、按照力与力矩的关系式N=0.2Fd,该法兰用紧固件螺栓为M36*3,用紧固件螺栓12对,螺纹实际作用力直径为d=33。 10、预紧状态下每条螺栓加载扭矩Na=0.2(FG/12)d=0.2*(328236.4/12)*(33/1000)=180N.m。 11、操作状态下每条螺栓加载扭矩Np=0.2(FG/12)d=0.2*(411009/12)*(33/1000)=226N.m

法兰螺栓拉力扭矩计算

法兰螺栓拉力扭矩计算 1 先说载荷和力矩的换算,力矩扳手制造商有着对应表可以查,从理论力学教科书上也有公式,公式中一个系数是一个范围,需要根据实际情况来确定 2. 做过实验,对螺栓帖上应力片来验证载荷的变化,结论是:系数在推荐的范围内,但变化比较大。这与螺栓螺纹加工精度、润滑程度、螺母表面与法兰表面的光洁度、螺母与螺栓啮合的匹配状态等有着紧密的联系。 3 因此从理论计算和实际结果是有着大的差别的。 4 当然,采用力矩扳手比传统方法还是进了一大步。 二关于螺栓上紧过程相邻螺栓受力变化效应 1 规律:螺栓上紧过程各螺栓受力影响分析无论采用何种垫片,为了保证密封效果均需有相应的密封比压,在螺栓上进过程中,由于螺栓受力是渐紧上升,因此密封比压产生的轴向力不均匀分配在各螺栓中,在紧固某个螺栓时其相邻螺栓的受力将减小 2. 实践例子:在螺栓按照规定的力矩旋紧过程中,对某一个螺栓加载,则其相邻螺栓的载荷立即下降 3 当载荷达到规定值仍因为某种原因再要加载,则加载的动力必须要远超过阻力,我们的试验结果平均在120%以上 4. 比较有效的方法:在旋了数圈后,对相隔螺栓加大载荷(超过理论载荷)进行旋紧,而后对相邻螺栓按照理论载荷旋紧,这样对于一个法兰来说,各螺栓的载荷形成一条相对均匀的载荷曲线。 根据GB150-1998《钢制压力容器》P94中‘9法兰’的规定,求得垫片压紧力,再根据力与力矩的关系,算出每条螺栓的力矩。高压法兰尺寸为:DN6’ PN1500class(缠绕垫片密封),其法兰预紧力具体验算如下: 1、查HG20592~20635-97《钢制管法兰、垫片、紧固件》中HG20631-97法兰密封面外径d=216mm; 2、查HG20631-97中DN6’ PN1500class D型缠绕垫片缠绕垫内径D2=171.5mm,缠绕垫外径D3=209.6mm,垫片密封宽度N=19.05mm ,D3<d。 3、按照GB150-98 P91表9-1中1a垫片基本密封宽度b0=N/2=19.05/2=9.525mm>6.4mm。 4、按照GB150—98 P94中9.5.1.1垫片有效密封宽度b=2.53 =2.53 =7.81mm。 5、按照GB150-98 P94中9.5.1.2垫片压紧力作用中心圆直径DG=D3-2b=209.6-2*7.81=193.98mm。 6、查GB150-98 P93表9-2中缠绕垫片的垫片系数m=3.00,比压力y=69MPa。

法兰计算

5.4法兰连接计算 5.4.1钢管对接一般采用法兰盘螺栓连接,主材与腹杆之间,可采用节点板或法兰盘连接。 5.4.2有加劲肋法兰螺栓的拉力,应按下列公式计算: 1、当法兰盘仅承受弯矩M 时,普通螺栓拉力应按下式计算: () b t i n t N y y M N ≤?= ∑2 '' m ax (5.4.2-1) 式中 m ax t N ——距旋转轴②' n y 处的螺栓拉力(N); ' i y ——第i 个螺栓中心到旋转轴②的距离(mm); b t N ——每个螺栓的受拉承载力设计值。 2、当法兰盘承受拉力N 和弯矩M 时,普通螺栓拉力分两种情况计算: 1)、螺栓全部受拉时,绕通过螺栓群形心的旋转轴①转动,按下式计算: b t o i n t N n N y y M N ≤+ ?= ∑2m ax (5.4.2-2) 式中 o n ——该法兰盘上螺栓总数。 2)、当按(5.4.2-2)式计算任一螺栓拉力出现负值,螺栓群并非全部受拉时, 而绕旋转轴②转动,按下式计算: ()() b t i n t N y y Ne M N ≤+= ∑2'' m ax (5.4.2-3) 式中 e ——旋转轴①与旋转轴②之间的距离(mm )。 对圆形法兰盘,取螺栓的形心为旋转轴①,钢管外壁接触点切线为旋转轴②(图5.4.2)

图5.4.2法兰盘 5.4.3有加劲肋的法兰板厚应按下列公式计算: f M t m ax 5≥ (5.4.3) 式中 t f m M 算可参考附录A 5.4.4式中 v f f t 5.4.51 N b t N m

式中:m ——法兰盘螺栓受力修正系数,65.0=m 。5.4.5无加劲肋法兰盘螺检受力简图 2、受拉(压)、弯共同作用时: 一个螺栓所对应的管壁段中的拉力: ??? ? ??+=N r M n N b 2 5.01 (5.4.5-3) 式中:M ——法兰盘所受弯矩,mm N ?; N ——法兰盘所受轴心力, N ,压力时取负值。 5.4.6无加劲肋的法兰盘的法兰板,应按下列公式计算:(图5.4.6) 顶力: a b N R b f ? = (5.4.6-1) 剪应力: f s t R f ≤?? =5.1τ (5.4.6-2) 正应力: f t s e R f ≤??= 2 5σ (5.4.6-3) 式中:s ——螺栓的间距,mm ,()θ?+=b r s 2; f R ——法兰盘之间的顶力, N ; θ——两螺栓之间的圆心角,弧度; e ——法兰盘受力的力矩。 图5.4.6 无加劲肋法兰板受力 5.5塔脚板连接计算 加劲板方型塔脚板底板强度应按下列公式计算(图5.5.1):

浮头式换热器强度计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称:后锥形擦拭冷器 EQUIPMENT 图 号: 215321-00 DWG NO。 设计单位:ls有限公司 DESIGNER 设 计 Designed by 日期Date 校 核 Checked by 日期Date 审 核 Verified by 日期Date 批 准 Approved by 日期 Date 填函式换热器设备计算计算单位 ls有限公司 壳程设计压力 1.04 MPa 管程设计压力 0.80 MPa 壳程设计温度 150.00 ℃ 管程设计温度 90.00 ℃ 筒体公称直径 553.00mm 筒 填函式换热器筒体最小壁厚 8.00mm 体 筒体名义厚度 8.00mm 校核 合格 筒体法兰厚度 40.00 校核 合格 前端管箱筒体名义厚度 mm 前 校核 端 前端管箱封头名义厚度 mm 管 校核 箱 前端管箱法兰厚度 mm 校核 后端管箱筒体名义厚度 mm 后 校核 端 后端管箱封头名义厚度 mm 管 校核 箱 后端管箱法兰厚度 mm 校核 管 管板厚度 30.00 mm 板 校核 合格

填函式换热器管板计算 计算单位 ls有限公司 设 计 条 件 壳程设计压力 P s 1.04 MPa 管程设计压力 P t 0.80 MPa 壳程设计温度 t s 150.00 °C 管程设计温度 t t 90.00 °C 换热器公称直径 D i 553.00 mm 壳程腐蚀裕量 C s 1.00 mm 管程腐蚀裕量 C t 1.00 mm 换热管使用场合 一般场合 换热管与管板连接方式 ( 胀接或焊接)胀接,开槽 初始数据 材料(名称及类型) Q345R 板材 输入管板名义厚度 δn 30.00 mm 管 管板强度削弱系数μ 0.40 管板刚度削弱系数 η 0.40 隔板槽面积A d 7036.00 mm 2 换热管与管板胀接长度或焊脚高度 l 28.00 mm 设计温度下管板材料弹性模量 E p 194000.00 MPa 板 设计温度下管板材料许用应力 []σr t 183.00 MPa 许用拉脱力 []q 4.00 mm 壳程侧结构槽深 h 1 0.00 mm 管程侧隔板槽深 h 2 2.00 mm 材料名称 S30408 换热管外径 d 12.00 mm 换 换热管壁厚 δt 0.80 mm 换热管根数 n 200 根 热 换热管中心距 S 25.00 mm 换热管长 L t 1686.00 mm 管 换热管受压失稳当量长度 l cr 813.00 mm 设计温度下换热管材料弹性模量E t 186000.00 MPa 设计温度下换热管材料屈服点σs t 156.00 MPa 设计温度下换热管材料许用应力 []σt t 116.00 MPa 垫片外径 D o 590.00 mm 垫 垫片内径 D i 550.00 mm 垫片厚度 δg mm 片 垫片接触面宽度 ω mm 垫片压紧力作用中心园直径D G 574.00 mm 垫片材料 软垫片 压紧面形式 1a或1b

法兰计算(汇编)

5.4法兰连接计算钢制管法兰连接强度计算方法(GB/T17186-1997) 5.4.1钢管对接一般采用法兰盘螺栓连接,主材与腹杆之间,可采用节点板或法兰盘连接。 5.4.2有加劲肋法兰螺栓的拉力,应按下列公式计算: 1、当法兰盘仅承受弯矩M 时,普通螺栓拉力应按下式计算: ()b t i n t N y y M N ≤?=∑2''max (5.4.2-1) 式中 max t N ——距旋转轴②'n y 处的螺栓拉力(N); 'i y ——第i 个螺栓中心到旋转轴②的距离(mm); b t N ——每个螺栓的受拉承载力设计值。 2、当法兰盘承受拉力N 和弯矩M 时,普通螺栓拉力分两种情况计算: 1)、螺栓全部受拉时,绕通过螺栓群形心的旋转轴①转动,按下式计算: b t o i n t N n N y y M N ≤+?=∑2max (5.4.2-2) 式中 o n ——该法兰盘上螺栓总数。 2)、当按(5.4.2-2)式计算任一螺栓拉力出现负值,螺栓群并非全部受拉时, 而绕旋转轴②转动,按下式计算: ()()b t i n t N y y Ne M N ≤+=∑2 ''max (5.4.2-3) 式中 e ——旋转轴①与旋转轴②之间的距离(mm )。 对圆形法兰盘,取螺栓的形心为旋转轴①,钢管外壁接触点切线为旋转轴②(图 5.4.2)

图5.4.2法兰盘 5.4.3有加劲肋的法兰板厚应按下列公式计算: f M t max 5≥ (5.4.3) 式中 t f M 算可参考附录A 5.4.4式中 v f f t 5.4.51 N b N

式中:m ——法兰盘螺栓受力修正系数,65.0=m 。5.4.5无加劲肋法兰盘螺检受力简图 2、受拉(压)、弯共同作用时: 一个螺栓所对应的管壁段中的拉力: ??? ? ??+=N r M n N b 25.01 (5.4.5-3) 式中:M ——法兰盘所受弯矩,mm N ?; N ——法兰盘所受轴心力, N ,压力时取负值。 5.4.6无加劲肋的法兰盘的法兰板,应按下列公式计算:(图5.4.6) 顶力: a b N R b f ?= (5.4.6-1) 剪应力: f s t R f ≤??=5.1τ (5.4.6-2) 正应力: f t s e R f ≤??=25σ (5.4.6-3) 式中:s ——螺栓的间距,mm ,()θ?+=b r s 2; f R ——法兰盘之间的顶力, N ; θ——两螺栓之间的圆心角,弧度; e ——法兰盘受力的力矩。 图5.4.6 无加劲肋法兰板受力 5.5塔脚板连接计算 加劲板方型塔脚板底板强度应按下列公式计算(图5.5.1):

法兰计算

名称符号单位计算公式结果 设计压力Pc MPa给定 3.40 设计温度t℃给定250.00 法兰材料//锻件16Mn III 螺栓材料//25Cr2MoVA 腐蚀裕量C2mm查GB151-1999中3.14.1.2条 1.00 螺栓设计温度下的许用应力〔σ〕b t MPa查GB150-1998表4-7206.00 螺栓常温下的许用应力〔σ〕b MPa查GB150-1998表4-7245.00 法兰设计温度下的许用应力〔σ〕f t MPa查GB150-1998表4-5129.00 法兰常温下的许用应力〔σ〕f MPa查GB150-1998表4-5150.00 垫片接触宽度N mm查GB150-1998表9-1(1C)30.00 垫片基本密封宽度bo mm查GB150-1998表9-1(1C)15.00 垫片有效密封宽度b mm b o≥6.4,b= 2.53SQRT(b o);b=bo 9.80 法兰内直径Di mm给定1200.00垫片比压力y Mpa查表9-269.00垫片系数m查表9-2 3.00 整体法兰强度计算-按GB150(GB150和JB4732相同)

垫片外径d2mm给定1280.00垫片内径d1mm给定1220.00垫片压紧力作用中心圆直径D G mm按GB150-1998,9.5.1.21260.40 预紧状态下,需要的最小螺栓载荷Wa N 3.14bD G y2675803.49 操作状态下需要的垫片最小 压紧力 F P N 6.28D G bmP C791107.12流体压力引起的总轴向力F N0.785D G2P C4240013.37求和 F P+F F P+F N F P+F5031120.49预紧状态下,需要的最小螺 栓总截面积 A a mm2Wa/[σ]b10921.65操作状态下需要的螺栓总截 面积 Ap mm2(FP+F)/[σ]b t24422.92需要的螺栓总截面积A m mm2Aa和Ap大者24422.92选用螺栓直径D mm选取42.00 选用螺栓的小径D小mm选取31.35 选用螺栓数量n个选取36.00 实际选用螺栓总截面积A b mm2 3.14*D小2*n/427788.65螺栓设计载荷W N(Am+A b)*[б]b/26395916.90操作情况 螺栓中心圆直径D b mm结构给定尺寸1410.00法兰外直径D O mm结构给定尺寸1490.00法兰颈部与法兰背面交点处 圆直径 D O mm结构给定尺寸1305.00法兰颈部大端有效厚度δ1mm(D0-D i)/252.50 螺栓中心至法兰颈部与法兰背面交点的径向距离L A mm(D b-D0)/252.50 法兰中心至F D作用位置处的径向距离L D mm L A+0.5δ178.75 法兰中心至F G作用位置处的径向距离L G mm(D b-D G)/274.80 法兰中心至F T作用位置处的 径向距离 L T mm(L A+δ1+L G)/289.90法兰颈部小端有效厚度δ0mm结构给定尺寸30.00 作用于法兰内径截面上的流体压力引起的轴向力F D N0.785D i 2 P C3843360.00 窄面法兰垫片压紧力F G N F G=F P791107.12流体总轴向压力与流体压力 之差 F T N F-F D396653.37力矩F D L D N.mm302664600.00

(整理)具有环形垫片的螺栓法兰连接计算规则

168EN1591 - 1法兰及其接头- 垫片圆形法兰连接的设计规则—第一部分: 计算方法, 作为对在压力、温度、外力和外弯矩等载荷作用下的螺栓法兰连接进行完整性和密封性计算的规则。按EN1591 - 1 方法进行计算时,需要输入一组垫片(特性) 系数, 所以又制订了ENV1591 – 2法兰及其接头- 垫片圆形法兰连接的设计规则—第二部分:垫片系数作为对其的补充 一:计算中采用载荷状况包括初始装配,压力试验,重要的操作工况。计算步骤大致如下: 1.1 首先, 计算装配工况下需要的最小螺栓载荷。要求在其后的其他载荷工况下, 在垫片上的残余作用力不低于垫片要求的最小平均值(该值可取自ENV1591 - 2) 。此计算是叠代过程, 为该载荷取决有效垫片宽度, 而有效垫片宽度本身又取决于螺栓装配载荷。 1.2 其次,由选定的螺栓装配载荷计算出各载荷条件下产生的内力。按组合后的外、内力进行如下的检查:1) 装配工况:检查螺栓拧紧过程中可能产生的最大螺栓力;2) 试验和操作工况检查必需的最小力,以保证接头不发生屈服。 二:密封计算中需要的最小垫片力按以下两个方法确定: 2.1 用ENV1591 - 2 标准中的垫片系数, 此系数基于工业的经验和对应主要气体和蒸汽的泄漏率。这是传统的方法,不给出具体泄漏率大小。

2.2 如果有可能, 按照ENV1591 - 2 提出的方法,通过泄漏率对垫片应力的测试数据进行计算。此方法允许将设计基于任何确定的最大泄漏率。 三:法兰视作一矩形截面的圆环, 且环截面保持不变形。仅考虑法兰环中的周向应力和应变, 忽略径向和轴向应力和应变。对整体法兰, 锥颈处理为一当量圆柱壳,法兰环截面与该当量圆柱壳相连,当量圆柱壳的厚度通过计算得到。计算时法兰环与壳体连接处,考虑转角和位移的连续性。在计算法兰环截面宽度时,要去除部分螺栓孔的尺寸,如整体法兰和法兰平盖: = ( - ) / 2 -(1) 式中d5 e为螺栓孔直径,当螺栓间距较小时,接近于; 当螺栓间距较大时, 接近于0。法兰环截面的有效厚度 可用环截面积除以该截面的实际径向宽度得到,即: = 2Ap/ ( - ) (2) 因圆弧和弦长存在差异,需要考虑计算螺栓圆有效直径: = (1 -2/) (3) 式中为螺栓数目。 法兰环截面的转角和作用在法兰环上的径向弯矩之间的关 系为: =/× = + ( - + ) + (+ )(4)

外法兰计算书

钢管外法兰连接节点验算计算书 1 基本资料 1.1 作用力 法兰轴向压力设计值: N =120 kN 弯矩设计值: M =1200 kN·m 1.2 构件几何尺寸 钢管外半径r=575 mm 螺栓中心圆半径r1=640 mm 法兰盘外半径r2=680 mm 钢管壁厚t=10 mm 加劲板厚度t1=12 mm 加劲板切角高度S1=20 mm 法兰螺栓数量n=24 mm 1.3 钢材及焊缝类型 钢管及法兰使用钢材牌号为:Q235钢 钢材的抗弯强度设计值: f = 215N/mm2 钢材的抗剪强度设计值:fv = 125N/mm2 法兰连接使用的螺栓类型为:6.8(普通) 法兰螺栓连接的强度设计值:ft = 300N/mm2 加劲板焊缝形式为角焊缝,焊缝质量等级为三级。 焊缝高度hf=14mm 焊缝的强度设计值:fw = 160 N/mm2 2 外法兰连接计算 2.1 外法兰加劲板内外连接直角角焊缝承载力验算 内外连接焊缝承载能力之和不应小于筒壁承载能力。 σ= t*L*ft/(2*0.7*hf*L) ≤βf * ffw 式中L-钢管壁中心周长,可认为钢管壁中心周长与法兰板连接角焊缝周长相等。 σ= 10 * 215 /(2*0.7*8 ) = 191.964 ≤1.22 * 160=195.2N/mm2 2.2 有加劲外法兰螺栓的最大拉力计算 Ntmax = M * yn / ∑yi^2 《钢结构单管通信塔技术规程》(5.3.3-1) 以下称《单管塔规程》Ntmax = 1200000000*1205.00/12565316.08 = 115078.7N = 115.1kN 2.3 螺栓受拉承载力计算 实际采用的螺栓(锚栓)为:M30 类别:6.8(普通) Ntb = ft * A = 300 * 560.6= 168180N = 168.18kN ≥Ntmax = 115.1kN 螺栓受拉承载力设计值满足要求! 2.4 有加劲外法兰板厚计算 t ≥( 5 * Mmax / f ) ^ 0.5 《单管塔规程》(5.3.4)

法兰螺栓和法兰板校核

法兰螺栓和法兰板校核 5.4.1钢管对接一般采用法兰盘螺栓连接,主材与腹杆之间,可采用节点板或法兰盘连接。 5.4.2有加劲肋法兰螺栓的拉力,应按下列公式计算: 1、当法兰盘仅承受弯矩M 时,普通螺栓拉力应按下式计算: () b t i n t N y y M N ≤?=∑2 ''max (5.4.2-1) 式中 max t N ——距旋转轴②' n y 处的螺栓拉力(N); 'i y ——第i 个螺栓中心到旋转轴②的距离(mm); b t N ——每个螺栓的受拉承载力设计值。 2、当法兰盘承受拉力N 和弯矩M 时,普通螺栓拉力分两种情况计算: 1)、螺栓全部受拉时,绕通过螺栓群形心的旋转轴①转动,按下式计算: b t o i n t N n N y y M N ≤+?= ∑2 max (5.4.2-2) 式中 o n ——该法兰盘上螺栓总数。 2)、当按(5.4.2-2)式计算任一螺栓拉力出现负值,螺栓群并非全部受拉时, 而绕旋转轴②转动,按下式计算: ()() b t i n t N y y Ne M N ≤+= ∑2''max (5.4.2-3) 式中 e ——旋转轴①与旋转轴②之间的距离(mm )。 对圆形法兰盘,取螺栓的形心为旋转轴①,钢管外壁接触点切线为旋转轴②(图5.4.2)

图5.4.2法兰盘 5.4.3有加劲肋的法兰板厚应按下列公式计算: f M t max 5≥ (5.4.3) 式中 t f M 算可参考附录A 5.4.4式中 v f f t 5.4.51 N b t N

式中:m ——法兰盘螺栓受力修正系数,65.0=m 。5.4.5无加劲肋法兰盘螺检受力简图 2、受拉(压)、弯共同作用时: 一个螺栓所对应的管壁段中的拉力: ??? ? ??+=N r M n N b 2 5.01 (5.4.5-3) 式中:M ——法兰盘所受弯矩,mm N ?; N ——法兰盘所受轴心力, N ,压力时取负值。 5.4.6无加劲肋的法兰盘的法兰板,应按下列公式计算:(图5.4.6) 顶力: a b N R b f ? = (5.4.6-1) 剪应力: f s t R f ≤??=5.1τ (5.4.6-2) 正应力: f t s e R f ≤??= 2 5σ (5.4.6-3) 式中:s ——螺栓的间距,mm ,()θ?+=b r s 2; f R ——法兰盘之间的顶力, N ; θ——两螺栓之间的圆心角,弧度; e ——法兰盘受力的力矩。 图5.4.6 无加劲肋法兰板受力 5.5塔脚板连接计算 加劲板方型塔脚板底板强度应按下列公式计算(图5.5.1):

强度计算书

强度计算书

软件批准号:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN 工程名: PROJECT 设备位号: ITEM 设备名称: EQUIPMENT 图号: DWG NO。 设计单位:压力容器专用计算软件 DESIGNER

固定管板换热器设计计算计算单位压力容器专用计算软件 设计计算条件 壳程管程 设计压力p 4 MPa设计压力p t0.8 MPa s 设计温度t 120 ?C设计温度t t60 ?C s 壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称Q245R 材料名称20(GB8163) 简图 计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管箱法兰校核计算 开孔补强设计计算 管板校核计算

计算所依据的标准 GB 150.3-2011 计算条件 椭圆封头简图 计算压力 P c 0.80 MPa 设计温度 t 60.00 ? C 外径 D o 325.00 mm 曲面深度 h o 73.00 mm 材料 Q235-B (板材) 设计温度许用应力 [σ]t 114.50 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm 焊接接头系数 φ 1.00 压力试验时应力校核 压力试验类型 液压试验 试验压力值 P T = 1.25P c t ] [][σσ= 1.0131 (或由用户输入) MPa 压力试验允许通过的应力[σ]t [σ]T ≤ 0.90 σs = 211.50 MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 30.29 MPa 校核条件 σT ≤ [σ]T 校核结果 合格 厚度及重量计算 形状系数 K = ??? ? ???????? ? ?--+2 o )(22261nh o h n h D δδ = 1.2750 计算厚度 δh = ()c t o c 5.02][2P K D KP -+φσ = 1.44 mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量 7.75 Kg 压 力 计 算 最大允许工作压力 [P w ]= ()e o e t 5.02][2δφδσ--K KD = 3.82974 MPa 结论 合格

相关文档
最新文档