自动驾驶技术

自动驾驶技术
自动驾驶技术

自动驾驶的开发动向与技术

从自动驾驶技术的开发历史看,应该追溯到1975年,当时是利用计算机的视觉技术进行了自动驾驶研究开发。中途曾一度中断过,但现在又开始火热研究起来。图1表示目前自动驾驶技术的开发历史。从法律和技术层面看,到实际商品化还有许多路要走。人们期待自动驾驶能解决交通事故和环境污染问题,目前正通过产学研进行合作研究。

欧洲对自动驾驶车的开发非常重视,被列为了国家重点项目在推进,目前已取得了一些成果。美国以谷歌为代表在研究自动驾驶技术,在道路上做自动驾驶实验,在内华达州还可申办新的自动驾驶执照。

日本在2008年到2012年之间为了实现安全、环保的物流运输系统,开发了重型卡车自动列队行驶技术。2014年以政府为中心推进自动驾驶车的实际运用(SIP- adus),本文将介绍近年来自动驾驶的技术开发和实际运用动向。

自动驾驶所期待的技术

汽车的自动化技术就是,当驾驶员在驾驶过程中出现思想不集中、打盹现象,可能导致交通事故时,控制系统可以介入驾驶员的操作,辅助驾驶员安全驾驶,该辅助驾驶系统本身已经商品化了。自动驾驶是对该系统的进一步发展,它与驾驶辅助系统的不同点是,以行驶环境感知和危险判断为中心的系统。图2表示辅助驾驶与自动驾驶的差别。面对驾驶辅助系统和自动驾驶,国际上对汽车的自动化级别进行了重新定义,自动化级别定义如表1所示,表示美国SAE(自动驾驶标准委员会)制定的汽车自动化级别定义。

在自动化级别中,从法律和技术层面看,自动化级别2与自动化级别3以上有很大差别,而且是非常根本的差别。具体地讲,自动化级别2对行驶环境认知的最终责任者是驾驶员;自动化级别3以上,对行驶环境认知的最终责任者是控制系统。

为了实现自动化级别3以上的自动驾驶,需要对现在已经实际运用的安全辅助驾驶系统中的传感器技术、信息处理技术性能、智能化和可靠性做进一步提升,日、美、欧正在进行自动化3级以上的自动驾驶技术开发。

表2列出了作者认为自动驾驶所需要的新技术。前方障碍物传感技术是目前驾驶辅助系统和自动驾驶所追求的目标性能,见表3。

驾驶辅助所使用的前方障碍物传感技术就是采用现在77Hz毫米波雷达和激光测距仪、单眼摄像机、立体摄像机,而在自动驾驶系统中,为了使传感器替代驾驶员的眼睛,则更加追求能适应各种自然环境变化的可靠性,不仅需要能单纯检测物体距离与方位,而且还需识别物体形状和检测移动速度。在自动驾驶系统中,前方距离传感器不仅是高精度的距离检测仪,还是3D激光距离传感器,对水平方向和垂直方向具有较高的分辨率。以下将介绍自动驾驶技术的开发现状。

自动驾驶系统的开发情况

在开发自动驾驶时,根据技术开发的难易程度和对自动化的需求程度不同,一般情况是先行开发自动列队驾驶系统。以下将介绍代表性的自动列队驾驶系统。

能源ITS中的自动列队行驶

众所周知,极其相邻车距之间的行驶可以降低空气阻力和提高燃油经济性,但是通过驾驶员的手工操作,要想保持相邻车距的行驶,受到人的驾驶能力和安全性的限制,是极为困难的事情。为了让重型卡车节能15%,实现4m车距的自动列队行驶技术开发正在日本进行中。

为了实现4m车距的列队行驶,不仅需要非常精准的车距控制,还需要沿着车道行驶的车道维持控制,同时还要防止与周围一般车辆碰撞的碰撞防止控制,要求具备非常精准的行驶控制。由于控制系统出现故障时,不能依赖驾驶员来辅助操作,所以要求控制系统具备很高的可靠性和安全性。图3表示自动列队行驶的概念图。

(1)车道维持控制系统

车道维持控制系统就是自动地控制轮胎的转向角,使行驶白线区与前轮的间隔时常保持一定。图4表示车道路维持控制系统。

为了正确地检测出白线区与前轮胎之间的间隔,同时避免受太阳光和雨水的影响,小型摄像机几乎垂直安装在汽车侧面。通过该摄像机随时识别白线区,白线区与前轮胎之间的横向距离偏差可精确到

1~2m,采用横向偏差,并依据车辆运动模式,通过非线型控制计算,计算出最佳的前轮角度。在转向柱处安装转向电机,从而控制前轮转向。沿曲线部位行驶时,如果只看正下方的白线时,就无法行驶。同样,如果只依赖于反馈控制的话,由于控制系统存在着滞后要素,行驶速度越高,控制性就越差,最终将偏离白线。为了解决该问题,必须按照道路的曲率进行目标转向的前馈控制。

(2)车距控制系统(CACC)

通过雷达控制前方行驶的车辆与本车之间的距离,通过速度来保持安全距离(ACC)。前方车辆紧急制动时,其安全性完全依赖驾驶员。仅对车距进行控制时,前方车辆减速开始到车距发生变化为止,

会产生最大滞后时间,与此同时,本车减速开始,也会产生滞后时间,所以,为了防止碰撞,需要保持较长车距。

为了解决该问题,列队行驶时,前方车辆的速度和加速度信息借助通信方式传递给后续车辆,根据前方车辆信息和车距进行控制(CACC)。图5表示CACC系统构成图。

头车速度和加速度信息每隔20msec(0.02秒)发送给后续车辆,为了保持车距一定,后续车辆的速度时常与头车速度相同,由速度控制误差而产生的车距误差,通过车距传感器信息进行修正。

图6表示4辆卡车自动列队行驶。虽然是空载,但是与汽车单独行驶相比,大约可节能15%。图7表示速度80km/h,车距4m的4辆卡车列队行驶验证实验场景。

SARTRE(道路安全列队行驶车)的开发

SARTRE以卡车和乘用车混合列队行驶为特点,手动驾驶的头车重型卡车与数辆自动驾驶的卡车、乘用车形成自动混流列队行驶,列队中的车距控制在6m左右,跟踪车辆可以节能,防止其它车辆加塞儿。该自动列队行驶系统的特点是,不是跟踪白线,而是通过立体摄像机与激光雷达识别前车与本车的横向偏移,自动地控制转向。图8表示所使用的摄像机与激光雷达系统。在SARTRE中,手动驾驶的头车重型卡车与后续自动驾驶的3辆车形成了列队行驶,该实验在高速公路上得到了验证。

自动驾驶技术要素

自动驾驶表2所示的新技术,近年来都在全力地开发这些技术。以下将介绍主要技术要素的开发状况:

行驶控制ECU的失效保险技术

对于自动驾驶3级以上的系统,如果控制系统出现故障,由于不能期待得到驾驶员即时的辅助驾驶,所以必须构建可靠性很高的系统。现在对于自动驾驶车辆,国际上没有专门的安全、可靠性方面的标准,但是在电子电器仪器方面的国际标准IEC61508中,针对自动控制仪器,规定了故障率为10-8/Hr(每小时1亿分之1的比例)以下的SIL4安全水平,这是对自动驾驶系统的要求。

考虑到自动驾驶SIL4级的安全性,不仅仪器需要很高的可靠性,还需要控制装置具备冗余性和失效保险。

针对冗余性,当系统产生异常时,确保足够的时间让驾驶员瞬间理解驾驶环境,可以进行驾驶操作。再加上失效保险,可以防止控制装置故障时的异常动作。但是失效保险既要考虑自动驾驶车的安全性,又要具备很高的可靠性,在这方面还存在很多课题。尤其是车辆控制单元(以下称为车辆ECU)中所使用的微机处理器出现故障时或者失控乱跑时的失效保险极为重要。例如:根据铁路信号保安装置ATC (列车自动控制)的设计理念,来设计失效保险的车辆控制ECU,在能源ITS的自动列队行驶项目中已经进行了开发。图9表示车辆控制ECU失效保险的构成与试制部件。

CPU主板中由主、副双系统CPU、存储器、比较器、继电器回路构成。主副CPU的运算结果通过比较器进行比较,当运算结果不一致时,主CPU的输出与外部控制器的连线通过继电器回路自动断开。当CPU出现故障或异常等误操作时,可防止异常值送入外部控制器中。

局部动态地图技术

提高识别车辆周围物体的性能是自动驾驶中最大的课题。在一般道路非常复杂的情形进行自动驾驶时,需要识别交通信号、道路标识、电线杆、导轨等结构物体、道路、汽车、行人、自行车,同时还需识别道路上的物体向哪个方向移动。

由于目前的图像传感器、毫米波雷达、激光雷达等传感器很难单独地识别复杂的环境,需要许多传感器的融合来提高识别性能,完全区分非常困难。因此,需要距离传感器和地图的融合来解决此类问题,这就是局部动态地图的作用。局部动态地图技术概念如图10所示。

根据GPS的位置信息计算道路周围详细地图信息,包括电线杆、信号机等道路构成方面的信息等,同时根据车载3维距离传感器检测出汽车到物体之间的3维距离。

把该传感器的3维距离数据与道路地图进行即时合成,距离传感器检测出的物体可以正确地区分是道路构成物体不是道路上的物体。上面所讲的局部动态地图也需要2维距离数据。目前的激光距离传感器多数采用多面体反射旋转镜,可以水平和垂直方向扫描,由于垂直方向扫描的分辨率比较低,所以自动驾驶所采用的激光距离传感器需要新型垂直分辨率高的激光距离传感器。

自动驾驶系统构架

由于安全驾驶辅助系统承担着一部分驾驶员安全驾驶的风险,所以每个控制系统的规模都比较小,而自动驾驶系统必须完全承担和替代驾驶员的所有风险。局部动态地图、目标行驶轨迹生成、对环境的理解、危险判断等人工智能功能的安全辅助系统并不追求很精密的信息处理功能。在控制方面也是纵横交错,系统非常复杂。依据所有信息考虑使用1个软件进行处理和集中控制的方式来构建自动驾驶系统时,存在着系统变更自由度差、系统安全可靠性验证困难、容易发

生故障等问题。所以在构建自动驾驶系统时,一般喜欢分散控制方式。如果自动驾驶由识别功能、判断功能、操作功能构成的话,设计自动驾驶系统构架时也要考虑以上因素比较合理。基于这些考虑而设计的自动驾驶系统构架实例如图11。

自动驾驶系统由4个模块、传感部分、外部通信部分构成。地图模块由道路地图和局部动态地图构成。根据GPS和障碍物信息,输出目前道路线形信息、车辆周围障碍物信息、道路空间信息、目标行驶轨迹等。人工智能模块依据局部动态地图中的障碍物信息,对周围的行驶环境进行理解和危险预测。输出模块对于纵向和横向分别输出各自的信息。在没有上一级指示的情况下,可单独地确保最低限度的安全性,根据上一级指示可以进行修正,确保可靠性和安全性。

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 自动驾驶汽车的硬件架构、传感器、线控等硬件系统 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 自动驾驶汽车硬件系统概述 从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解: 一、自动驾驶系统的硬件架构 二、自动驾驶的传感器 三、自动驾驶传感器的产品定义 四、自动驾驶的大脑 五、自动驾驶汽车的线控系统

自动驾驶事故分析 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。 从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

人工智能在自动驾驶应用中的5大关键技术分析

人工智能在自动驾驶应用中的5大关键技术分析 随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。 本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。 1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。 五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 人工智能在自动驾驶技术中的应用概述人工智能发展六十年,几起几落,如今迎来又一次

自动驾驶系统功能测试 第5部分:人工操作接管(征求意见稿)

ICS43.040.10 中国汽车工业协会团体标准XXX T/XXX-XXX-2020 自动驾驶系统功能测试 第5部分:人工操作接管 Test methods for functions of automated driving system Part 5: Manual takeover (征求意见稿) 2020-xx-xx发布2020-xx-xx实施中国汽车工业协会发布

前言 本标准参考有关国家标准、行业标准,结合我国生产企业实际情况及用户要求制定。 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由上海机动车检测认证技术研究中心有限公司提出。 本标准由中国汽车工业协会归口。 本标准起草单位: 本标准主要起草人:

自动驾驶系统功能测试 第5部分:人工操作接管 1 范围 本规范的制定是用于对智能网联汽车自动驾驶系统的人工操作接管功能进行测试。本规范旨在测试智能网联汽车自动驾驶系统的最低安全性要求,以确保智能网联汽车的道路测试能够具有最基本的安全性保证。本规范适用于M类车辆和N类车辆。 2.规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 3785 声级计的电、声性能及测试方法 GB/T 15173 声校准器 3 术语 除采用GB 5768和GB/T 6104-2005的定义外,本标准还采用下列专门的定义: 3.1车辆vehicle 工作在陆地上的载人或载货的机械。 3.2 A声级A-weighted sound level 声级是指与人们对声音强弱的主观感觉相一致的物理量,单位为分贝。A声级是声级计计权中的一种,A计权声级反映了噪声的客观强度与频率这两个因素在人主观引起的感受。 3.3方向盘steering wheel 汽车操纵行驶方向的轮状装置。 3.4制动踏板pedal brake 制动踏板是汽车限制动力的踏板,即脚刹(行车制动器)的踏板,制动踏板用于减速停车。 3.5紧急停车带urgency parking strip 在高速公路和一级公路上,供车辆临时发生故障或其他原因紧急停车使用的临时停车地带。 3.6道路车道线The lane dividing line 用来分隔同向行驶的交通流的交通标线。 3.7主车SubjectVehicle, SV 配有自动驾驶系统的待测车辆。

重庆市自动驾驶道路测试管理办法

重庆市自动驾驶道路测试管理办法 (征求意见稿) 第一章总则 第一条为优化汽车产业创新发展环境,推动自动驾驶技术发展,规范装配有自动驾驶系统的机动车辆上公共道路行驶开展自动驾驶相关科研、定型试验,有效控制自动驾驶道路测试潜在风险,保障道路交通安全,依据《道路交通安全法》、《公路法》、《机动车登记规定》(公安部令第124号)、《智能网联汽车道路测试管理规范(试行)》(工信部联装〔2018〕66号),特制定本办法。 第二条本办法适用于本市行政区域范围内进行的自动驾驶道路测试。 第二章管理机构及职责 第三条由市经济信息委牵头、与市交通局、市城管局、市公安交管局共同成立重庆市自动驾驶道路测试管理联席工作小组(以下简称“管理联席工作小组”),负责本市自动驾驶道路测试管理、开放测试道路认定和有关重大事项的协调解决。 第四条由管理联席工作小组组织有关领域专家成立重庆市自动驾驶道路测试专家委员会,为本市开展自动驾驶道路测试工作提供咨询和指导服务。

第五条国家级汽车质量监督检验机构可作为第三方机构(以下简称“测试管理单位”)负责受理自动驾驶道路测试申请,出具专业评审意见,并负责相应自动驾驶道路测试的组织实施、过程监管及结果评估等工作。 第三章道路类型和测试类型 第六条重庆市自动驾驶道路测试的测试道路分为普通道路、山地道路和城市快速路三个类型。 第七条在满足国家法律法规的前提下,可适时选择典型的高速公路作为自动驾驶开放测试道路。 第八条重庆市自动驾驶道路测试的测试类型分为一般测试、载人测试、载物测试和编队行驶测试四个类型。 第四章道路测试申请基本条件 第九条测试主体要求: (一)在中华人民共和国境内登记注册的独立法人单位; (二)具备汽车及零部件制造、技术研发、试验检测或出行服务等相关业务能力; (三)为测试车辆购买不低于五百万元的交通事故责任保险,同时具备不低于五百万元的赔偿能力,并提交相关证明材料; (四)具有自动驾驶汽车自动驾驶功能测试评价规程; (五)具备对测试车辆进行实时远程监控的能力; (六)具备对测试车辆事件进行记录、分析和重现的能力;

自动驾驶技术综述

自动驾驶技术综述 摘要:本文通过对自动驾驶技术原理和发展的介绍,探讨了汽车将逐步走向自动驾驶的趋势, 同时指出了科技发展对各路交通发展的重 要性。 Abstract: This paper introduces the principle and development of automatic driving technology, discusses the cars will be gradually moving towards the automated driving, and points out the trend of technological development for each of the importance of traffic development. 关键词:自动驾驶技术、分类、趋势 1 概述: 谷歌近日宣布,正在开发能让汽车自动驾驶的技术。这种技术可使全球因交通事故死亡的人数减少一半,每年挽救约60万条生命,同时还希望能减少二氧化碳的排放量。谷歌工程师和斯坦福大学机器人及人工智能研究实验室教授塞巴斯蒂安·史伦(Sebastian Thrun)表示,该公司研发的自动驾驶汽车已经在金门大桥-洛杉矶-太浩湖之间累计行驶了14万英里。他称:“我们认为这开创了机器人研究的先例”。自动驾驶汽车的操作是:由受过训练的驾驶员用“摄像机、雷达传感器和激光测距仪来…看?其他车辆,并通过详细的地图指引汽车在路上行驶”。史伦称,这种软件可以识别像车道线及交通信号等信息。车辆收集的数据将发送到谷歌的数据中心处理。 谷歌表示,地方警察部门已对该项目进行了了解。参加这个“实

人工智能在自动驾驶技术中的的应用

人工智能在自动驾驶技术中的应用 摘要:随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能等术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 关键词:人工智能;自动驾驶;智能汽车;图像识别 0. 引言 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 1. 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机

自动驾驶汽车

. 无人驾驶汽车 自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车、或轮式移 自动动机器人,是一种透过电脑系统实现无人驾驶的智能式的汽车。、监控装置和全球定位系统、视觉计算、驾驶汽车依靠人工智能雷达自动安全地操让电脑可以在没有任何人类主动的操作下,协同合作,还没有批准作商现时自动驾驶技术正在研究及测试中,作机动车辆。业营业或私人使用。国内首款无年代开始,美国、英国、德国等发达国20从世纪70在可行性和实用化方面人驾驶汽车家开始进行无人驾驶汽车的研究,年代开始进行无人驾驶汽世纪80都取得了突破性的进展。中国从20年成功研制出中国第一辆真正意义1992车的研究,国防科技大学在上的无人驾驶汽车。 2005年,首辆城市无人驾驶汽车在上海交通大学研制成功, 世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。 无人驾驶汽车是通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。 它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。 ;.

视觉计算等众多技术于一体,体系结构、人工智能、集自动控制、也是衡量智能控制技术高度发展的产物,是计算机科学、模式识别和在国防和国民经济领一个国家科研实力和工业水平的一个重要标志, 域具有广阔的应用前景。安全是拉动无人驾驶车需求增长的主要因素。每年,防抱死制动汽车既然驾驶员失误百出,驾驶员们的疏忽大意都会导致许多事故。驾驶系无人制造商们当然要集中精力设计能确保汽车安全的系统。还有些活像是科幻小说中,其中有些根本算不上统种类繁多,无人的东西。其实就算无人驾驶系统。虽然防抱死制动器 需要防抱死制动系统因为驾驶员来操作但该系统仍可作为无人驾驶 系统系列的一个代表,不具备防抱防抱死制动系统的部分功能在过去需要驾驶员手动实现。死系统的汽车紧急刹车时,轮胎会被锁死,导致汽车失控侧滑。驾驶驾驶员要反复踩踏制动踏板来防止轮胎锁没有防抱死系统的汽车时,并且比手动操作效而防抱死系统可以代替驾驶员完成这一操作--死。果更好。该系统可以监控轮胎情况,了解轮胎何时即将锁死,并及时防抱死制动系统而且反应时机比驾驶员把握得更加准确。做出反应。是引领汽车工业朝无人驾驶方向发展的早期 技术之一。另一种无人驾驶系统是牵引或稳定控制系统。这些系统不太引人牵引和稳定注目,通常只有专业驾驶员才会意识到它们发挥的作用。;. .

雷洪钧:汽车自动驾驶技术与实例的研究(上)

雷洪钧:汽车自动驾驶技术与实例的研究(上) 汽车自动驾驶系统(Motor Vehicle Auto Driving System),是一种通过车载电脑系统实现无人驾驶的智能汽车系统,又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,还有称自动驾驶汽车(Autonomous vehicles;Self-piloting automobile )的。汽车自动驾驶系统,其结构,一般分为:感知系统、决策系统、执行系统3个部分。 一、汽车自动驾驶技术基础知识 1.0感知系统 感知系统,是用摄像头(眼睛)看前面的路,还在用雷达(耳朵)听车周围(前、后、左右)的车、人及实体的,甚至会用信息识别单元(大脑)在分析、判断。感知系统由三部分组成,传感器、高精度地图、信息识别单元等。 (1)传感器,主要有光学摄像头和雷达,相当人的眼睛和耳朵,其主要功能是车辆收集周围的“即时信息”。为无人驾驶车辆提供完整、准确的环境数据,长用的传感设备包括:(a)光学摄像头;(b)光学雷达(LiDAR);(c)微波雷达;(d)导航系统等。 (2)高精度地图,提供的环境信息中相对固定、更新周期较长的信息,比如车道标记、路缘、交通信号灯等; (3)信息识别单元,对传感器接收到信息,利用深度学习等手段,对信息进行识别,目前对外界事物进行准确识别基本算法和技术有:误差反向传播算法和先进的数字摄像技术。 1.1摄像头是众多预警、识别类ADAS功能的基础 1)摄像头的主要应用 车载摄像头对于智能驾驶是必不可少设备,主要应用于:车道偏离预警(LDW)、车道保持辅助(LKA)、前向碰撞预警(FCW)行人碰撞预警(PCW)、全景泊车(SVP)、驾驶员疲劳预警、交通标志识别(TSR)。 2)光学摄像头优缺点 光学摄像头是最常用的车载传感器,同时价格最便宜,是场景解读的绝佳工具,优点是能

自动驾驶汽车测试的重要性 (是德科技)

白皮 书 《测试对于自动驾驶汽车的 推广至关重要》 随着传统汽车制造商与新参与者纷纷投资研发创新技术,自动驾驶汽车(AV)领域的发展日新月异。尽管自动驾驶汽车有可能提升汽车的安全性和驾驶便利性, 但其复杂的设计要求必须使用测试和验证系统进行严格测试,确保在各种交通、路况和天气条件下的行车安全。当然,自动驾驶汽车将使用基于人工智能(AI)的方法,这将使汽车能够通过电信业务和基础设施提供商进行通信。 自动驾驶汽车技术的基础是互联汽车概念。系统会与汽车进行通信,交流道路和交通状况、附近的汽车以及与驾驶体验有关的其他关键信息。自动驾驶汽车技术将多种传感器、计算机和软件整合在一起,创造出自动驾驶汽车。从统计学上来说,这些汽车在安全行驶里程方面已经超越人工驾驶汽车。在大约 94% 的重大车祸中,常见的、可预见的驾驶员人为错误往往是肇事原因之一,例如超速或注意力分散等。

根据 Waymo(Google 以前的自动驾驶汽车项目)的报告,在以 2 英里时速行驶总共超过500 万英里的过程中,仅发生过一次事故,但没有造成任何人身伤害。即使这样,让消费者树立对全自动驾驶汽车的信任也是一个挑战。例如,根据 2018 年美国汽车协会(AAA)的一项调查1,有 73% 的美国驾驶员表示,他们非常担心驾驶自动驾驶汽车;而 63% 的美国成年人表示他们在步行或骑车时与自动驾驶汽车共享道路会感觉不安全。 安全性及其他优点 基于驾驶员错误所造成的事故数量,安全性是最受关注的问题,而自动驾驶汽车可能带来的最大好处就是安全性的提高。将人为错误排除在驾驶环节之外,可以大大减少交通事故中的人身伤亡。 部署自动驾驶汽车技术还有其他好处。例如,随着人口的老龄化,自动驾驶汽车技术将为老年人和残疾人提供更多的出行自由。此外,它还可能创造新的运输方式和商业模式,例如自动驾驶出租车队和共享自动驾驶汽车公司;这些模式可以提高个人生产率。

智能驾驶测试解决方案

智能驾驶测试解决方案 概述 随着技术的发展,汽车量产搭载的自动驾驶技术已经由初级的L1/L2辅助驾驶,向L3甚至更高级别演进。高级别的自动驾驶技术依赖更多传感器,那么在环境感知、多传感器融合、决策规划、车辆控制执行、功能安全等方面测试的挑战将日益增大。 AA作为国内一流测试方案服务商,为各主机厂、控制系统/传感器供应商在研发的各阶段提供解决方案。 ●智能驾驶车辆架构设计 AA提供PREEvision架构设计工具,给用户一个完整的协同开发平台,支持从电子电气架构设计到产品系列开发的全过程。 ●智能驾驶快速原型

AA提供OpenECU快速原型开发工具。该工具可在Matlab/Simulink环境进行开发,具有高效的自动代码生成功能,可为自动驾驶控制原型开发提供有效支撑。 ●智能驾驶仿真测试:MIL/SIL/HIL/VIL 美国兰德公司研究表明,自动驾驶需要行驶数亿、甚至数千亿英里验证其可靠性,实车驾驶需要行驶数十年、甚至数百年才能完成可靠性验证。同时美国N-FOT项目研究表明“完成一次公共道路测试的成本至少在100万美元以上”。 基于时间和成本的综合考量,我们可以通过虚拟仿真技术,对道路环境、交通、感知系统、决策规划系统和执行系统进行仿真建模,在实验室环境下实现智能驾驶系统的虚拟仿真测试,加速智能驾驶研发。 智能驾驶仿真测试与传统仿真测试相比,对车辆动力学仿真精度要求更高,更关注车与环境的交互,更重视测试场景的分析和测试场景数据库的建设。 ●智能驾驶MIL/SIL解决方案 MIL/SIL测试主要测试算法模型的功能逻辑。AA基于行业主流的虚拟仿真软件(如IPG公司的CarMaker、TESIS公司的DYNA4等)和PikeTec公司的TPT自动化测试工具,提供完整智能驾驶MIL/SIL解决方案,覆盖AEB、LDW、TSR、HMA、LCDA、LKA、IACC、TJP、TJA、APA等决策规划控制算法MIL测试,同时也能覆盖传感融合算法MIL测试。 CarMaker统筹场景模型、传感器模型和车辆动力学模型的仿真。使得测试环境部署在统一工具链下,保证了测试过程数据交互具有非常高的一致性。

自动驾驶汽车培训课件

无人驾驶汽车 自动驾驶汽车,又称为无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种透过电脑系统实现无人驾驶的智能式的汽车。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。现时自动驾驶技术正在研究及测试中,还没有批准作商业营业或私人使用。 都取得了突破性的进展。中国从20世纪80年代开始进行无人驾驶汽车的研究,国防科技大学在1992年成功研制出中国第一辆真正意义上的无人驾驶汽车。 2005年,首辆城市无人驾驶汽车在上海交通大学研制成功, 世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。 无人驾驶汽车是通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。 它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。

集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。 防抱死制动安全是拉动无人驾驶车需求增长的主要因素。每年,驾驶员们的疏忽大意都会导致许多事故。既然驾驶员失误百出,汽车制造商们当然要集中精力设计能确保汽车安全的系统。"无人"驾驶系统种类繁多,其中有些根本算不上"无人",还有些活像是科幻小说中的东西。 防抱死制动系统其实就算无人驾驶系统。虽然防抱死制动器需要驾驶员来操作但该系统仍可作为无人驾驶系统系列的一个代表,因为防抱死制动系统的部分功能在过去需要驾驶员手动实现。不具备防抱死系统的汽车紧急刹车时,轮胎会被锁死,导致汽车失控侧滑。驾驶没有防抱死系统的汽车时,驾驶员要反复踩踏制动踏板来防止轮胎锁死。而防抱死系统可以代替驾驶员完成这一操作--并且比手动操作效果更好。该系统可以监控轮胎情况,了解轮胎何时即将锁死,并及时做出反应。而且反应时机比驾驶员把握得更加准确。防抱死制动系统是引领汽车工业朝无人驾驶方向发展的早期技术之一。 另一种无人驾驶系统是牵引或稳定控制系统。这些系统不太引人注目,通常只有专业驾驶员才会意识到它们发挥的作用。牵引和稳定

智能网联汽车测试规范

5G自动驾驶联盟团体标准 智能网联汽车自动驾驶功能测试规范 (征求意见稿) Intelligent & C o nn e c t e d vehicle autonomous driving function test procedure 2018-12-07发布2018-12-07实施

目次 前言......................................................... 错误!未定义书签。 1 范围...................................................... 错误!未定义书签。 2 规范性引用文件............................................ 错误!未定义书签。 3 术语和定义................................................ 错误!未定义书签。4检测项目................................................... 错误!未定义书签。5通用要求................................................... 错误!未定义书签。 6 通过条件................................................... 错误!未定义书签。7测试规范................................................... 错误!未定义书签。附录A....................................................... 错误!未定义书签。

汽车自动驾驶技术研究

10.16638/https://www.360docs.net/doc/8611886859.html,ki.1671-7988.2017.02.042 汽车自动驾驶技术研究 余阿东,陈睿炜 (信阳职业技术学院汽车与机电工程学院,河南信阳464000) 摘要:自动驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车,它的行驶模式可以更加节能高效,可以为国家节省数千亿人民币的交通事故成本、交通拥堵成本以及运输过程中以人力提高生产力的成本。然而由于传感器的可靠性,系统漏洞等原因,现在使用的自动驾驶技术并不那么安全。针对上述内容从提高自动驾驶的可靠性方面,重点对汽车自动驾驶技术的网络化、人工智能、高精度地图、关键传感器、交通基础设施等方面进行研究。 关键词:自动驾驶汽车;节能高效;传感器;人工智能;网络化;高精度地图 中图分类号:U471.23 文献标识码:A 文章编号:1671-7988 (2017)02-124-02 Research on Auto Driving Technology Yu Adong, Chen Ruiwei ( College of automotive and electrical engineering, Xinyang V ocational and Technical College, Henan Xinyang 464000 ) Abstract: An automatic driving car is a kind of intelligent vehicle which can be realized by computer system, Its driving mode can be more energy efficient, can save thousands of billion yuan of traffic accident costs for the country, traffic congestion costs and the cost of manpower in the process of transportation.However, due to the reliability of the sensor, system vulnerabilities and other reasons, the use of automatic driving technology is not so safe.In view of the above content from improving the reliability of automatic driving, focusing on the auto driving technology of the network, artificial intelligence, high precision map, key sensors, transportation infrastructure and other aspects of research. Keywords: automatic driving vehicle; energy saving and high efficiency; sensor; artificial intelligence; network; high precision map CLC NO.: U471.23 Document Code: A Article ID: 1671-7988 (2017)02-124-02 引言 自动驾驶汽车是一种通过电脑系统实现无人驾驶的智能汽车,它依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。然而由于传感器的可靠性,系统漏洞等原因,现在使用的自动驾驶技术并不那么安全,如最近的特斯拉自动驾驶致死事件,就是因为系统未识别出危险而造成的。针对上述内容从提高自动驾驶的可靠性等方面,重点对汽车自动驾驶技术的网络化、人工智能、高精度地图、关键传感器、交通基础设施等方面进行研究。 1、汽车自动驾驶的网络化技术研究 车联网技术是汽车自动驾驶的关键。能够把所有的实时路况和每辆车的实时位置信息都记录在网络中,协调统筹每辆车的行驶,为每辆车安排合理路线,避免拥堵和交通事故的发生,能够很大程度上提高自动驾驶的可靠性。只是将汽车和路况信息纳入车联网还不够,同时应该将个人信息也纳入这个网络。让每一部手机都装上车联网软件,将每一个人的位置信息都记录于网络,系统可以记录行人的位置移动,从而分析出行人的行走习惯,对汽车撞到行人的可能性做出 作者简介:余阿东(1982-),男,硕士研究生,讲师,就职于信阳职业技术学院汽车与机电工程学院。主要从事汽车技术及汽车零部件加工机床的研究。

美交通部发布最新自动驾驶汽车指南 (附全文)

美交通部发布最新自动驾驶汽车指南(附全文) 具体来说,美国交通运输部的《自动驾驶系统2.0:安 全愿景》将: 专注SAE 3 级到5 级自动驾驶系统,即有条件的自动驾驶、高度自动驾驶和完全自动驾驶系统;澄清监管流程,明确企业无需等待,可以立即开始自动驾驶系统的测试与部署;从安全自我评估中剔除不必要的无关设计元素;比对最新发展和行业术语,对联邦指南进行同步更新;明确联邦政府和州政府将在未来自动驾驶系统发展中各自扮演的角色。 在该指南的引言中,交通运输部局长赵小兰女士提到,“美国交通运输部将制定一个政策性框架,鼓励自动驾驶汽车技术的安全开发、测试与部署,而非制造阻碍,不断发展并最终实现安全的交通移动出行未来。”相应的,交通运输部将发布《安全愿景》,通过对自动驾驶系统的支持和发展,推动全 美交通运输系统在安全性、机动性和效率方面取得提升。 赵小兰局长补充道,联邦政府最看重的是自动驾驶汽车的安全效益。她表示,“美国交通运输部将制定一个政策性框架,鼓励自动驾驶汽车技术的安全开发、测试与部署,而非制造阻碍。” 交通运输部表示,《自动驾驶系统2.0:安全愿景》将取代去年出台的《联邦自动驾驶汽车政策》(Federal Automated

Vehicle Policy),这是国会参众两院共同努力的成果。就在 交通部出台《自动驾驶系统2.0:安全愿景》之前,美国众 议院正在考虑通过一项名为《自动驾驶法案》(SELF DRIVE ACT) 的法案,为自动驾驶汽车的发展建立一个稳定、宽容的监管框架。交通运输部的最新指南主要涉及(依据先前已被联邦政府采纳的)SAE自动驾驶分类的3~5级的相关技术。明确联邦政府和州政府的各自责任范围 《自动驾驶系统2.0:安全愿景》用两个主要章节介绍了交 通部对自动驾驶汽车安全性的态度,并采用了联邦政府认可的SAE 自动驾驶汽车等级划分。从本质而言,交通运输部对自动驾驶系统的定义为:SAE 3 级到5 级自动驾驶系统中涉及的全部系统。 《自动驾驶系统2.0:安全愿景》的第一章题为“自主驾驶系统的自愿性指导规定”(Voluntary Guidance for Automated DrivingSystems),介绍了十多个“必须优先考虑安全设计元素”,包括车辆网络安全、人机接口、耐撞性、消费者教育和培训,及碰撞后驾驶员辅助系统等。 文件第二章为“各州技术援助:立法机关的自动驾驶系统最佳做法” (Technical Assistance toStates, Best Practices for Legislatures Regarding Automated Driving Systems)。本章内容要求“清晰划定联邦政府和各州政府在驾驶员辅助系统 监管中发挥的不同作用”,并强调“美国高速公路安全管理局

人工智能在车辆自动驾驶中的应用

人工智能在车辆自动驾驶中的应用 王洪升,曾连荪,田蔚风 (上海交通大学电信学院导航与控制研究所,上海200030) 摘要:本文提出了一种新的基于人工智能的感知/计划/动作agent结构实现智能车辆自动驾驶的方案。首先通过描述该结构的原理说明该结构可以解决自动驾驶中存在的一些问题,接着通过建立自动驾驶知识库阐述如何具体实现自动驾驶,最后通过仿真实验验证了该方法能够为智能车辆实现自动或辅助驾驶提供一种非常有效的机制。 关键词:智能交通系统;人工智能;智能车辆;自动驾驶;知识库 中图分类号:TP18文献标识码:A文章编号:1003-7241(2004)06-0005-04 Application of Artificial Intelligence in Autom atic Drive for Intelligent Vehicles WANG Hong-sheng,ZENG Lian-sun,TIA N Wei-feng (Institute of Navigation and Control,Shanghai Jiaotong University,Shanghai200030,China) Abstract:This paper presents an innovative method for implementing automatic drive for i ntelligen t vehicles using Artificial Intelli gence based on the sense/plan/act agent architecture.Theory of the archi tecture is described which explains that some problems in automatic driving can be solved efficiently.The i mplementation of the automatic dri ving using knowledge database based on this archi tecture is discussed.Simulation studies have been conducted to verify that the proposed method can be efficien tly utilized in automatic driving for intelligent vehicles. Key words:Intelligent transportation systems;Artificial i ntelligence;Intelligent vehicles;Automatic driving;Knowledge database 1引言 20世纪80年代后,日益拥挤的交通给人们带来交通堵塞、事故频发、环境污染和危害人类生命财产等一系列的困扰。为了排除这些困扰,集通讯、信息和管理于一体的智能交通系统(ITS)应运而生。 ITS一般由两部分组成,即智能道路及交通控制系统和智能车辆。目前智能道路系统的构建还处于起步阶段,相应的基础设施建设周期长且投资大,所以发展智能车辆及车辆自动驾驶系统,通过提高车辆自身的智能的方案是目前实现安全、高效的自动驾驶的最佳选择,同时它还可以为将来开发完备的自动高速交通网络环境中运行的智能车辆奠定基础。 收稿日期:2003-11-11 车辆自动驾驶系统主要由车辆自动驾驶控制系统和车辆自动路径导引系统组成。其中车辆自动驾驶控制系统对车辆进行横向和纵向的控制,而车辆自动路径导引系统为车辆动态规划最优的路径。近年来,车辆自动驾驶的研究取得了很大的进展,特别是图论法、神经网络法和遗传算法等[1][2][3][4]的应用。其中以Dijkstra算法为代表的图搜索法[2]在各种优化问题中得到了较为广泛的应用,并且这种算法的解是全局最优的。但是这种算法需要建立邻接矩阵,会耗费巨大的存储量,且其计算量与网络结点数目为立方关系。而智能车辆自动驾驶的路径导引要在结点数非常大的数字地图数据库中进行搜索,所以该方法存在计算量大和对计算机存储要求高的缺点。 本文提出将人工智能的基于感知P计划/动作agent结构[5]应用于车辆自动驾驶中,从感知、思维和行为三个层次模拟人为 5 u es of Aut oma tio n&Ap p licat io ns|

TCMAX116-01—2018自动驾驶车辆道路测试能力评估内容与方法

ICS 01.110 T00/09 T/CMAX 中关村智通智能交通产业联盟团体标准 2018-02-11 发布2018-02-11 实施 中关村智通智能交通产业联盟发布

T/CMAX 116-01—2018 目次 前言 .................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 评估内容 (3) 5 评估操作要求 (6) 6 评估评判 (20) 附录 A (31) 附录 B (63) I

T/CMAX 116-01—2018 II 前言 本标准按照GB/T1.1-2009《标准化工作导则_第1部分》给出的规则起草。 本标准作为《北京市关于加快推进自动驾驶车辆道路测试有关工作的指导意见(试行)》 及《北京市自动驾驶车辆道路测试管理实施细则(试行)》配套落实技术文件。 本标准除编辑性修改外,主要内容变化如下: ——修改了规范性引用文件(见2,见2018.2版2) ——增加了术语和定义自动驾驶系统(见3.3) ——增加了术语和定义相同自动驾驶车辆(见3.9) ——增加了术语和定义背景车辆(见3.10) ——增加了术语和定义评估车辆(见3.11) ——修改了评估内容评估车型(见4.2,见2018.2版4.2) ——修改了评估内容评估内容与评估分级(见4.4,见2018.2版4.4) ——修改了评估内容评估内容与评估车型(见4.5,见2018.2版4.5) ——修改了评估操作要求一般规定的章条编号(见5.1,见2018.2版5.1) ——增加了评估操作要求申请能力评估前提(见5.1.1) ——修改了评估操作要求评估操作要求(见5.1.3,见2018.2版5.1.2) ——修改了评估操作要求评估记录工具(见5.1.4,见2018.2版5.1.3) ——修改了评估操作要求场景布置规定(见5.1.5,见2018.2版5.1.4) ——修改了专项操作要求的章条编号(见5.2,见2018.2版5.2) ——修改了专项操作要求交通标志(见5.2.1,见2018.2版5.2.1) ——修改了专项操作要求紧急情况处置(见5.2.11,见2018.2版5.2.11) ——修改了专项操作要求人工介入后的可操控性(见5.2.12,见2018.2版5.2.12)

自动驾驶技术

自动驾驶的开发动向与技术 从自动驾驶技术的开发历史看,应该追溯到1975年,当时是利用计算机的视觉技术进行了自动驾驶研究开发。中途曾一度中断过,但现在又开始火热研究起来。图1表示目前自动驾驶技术的开发历史。从法律和技术层面看,到实际商品化还有许多路要走。人们期待自动驾驶能解决交通事故和环境污染问题,目前正通过产学研进行合作研究。 欧洲对自动驾驶车的开发非常重视,被列为了国家重点项目在推进,目前已取得了一些成果。美国以谷歌为代表在研究自动驾驶技术,在道路上做自动驾驶实验,在内华达州还可申办新的自动驾驶执照。 日本在2008年到2012年之间为了实现安全、环保的物流运输系统,开发了重型卡车自动列队行驶技术。2014年以政府为中心推进自动驾驶车的实际运用(SIP- adus),本文将介绍近年来自动驾驶的技术开发和实际运用动向。

自动驾驶所期待的技术 汽车的自动化技术就是,当驾驶员在驾驶过程中出现思想不集中、打盹现象,可能导致交通事故时,控制系统可以介入驾驶员的操作,辅助驾驶员安全驾驶,该辅助驾驶系统本身已经商品化了。自动驾驶是对该系统的进一步发展,它与驾驶辅助系统的不同点是,以行驶环境感知和危险判断为中心的系统。图2表示辅助驾驶与自动驾驶的差别。面对驾驶辅助系统和自动驾驶,国际上对汽车的自动化级别进行了重新定义,自动化级别定义如表1所示,表示美国SAE(自动驾驶标准委员会)制定的汽车自动化级别定义。 在自动化级别中,从法律和技术层面看,自动化级别2与自动化级别3以上有很大差别,而且是非常根本的差别。具体地讲,自动化级别2对行驶环境认知的最终责任者是驾驶员;自动化级别3以上,对行驶环境认知的最终责任者是控制系统。 为了实现自动化级别3以上的自动驾驶,需要对现在已经实际运用的安全辅助驾驶系统中的传感器技术、信息处理技术性能、智能化和可靠性做进一步提升,日、美、欧正在进行自动化3级以上的自动驾驶技术开发。 表2列出了作者认为自动驾驶所需要的新技术。前方障碍物传感技术是目前驾驶辅助系统和自动驾驶所追求的目标性能,见表3。

智能驾驶测试解决方案

智能驾驶测试解决方案 智能网联汽车集中运用了计算机、现代传感、信息融合、模式识别、通信网络及自动控制等技术,是一个集环境感知、规划决策和多等级自动驾驶控制于一体的技术综合体。 为此在智能网联汽车研发过程中测试和验证面临巨大的挑战。一方面,需要新的测试方法以改进传统路测方法,解决传统测试中需要大量行驶里程所带来的一些问题。另一方面,由于发展初期有限的市场渗透率,测试验证过程还需考虑混合交通环境下其他交通参与者的驾驶行为对自动驾驶汽车功能产生的重大影响。 AA作为Vector、Rohde & Schwarz、IPG、Pi innovo公司、PikeTec、HQRadar 公司的技术合作伙伴,将为中国汽车客户提供智能网联相关测试系统及服务,主要包括L1-L5自动驾驶控制系统的快速原型开发工具、MIL/HIL/VIL测试系统、车联网功能测试系统、FOTA功能测试,毫米波雷达测试及仿真系统等,全面助力智能网联汽车的研发与生产。

概述 随着技术的发展,汽车量产搭载的自动驾驶技术已经由初级的L1/L2辅助驾驶,向L3甚至更高级别演进。高级别的自动驾驶技术依赖更多传感器,那么在环境感知、多传感器融合、决策规划、车辆控制执行、功能安全等方面测试的挑战将日益增大。 AA作为国内一流测试方案服务商,为各主机厂、控制系统/传感器供应商在研发的各阶段提供解决方案。 ●智能驾驶车辆架构设计 AA提供PREEvision架构设计工具,给用户一个完整的协同开发平台,支持从电子电气架构设计到产品系列开发的全过程。 ●智能驾驶快速原型

AA提供OpenECU快速原型开发工具。该工具可在Matlab/Simulink环境进行开发,具有高效的自动代码生成功能,可为自动驾驶控制原型开发提供有效支撑。 ●智能驾驶仿真测试:MIL/SIL/HIL/VIL 美国兰德公司研究表明,自动驾驶需要行驶数亿、甚至数千亿英里验证其可靠性,实车驾驶需要行驶数十年、甚至数百年才能完成可靠性验证。同时美国N-FOT项目研究表明“完成一次公共道路测试的成本至少在100万美元以上”。 基于时间和成本的综合考量,我们可以通过虚拟仿真技术,对道路环境、交通、感知系统、决策规划系统和执行系统进行仿真建模,在实验室环境下实现智能驾驶系统的虚拟仿真测试,加速智能驾驶研发。 智能驾驶仿真测试与传统仿真测试相比,对车辆动力学仿真精度要求更高,更关注车与环境的交互,更重视测试场景的分析和测试场景数据库的建设。 ●智能驾驶MIL/SIL解决方案 MIL/SIL测试主要测试算法模型的功能逻辑。AA基于行业主流的虚拟仿真软件(如IPG公司的CarMaker、TESIS公司的DYNA4等)和PikeTec公司的TPT自动化测试工具,提供完整智能驾驶MIL/SIL解决方案,覆盖AEB、LDW、TSR、HMA、LCDA、LKA、IACC、TJP、TJA、APA等决策规划控制算法MIL测试,同时也能覆盖传感融合

相关文档
最新文档