ANSYS弹性及塑性分析(非常经典)

ANSYS弹性及塑性分析(非常经典)
ANSYS弹性及塑性分析(非常经典)

目录

什么是塑性 (1)

路径相关性 (1)

率相关性 (1)

工程应力、应变与真实应力、应变 (1)

什么是激活塑性 (2)

塑性理论介绍 (2)

屈服准则 (2)

流动准则 (3)

强化准则 (3)

塑性选项 (5)

怎样使用塑性 (6)

ANSYS输入 (7)

输出量 (7)

程序使用中的一些基本原则 (8)

加强收敛性的方法 (8)

查看结果 (9)

塑性分析实例(GUI方法) (9)

塑性分析实例(命令流方法) (14)

弹塑性分析

在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面:

什么是塑性

塑性理论简介

ANSYS程序中所用的性选项

怎样使用塑性

塑性分析练习题

什么是塑性

塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。

由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。

路径相关性:

即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。

路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。

率相关性:

塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。

大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。

工程应力,应变与真实的应力、应变:

塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力

)。(P A0)与工程应变( l l0),也可能是真实应力(P/A)与真实应变(n L l l()

0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。

什么时候激活塑性:

当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。

温度

应变率

以前的应变历史

侧限压力

其它参数

塑性理论介绍

在这一章中,我们将依次介绍塑性的三个主要方面:

屈服准则

流动准则

强化准则

屈服准则:

对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。

屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,

知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。

屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。

可以在主应力空间中画出Mises 屈服准则,见 图3-1。

在3-D 中,屈服面是一个以

123σσσ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任何应力状态,都是弹性的,屈服面外部的任何应力状态都会引起屈服。注意:静水压应力状态(123

σσσ==)不会导致屈服:屈服与静水压应力无关,而只与偏差应力有关,因此,1180σ=,230σσ==的应力状态比123

180σσσ==的应力状态接近屈 服。Mises 屈服准则是一种除了土壤和脆性材料外典型使用的屈服准则,在土壤和脆性材料中,屈服应力是与静水压应力(侧限压力)有关的,侧限压力越高,发生屈服所需要的剪应力越大。

流动准则:

流动准则描述了发生屈服时,塑性应变的方向,也就是说,流动准则定义了单个塑性应变分量(x pl

ε,y pl

ε 等)随着屈服是怎样发展的。

一般来说,流动方程是塑性应变在垂直于屈服面的方向发展的屈服准则中推导出来的。这种流动准则叫作相关流动准则,如果不用其它的流动准 则(从其它不同的函数推导出来)。则叫作不相关的流动准则。

强化准则:

强化准则描述了初始屈服准则随着塑性应变的增加是怎样发展的。

一般来说,屈服面的变化是以前应变历史的函数,在ANSYS 程序中,使用了两种强化准则。

等向强化是指屈服面以材料中所作塑性功的大小为基础在尺寸上扩张。对Mises 屈服准则来说,屈服面在所有方向均匀扩张。见图3-2。

图3-2 等向强化时的屈服面变化图

由于等向强化,在受压方向的屈服应力等于受拉过程中所达到的最高应力。

随动强化假定屈服面的大小保持不变而仅在屈服的方向上移动,当某个方向的屈服应力升高时,其相反方向的屈服应力应该降低。见图3-3。

图3-3 随动强化时的屈服面变化图

在随动强化中,由于拉伸方向屈服应力的增加导致压缩方向屈服应力的降低,所以在对

的差值,初始各向同性的材料在屈服后将不再是向同应的两个屈服应力之间总存一个2

y

性的。

塑性选项

ANSYS程序提供了多种塑性材料选项,在此主要介绍四种典型的材料选项可以通过激活一个数据表来选择这些选项。

经典双线性随动强化 BKIN

双线性等向强化 BISO

多线性随动强化 MKIN

多线性等向强化 MISO

经典的双线性随动强化(BKIN)使用一个双线性来表示应力应变曲线,所以有两个斜率,

弹性斜率和塑性斜率,由于随动强化的Vonmises 屈服准则被使用,所以包含有鲍辛格效应,此选项适用于遵守Von Mises 屈服准则,初始为各向同性材料的小应变问题,这包括大多数的金属。

和切向斜率T E,可以定义高达六条不同温度下的曲需要输入的常数是屈服应力

y

线。

注意:

使用MP命令来定义弹性模量

弹性模量也可以是与温度相关的

切向斜率Et不可以是负数,也不能大于弹性模量

在使用经典的双线性随动强化时,可以分下面三步来定义材料特性。

1、定义弹性模量

2、激活双线性随动强化选项

3、使用数据表来定义非线性特性

双线性等向强化(BIS0),也是使用双线性来表示应力-应变曲线,在此选项中,等向强化的Von Mises 屈服准则被使用,这个选项一般用于初始各向同性材料的大应变问题。需要输入的常数与BKIN选项相同。

多线性随动强化(MKIN)使用多线性来表示应力-应变曲线,模拟随动强化效应,这个选项使用Von Mises 屈服准则,对使用双线性选项(BKIN)不能足够表示应力-应变曲线的小应变分析是有用的。

需要的输入包括最多五个应力-应变数据点(用数据表输入),可以定义五条不同温度下的曲线。

在使用多线性随动强化时,可以使用与BKIN相同的步骤来定义材料特性,所不同的是在数据表中输入的常数不同,下面是一个用命令流定义多线性随动强化的标准输入。

MPTEMP,,10,70

MPDATA,EX,3,,30ES,25ES

TB,MK2N,3

TBTEMP,,STRA2N

TBDATA,,,,

TBTEMP,10

TBDATA,,30000,37000,38000

TBTEMP,70

TBDATA,,225000,31000,33000

多线性等向强化(MISO)使用多线性来表示使用Von Mises屈服准则的等向强化的应力-应变曲线,它适用于比例加载的情况和大应变分析。

需要输入最多100个应力-应变曲线,最多可以定义20条不同温度下的曲线。

其材料特性的定义步骤如下:

1、定义弹性模量

2、定义MISO数据表

3、为输入的应力-应变数据指定温度值

4、输入应力-应变数据

5、画材料的应力-应变曲线

与MKIN 数据表不同的是,MISO的数据表对不同的温度可以有不同的应变值,因此,每条温度曲线有它自己的输入表。

怎样使用塑性

在这一章中,我们将介绍在程序中怎样使用塑性,重点介绍以下几个方面可用的ANSYS 输入

ANSYS 输出量

使用塑性的一些原则

加 强 收 敛 性 的 方 法

查 看 塑 性 分 析 的 结 果

ANSYS 输 入:

当使用TB 命令选择塑性选项和输入所需常数时,应该考虑到:

常数应该是塑性选项所期望的形式, 例如,我们总是需要应力和总的应变,而不是应力与塑性应变。

如果还在进行大应变分析,应力-应变曲线数据应该是真实应力-真实应 变。 对双线性选项(BKIN ,BISO ),输入常数

y σ和T E 可以按下述方法来决定,如果材料没有明显的屈服应力y σ,通常以产生%的塑性应变所对应的应力作为屈服应力,而T E 可以通过在分析中所预期的应变范围内来拟合实验曲线得到。

其它有用的载荷步选项:

使用的子步数(使用的时间步长),既然塑性是一种与路径相关的非线性,因此需要使用许多载荷增量来加载

激活自动时间步长

如果在分析所经历的应变范围内,应力-应变曲线是光滑的,使用预测器选项,这能够极大的降低塑性分析中的总体迭代数。

输出量

在塑性分析中,对每个节点都可以输出下列量:

EPPL -塑性应变分量x pl

ε, y pl

ε等等

EPEQ -累加的等效塑性应变

SEPL -根据输入的应力-应变曲线估算出的对于EPEQ 的等效应 力

HPRES -静水压应力

PSV -塑性状态变量

PLWK -单位体积内累加的塑性功

上面所列节点的塑性输出量实际上是离节点最近的那个积分点的值。

如果一个单元的所有积分点都是弹性的(EPEQ =0),那么节点的弹性应变和应力从积分点外插得到,如果任一积分点是塑性的(EPEQ>0),那么节点的弹性应变和应力实际上是积分点的值,这是程序的缺省情况,但可 以人为的改变它。

程序使用中的一些基本原则:

下面的这些原则应该有助于可执行一个精确的塑性分析

1、 所需要的塑性材料常数必须能够足以描述所经历的应力或应变范围内的材料特性。

2、 缓慢加载,应该保证在一个时间步内,最大的塑性应变增量小于5%,一 般 来说,如

果Fy 是系统刚开始屈服时的载荷,那么在塑性范围内的载荷增量应近似为:

*Fy - 对用面力或集中力加载的情况

Fy - 对用位移加载的情况

3、 当模拟类似梁或壳的几何体时,必须有足够的网格密度,为了能够足够的模拟弯曲反

应,在厚度方向必须至少有二个单元。

4、 除非那个区域的单元足够大,应该避免应力奇异,由于建模而导致的应力奇异有:

单点加载或单点约束

凹角

模型之间采用单点连接

单点耦合或接触条件

5、 如果模型的大部分区域都保持在弹性区内,那么可以采用下列方法来降低计算时间:

在弹性区内仅仅使用线性材料特性( 不 使 用TB 命 令)

在线性部分使用子结构

加强收敛性的方法:

如果不收敛是由于数值计算导致的,可以采用下述方法来加强问题的收敛性:

1、使用小的时间步长

2、如果自适应下降因子是关闭的,打开它,相反,如果它是打开的,且割线刚度正

在被连续地使用,那么关闭它。

3、使用线性搜索,特别是当大变形或大应变被激活时

4、预测器选项有助于加速缓慢收敛的问题,但也可能使其它的问题变得不稳定。

5、可以将缺省的牛顿-拉普森选项转换成修正的(MODI)或初始刚度(INIT)牛顿-拉普森选项,这两个选项比全牛顿-拉普森选项更稳定(需要更的迭代),但这两个选项仅在小挠度和小应变塑性分析中有效。

查看结果

1、感兴趣的输出项(例如应力,变形,支反力等等)对加载历史的响应应该是光滑的,

一个不光滑的曲线可能表明使用了太大的时间步长或太粗的网格。

2、每个时间步长内的塑性应变增量应该小于5%,这个值在输出文件中以“Max plastic

Strain Step”输出,也可以使用POST26来显示这个值(Main Menu:Time Hist Postpro Define Variables)。

3、塑性应变等值线应该是光滑的,通过任一单元的梯度不应该太大。

4、画出某点的应力—应变图,应力是指输出量SEQV(Mises 等效应力),总应变由累

加的塑性应变EPEQ和弹性应变得来。

塑性分析实例(GUI方法)

在这个实例分析中,我们将进行一个圆盘在周期载荷作用下的塑性分析。

问题描述:

一个周边简支的圆盘,在其中心受到一个冲杆的周期作用。由于冲杆被假定是刚性的,因此在建模时不考虑冲杆,而将圆盘上和冲杆接触的结点的Y方向上的位移耦合起来。

由于模型和载荷都是轴对称的,因此用轴对称模型来进行计算。求解通过四个载荷步实现。

问题详细说明:

材料性质:

EX=70000 (杨氏模量)

NUXY=(泊松比)

塑性时的应力—应变关系如下:

应变应力

55

112

172

241

加载历史:

时间载荷

0 0

1 -6000

2 750

3 -6000

问题描述图:

步骤一:建立计算所需要的模型。

在这一步中,建立计算分析所需要的模型,包括定义单元类型,划分网格,给定边界条件。并将数据库文件保存为“”。在此,对这一步的过程不作详细叙述。

步骤二:恢复数据库文件“”

Utility Menu>File>Resume from

步骤三:定义材料性质

1、选择菜单路径Main Menu>Preprocessor>Matersal Props>-Constant-Isotropic.

Isotropic Matersal Properties (各向同性材料性质)对话框出现。

2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。

3、对杨氏模量(EX)键入EXX 。

4、对泊松比(NUXY)键入。

5、单击OK。

步骤四:定义和填充多线性随动强化数据表(MKIN)

1、选择菜单路径Main Menu>Preprocessor>Material Props>DataTables>Define/Activate.

Define/Activate Data Table(激活数据表)对话框出现。

2、在关于type of data table(数据表类型)的卷动框中,卷动到“Multi kinem MKIN”

且选中它。

3、在material refersuce number(材料参考号)中,健入1。

4、对number of temperatures(温度数)键入1,单击OK。

5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit

Active.。. Data Table MKIN对话框出现。

6、在“Strain”一行中,从第二列起分别输入STN1,STN2,STN3,STN4。

7、在“Curve 1”一行中,从第二列起分别输入STS1,STS2,STS3,STS4。

8、选择File>Apply & Quit。

9、选择菜单路径Main Menu>Preprosessor>Material Porps>Data Tables>Graph.

Graph Data Tables(图形表示数据表)对话框出现。

10、单击OK接受绘制MKIN表的缺省。一个MKIN表的标绘图出现在ANSYS 图形窗口中。步骤五:进入求解器

选择菜单路径Main Menu>Solution。

步骤六:定义分析类型和选项

1、选择菜单路径Main Menu>Solution>-Analysis Type-New Analysis.

2、单击“Static”来选中它然后单击OK。

步骤七:打开预测器,设置输出控制。

1、选择菜单路径Main menu>solution-Load Set Opts-Nonlinear>Predictor。

2、将predictor的状态设置为“ON”。

3、选择菜单路径Main Menu>Solution>-Load Step Options- Output Ctrls> DB/Results

File. Coutrols for Database and Results File Writing (对数据库和结果文件写入的控制)对话框出现。

4、单击“Every substep”且选中它。

步骤八:设置载荷步选项

1、选择菜单路径Main Menu>Solution>-Load Step Options-Time/Frequenc >

time&Substep。 Time&Substep Option(时间和子步数选项)对话框出现。

2、对time at end of Load Step(载荷步终止时间)键入 1e-6

3、对Number of substeps (子步数)键入1。

步骤九:对第一个载荷步加载

在结点3的Y方向施加一大小为 0的集中力载荷。

步骤十:将第一个载荷步写入载荷步文件。

1、选择菜单路径Main Menu>Solution>-Write Ls File,出现对话框。

2、在“LSNUM”的输入框中键入 1

步骤十一:对第二个载荷步加载,并写入载荷步文件。

1、选择菜单路径Main Menu>Solution>-Load Step

Options-Time/Frequenc>time&Substep。 Time&Substep Option(时间和时间步选项)对话框出现。

2、对time at end of Load Step(载荷步终止时间)键入1

3、对Number of substeps (子步数)键入10。

4、单击automatic time stepping option(自动时间步长选项)使之为ON,然后单击OK。

5、在结点3的Y方向施加一大小为 -6000的集中力载荷。

6、选择菜单路径Main Menu>Solution>-Write Ls File,出现对话框。

7、在“LSNUM”的输入框中键入 2

步骤十二:对第三个载荷步加载,并写入载荷步文件。

1、选择菜单路径Main Menu>Solution>-Load Step

Options-Time/Frequenc>time&Substep。 Time&Substep Option(时间和时间步选项)对话框出现。

2、对time at end of Load Step(载荷步终止时间)键入2

3、在结点3的Y方向施加一大小为 750的集中力载荷。

4、选择菜单路径Main Menu>Solution>-Write Ls File,出现对话框。

5、在“LSNUM”的输入框中键入3

步骤十三:对第四个载荷步加载,并写入载荷步文件。

1、选择菜单路径Main Menu>Solution>-Load Step Options-

Time/Frequenc>time&Substep。 Time&Substep Option(时间和

时间步选项)对话框出现。

2、对time at end of Load Step(载荷步终止时间)键入3

3、在结点3的Y方向施加一大小为 -6000的集中力载荷。

4、选择菜单路径Main Menu>Solution>-Write Ls File,出现对话框。

5、在“LSNUM”的输入框中键入4

步骤十三:求解问题

1、选择菜单路径Main Menu>Solution>-Solve-From Ls Files,对话框出现。

2、对“LSMIN”键入1,对“LSMAX”键入4。

3、单击对话框中的OK开始求解。

步骤十四:进行后处理。

在这一步中,可以进行所想要的后处理,在此不进行详述。

非线性静态实例分析(命令流方式)

你可以用下面显示的ANSYS命令替代GUI选择,进行上面这个例题的塑性分析。fini

/cle

/title,circular plate loaded by a circular punch - kinematic hardening

rpl=65

rpu=5

h=

exx=70000

sts1=55 !yield stress

stn1=sts1/exx

sts2=112

stn2=

sts3=172

stn3=

sts4=241

stn4=

nex=15 ! No. of elements along the radius

net=2 ! No. of elements in the plate's thickness

/prep7

et,1,42,,,1

! define node for convenient postprocessing

n,1,rpl,0

n,2,0,0

n,3,0,h/2

!define geometry

k,1,,-(h/2)

k,2,rpu,-(h/2)

k,3,rpl,-(h/2)

kgen,2,1,3,1,,h,,3

nex1=nint*net)

nex2=nex-nex1

l,1,2

l,4,5

l,2,3

l,5,6

a,1,2,5,4

a,2,3,6,5

lesize,1,,,nex1

lesize,2,,,nex1

lesize,3,,,nex2,

lesize,4,,,nex2,

esize,(h/net)

amesh,all

nummrg,node

nodes

nsel,s,loc,x,0,rpu

nsel,r,loc,y,(h/2)

cp,1,uy,all

nsel,all

esel,all

fini

/solu

nsel,s,loc,x,rpl

nsel,r,loc,y,0

d,all,uy

nsel,s,loc,x,0

d,all,ux

nsel,all

outres,all,all

fini

/prep7

mp,ex,1,exx

mp,nuxy,1,

tb,mkin,1

tbtemp,,strain

tbdata,,stn1,stn2,stn3,stn4 tbtemp,,

tbdata,,sts1,sts2,sts3,sts4 fini

/solu

pred,on

outres,all,all

nsubst,1

time,1e-6

f,3,fy,0

lswrite

autots,on

nsubst,10

time,1

f,3,fy,-6000

lswrite

time,2

f,3,fy,750

lswrite

time,3

f,3,fy,-6000

lswrite

lssolve,1,4

fini

/post1

set,2

/dscal,1,1

pldisp,2

fini

/post26

nsol,2,2,u,y,uy2

rforce,3,1,f,y,ry1

add,2,2,,,uy2,,,-1

/grid,1

/axlab,x,deflection [mm] /axlab,y,force [n] xval,2

plvar,3

prvar,2,3

fini

ANSYS弹性及塑性分析(非常经典)

目录 什么是塑性 (1) 路径相关性 (1) 率相关性 (1) 工程应力、应变与真实应力、应变 (1) 什么是激活塑性 (2) 塑性理论介绍 (2) 屈服准则 (2) 流动准则 (3) 强化准则 (3) 塑性选项 (5) 怎样使用塑性 (6) ANSYS输入 (7) 输出量 (7) 程序使用中的一些基本原则 (8) 加强收敛性的方法 (8) 查看结果 (9) 塑性分析实例(GUI方法) (9) 塑性分析实例(命令流方法) (14)

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ?什么是塑性 ?塑性理论简介 ?ANSYS程序中所用的性选项 ?怎样使用塑性 ?塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力 )。(P A0)与工程应变(?l l0),也可能是真实应力(P/A)与真实应变(n L l l() 0大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ?温度 ?应变率 ?以前的应变历史 ?侧限压力 ?其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ?屈服准则 ?流动准则 ?强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,

钢筋混凝土梁的ansys分析

摘要 本文介绍ANSYS 模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS 中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变形和裂缝的发展过程。 关键词 Ansys 混凝土梁 分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用ANSYS 对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys 中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为200400b h mm mm ?=?,梁的跨度为3.0L m =,支座宽度为250mm 采用C20混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12, 箍筋采用φ6@150,钢筋保护层厚度为25mm 。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为5 2.110MPa ?,抗拉强度设计值210MPa , 密度33 7.810/kg m ?,泊松比为0.3。

ansys实例命令流-弹塑性分析命令流

/FILNAME,Elastic-Plasitc,1 /TITLE, Elastic-Plasitc Analysis !前处理。 /PREP7 !**定义梁单元189。 ET,1,BEAM189 !定义单元。 !**梁截面1。 SECTYPE, 1, BEAM, HREC, , 0 !定义梁截面。SECOFFSET, CENT SECDATA,50,100,6,6,6,6,0,0,0,0 !定义梁截面完成。 !**定义材料。 MPTEMP,,,,,,,, !定义弹塑性材料模型。MPTEMP,1,0 MPDATA,EX,1,,2.05e5 MPDATA,PRXY,1,,0.3 TB,BISO,1,1,2, TBTEMP,0 TBDATA,,150,18600,,,, !定义弹塑性材料模型。!**建立几何模型。 K,1, , , , K,2 ,900, K,3 ,,50 LSTR, 1, 2 !**网格划分。 FLST,5,1,4,ORDE,1 !定义网格密度。FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义网格密度完成。CM,_Y,LINE !网格划分。 LSEL, , , , 1 CM,_Y1,LINE CMSEL,S,_Y CMSEL,S,_Y1 LATT,1, ,1, , 3, ,1 CMSEL,S,_Y CMDELE,_Y CMDELE,_Y1 LMESH, 1 !网格划分完成。 !施加载荷及求解。 FINISH /SOL

!**施加约束。 FLST,2,1,3,ORDE,1 !施加约束。FITEM,2,1 /GO DK,P51X, , , ,0,UX,UY,UZ,ROTX, , , FLST,2,1,3,ORDE,1 FITEM,2,2 /GO DK,P51X, , , ,0,UY,UZ,ROTX, , , , !施加约束完成。 !**加载。 FLST,2,50,2,ORDE,2 FITEM,2,1 FITEM,2,-50 SFBEAM,P51X,1,PRES,100, , , , , , LSWRITE,1, !定义载荷步1完成。FLST,2,50,2,ORDE,2 !定义载荷步2。FITEM,2,1 FITEM,2,-50 SFEDELE,P51X,1,PRES LSWRITE,2, !定义载荷步2完成。!设定求解步并求解。 LSSOLVE,1,2,1,

ANSYS弹性及塑性1讲解

什么是塑性 (1) 路径相关性 (1) 率相关性 (1) 工程应力、应变与真实应力、应变 (1) 什么是激活塑性 (2) 塑性理论介绍 (2) 屈服准则 (2) 流动准则 (3) 强化准则 (3) 塑性选项 (5) 怎样使用塑性 (6) ANSYS 输入 (7) 输出量 (7) 程序使用中的一些基本原则 (8) 加强收敛性的方法 (8) 查看结果 (9) 塑性分析实例(GUI方法) (9) 塑性分析实例(命令流方法) (14)

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题 --弹塑性分析,我们 的介绍人为以下几个方面: 什么是塑性 ?塑性理论简介 ?ANSY 皐序中所用的性选项 *怎样使用塑性 ?塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下 ,材料产生永久变形的材料特性 ,对大多的工程材料来说 当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点 时,表现为弹性行为,也 就是说,当 移走载荷时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在 ANSYS 程序中,假定它们相同。在应力一应变 的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。 塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关, 这类非线性问题叫作与路 径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解一内部的应力,应变分 布一存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数, 如果塑性应变的大小与时间有关,这种塑 性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性, 但在大多数静 力分 析所经历的应变率范围, 两者的应力一应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力一应变曲线形式给出。材料数据可能是工程应力 ( P/A 。)与工程应变(川/l 。),也可能是真实应力( 大应变的塑性分析一般采用真实的应力, 应变数据而小应变分析一般采用工程的应力、 应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生) 。而屈服应 力本身可 能是下列某个参数的函数。 * 温度 * 应变率 * 以前的应变历史 * 侧限压力 *其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: 屈服准则 * 流动准则 强 化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑 性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示 知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是 Von Mises 屈服准则, 。因此, P/A )与真实应变(

建筑弹塑性分析问题

弹塑性分析方法 静力弹塑性分析(PUSH-OVER ANAL YSIS)方法也称为推覆法,该方法基于美国的FEMA-273抗震评估方法和A TC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。 1引言 《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando地震、1975年日本大分地震也出现了类似的情况。相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。 可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。 2.现有弹塑性分析方法综述 2静力弹塑性分析 计算方法 (1) 建立结构的计算模型、构件的物理参数和恢复力模型等; (2) 计算结构在竖向荷载作用下的内力;

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

钢筋混凝土结构弹塑性分析在ANSYS 中的实现

钢筋混凝土结构弹塑性分析在ANSYS中的实现 周岑孙利民 (同济大学土木工程防灾国家重点实验室200092) 摘要钢筋混凝土结构是现代土木工程中最常用的结构形式。本文针对运用ANSYS进行钢筋混凝土结构的弹塑性分析,通过与理论解比较,依据分析对象的结构层次(结构、构件)、分析类型(静 力单调加载、反复加载)、荷载水平(线弹性、弹塑性),讨论了单元类型、材料模型及模型参 数的选取,必要时甚至采用UPF等二次开发工具进行分析。分析表明,合理的模型可以得到令 人满意的结果。 关键词钢筋混凝土结构弹塑性 ANSYS Realization of RC Structure Elasto-plastic Analysis with ANSYS Zhou Cen Sun Limin (State Key Laboratory for Disaster Reduction in Civil Engineering ) Abstract:RC structure is the most common structure type in modern civil engineering. In this paper, how to analyze RC structure elasto-plastic analysis with ANSYS is discussed. Compared with theoretical results, it is discussed how to select element type, material model and parameter based on the structure level (whole structure or member), analysis type (under static monotone load or cyclic load), load level (linear elastic or elasto-plastic) and UPF if necessary. The analysis shows that satisfactory results may be obtained from rational models. 1 前言 钢筋混凝土材料由于结实且价格低廉,已经成为土木工程结构中采用得最多的材料。土木工程师在对钢筋混凝土结构进行受力分析时,往往希望通过采用诸如ANSYS等通用有限元软件计算。由于钢筋混凝土实际上是一种复合材料,且混凝土本身的均质性较差。在运用ANSYS进行分析时应合理选用单元类型及材料模型,以求较好的计算精度。 2 单元类型的选取 钢筋混凝土结构有限元分析中单元划分通常基于两个层次:梁杆单元和实体单元。前者着重分析单元力(包括力和弯矩)与位移(包括位移和转角)之间的关系,而后者着重于分析单元的应力-应变关系。单元类型的选取应兼顾计算规模、材料模型的精度等多方面的因素。通常对于大型结构进行分析时,分析模型应包括上部结构、下部结构、基础,甚至一定范围内的地基,这样才能较好的考虑整体结构的受力状况。但由于全结构模型规模较大,通常采用梁杆单元将结构离散成为梁杆体系进行分析。钢筋混凝土结构计算中采用梁杆体系的

ANSYS弹塑性分析

ansys弹塑性分析的例子(载自互联网) 2010-10-20 20:03:29| 分类:材料科学初探 | 标签: |字号大中小订阅 弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的 介绍分为以下几个方面: · 什么是塑性 · 塑性理论简介 · ANSYS程序中所用的弹塑性选项 · 怎样使用塑性 · 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说 ,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低 于屈服点时,表现为弹性行为,也就是说,当移走载荷时,其应变也完全消 失。 由于屈服点和比例极限相差很小,因此在ANSYS程序中,假定它们相同。在应力一应 变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变 强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与 路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分 布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。

率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种 塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静力分析所经历的应变率范围 ,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力( )与工程应变(),也可能是真实应力(P/A)与真实应变()。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力 、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服 应力本身可能是下列某个参数的函数。 · 温度 · 应变率 · 以前的应变历史 · 侧限压力 · 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: · 屈服准则 · 流动准则 · 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有 塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此 ,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。

钢筋混凝土梁的弹塑性分析ansys命令流

!(1)工作环境设置 /FILENAME,RC-BEAM !指定工作文件名 /TITLE,ALAL YSIS OF A RC-BEAM !指定图形标题 !(2)进行前处理器 /prep7 !(3)定义单元类型 ET,1,LINK8 !定义钢筋单元 ET,2,SOLID65 !定义混凝土单元 ET,3,MESH200 !用于拉伸成体单元KEYOPT,3,1,6 !(4)定义钢筋截面积 r,1,28.3 r,2,50.3 r,3,314.1 !(5)为solid65单元定义一个实参数组 r,4, !(6)定义混凝土材料 MP,EX,2,2.55E10 MP,PRXY,2,0.3 TB,CONC,2,1,9, !定义混凝土的破坏参数TBDA TA,,0.3,0.55,1.55E6,-1,, TBDA TA,,,,0.6 !(7)定义钢筋材料模型及参数 mp,ex,2,2e5 !纵向受拉钢筋材料 mp,prxy,2,0.3 tb,bkin,2,1,2,1 tbdata,,350 mp,ex,3,2e5 !横向箍筋,架立钢筋材料mp,prxy,3,0.25 tb,bkin,3,1,2,1 tbdata,,200 !(8) 创建以及复制节点 /pnum,node,1 /pnum,elem,1 n,1 n,9,200 fill,1,9 ngen,11,9,1,9,1,,30 ngen,11,99,1,99,1,,,-150 /view,1,1,1,1

!(9)建立箍筋单元 type,1 real,1 mat,3 !水平箍筋 *do,i,11,16,1 e,i,i+1 e,i+(83-11),i+(83-11)+1 *enddo !坚直箍筋 *do,i,11,74,9 e,i,i+9 e,i+6,i+6+9 *enddo !产生整个模型的箍筋 egen,11,99,all !(10)建立架立筋以及纵筋单元 !创建上部的架立钢筋单元 *do,i,83,node(25,270,-1500+150),99 e,i,i+99 e,i+6,i+6+99 *enddo !纵向受拉钢筋单元的属性 type,1 real,3 mat,2 !创建纵筋单元 *do,i,11,node(25,30,-1500+150),99 e,i,i+99 e,i+3,i+3+99 e,i+6,i+6+99 *enddo /view,1,1,1,1 /pnum,elem,0 /pnum,node,0 /eshape,1 eplot !(11)建立混凝土剖面并划分网格

钢筋混凝土梁的ansys分析

基于ANSYS的钢筋混凝土力学分析摘要本文介绍ANSYS模拟钢筋混凝土梁的过程,讨论了有限元模型的建立以及在 ANSYS中的实现,给出了用分离式配筋方法对混凝土梁的分析的一般过程。并给出了详细的命令流过程。并在此基础上对混凝土梁进行了分析,讨论了在力的作用下混凝土梁的塑形变 形和裂缝的发展过程。 关键词Ansys 混凝土梁分离式配筋 The analysis of mechanics of a reinforced concrete based on ANSYS Abstract This paper introduces ANSYS simulation of the reinforced concrete beam process, discusses the establishment of the finite element model and the realization, and gives the ANSYS reinforcement method with separate the analysis of concrete beams of the general process. And gives the detailed command flow process. Based on the analysis of concrete beams, and discussed the concrete beam under the action of forces of the body deformation and fracture process. Keywords Ansys concrete beams reinforced separated 1 引言 由于钢筋混凝上材料性质复杂,使其表现出明显的非线性行为[1]。长期以来采用线弹 性理论的设计方法来研究钢筋混凝上结构的应力或内力,显然不太合理,尽管有此理论是基 于人量试验数据上的经验公式,还是不能准确反映混凝上的力学性能,特别是受力复杂的重 要结构,必须采用三维钢筋混凝上非线性有限元方法才能很好地掌握其力学性能。利用 ANSYS对钢筋混凝上结构弹塑性的仿真分析,可以对结构自开始受荷载直到破坏的全过程进 行分析,获得不同阶段的受力性能。本文将以混凝土梁的弹塑性分析为例,介绍在Ansys中分析材料非线性问题的具体实现方法。 2 问题介绍 如图所示的钢筋混凝土梁[2],横截面尺寸为 b h 200 mm 400 m m ,梁的跨度为 L 3.0 m ,支座宽度为250 m m 采用C20 混凝土,梁内受拉纵筋3φ20,架立筋采用2φ12,箍筋采用φ6@150,钢筋保护层厚度为25mm。如图一。 图一 对于梁中所采用的所有钢筋,弹性模量为 5 2.1 10 MPa ,抗拉强度设计值210 M P a ,

ANSYS弹塑性分析教程

弹塑性分析 在这一册中,我们将详细地介绍由于塑性变性引起的非线性问题--弹塑性分析,我们的介绍人为以下几个方面: ? 什么是塑性 ? 塑性理论简介 ? ANSYS 程序中所用的性选项 ? 怎样使用塑性 ? 塑性分析练习题 什么是塑性 塑性是一种在某种给定载荷下,材料产生永久变形的材料特性,对大多的工程材料来说,当其应力低于比例极限时,应力一应变关系是线性的。另外,大多数材料在其应力低于屈服点时,表现为弹性行为,也 就 是说,当 移 走 载 荷 时,其应变也完全消失。 由于屈服点和比例极限相差很小,因此在ANSYS 程序中,假定它们相同。在应力一应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。塑性分析中考虑了塑性区域的材料特性。 路径相关性: 即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类非线性问题叫作与路径相关的或非保守的非线性。 路径相关性是指对一种给定的边界条件,可能有多个正确的解—内部的应力,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。 率相关性: 塑性应变的大小可能是加载速度快慢的函数,如果塑性应变的大小与时间有关,这种塑性叫作率无关性塑性,相反,与应变率有关的性叫作率相关的塑性。 大多的材料都有某种程度上的率相关性,但在大多数静 力分 析所经历的应变率范围,两者的应力-应变曲线差别不大,所以在一般的分析中,我们变为是与率无关的。 工程应力,应变与真实的应力、应变: 塑性材料的数据一般以拉伸的应力—应变曲线形式给出。材料数据可能是工程应力(P A )与工程应变(?l l ),也可 能是真实应力(P/A )与真实应变( n L l l ()0 ) 。 大应变的塑性分析一般采用真实的应力,应变数据而小应变分析一般采用工程的应力、应变数据。 什么时候激活塑性: 当材料中的应力超过屈服点时,塑性被激活(也就是说,有塑性应变发生)。而屈服应力本身可能是下列某个参数的函数。 ? 温度 ? 应变率 ? 以前的应变历史 ? 侧限压力 ? 其它参数 塑性理论介绍 在这一章中,我们将依次介绍塑性的三个主要方面: ? 屈服准则 ? 流动准则 ? 强化准则 屈服准则: 对单向受拉试件,我们可以通过简单的比较轴向应力与材料的屈服应力来决定是否有塑性变形发生,然而,对于一般的应力状态,是否到达屈服点并不是明显的。 屈服准则是一个可以用来与单轴测试的屈服应力相比较的应力状态的标量表示。因此,知道了应力状态和屈服准则,程序就能确定是否有塑性应变产生。 屈服准则的值有时候也叫作等效应力,一个通用的屈服准则是Von Mises 屈服准则,当等效应力超过材料的屈服应力时,将会发生塑性变形。 可以在主应力空间中画出Mises 屈服准则,见 图3-1。 在3-D 中,屈服面是一个以 1 2 3 σσσ ==为轴的圆柱面,在2-D 中,屈服面是一个椭圆,在屈服面内部的任 何应力状态,都是弹性的,屈服面外部的任

基于ANSYS的钢板的冲压回弹分析

基于ANSYS的钢板的冲压回弹分析 1 引言 在汽车、航空、家电等工业部门,许多构件是用板料冲压成形生产的。板料成形过程牵涉到几何非线性、材料非线性和边界条件非线性的复杂的力学问题。在多数动态金属成形工序中,高度非线性过程导致在坯料中产生大量的弹性应变能,存储的弹性能在成形压力消失后释放,使坯料向着原有几何构形变形。因此,在板金属成形过程中最后的形状不仅仅取决于模具的轮廓形状,也取决于坯料在塑性变形时存储的弹性能总量。因为在变形部分存储的弹性能总量是许多过程参数(如材料性质,二表面间的载荷 )的函数,在成形时期预测回弹是特别复杂的。 金属板料冲压成型是利用金属塑性变形的特点,通过对金属板料施加压力,使其产生塑性变形从而获得所需要的形状。由于板料冲压成型过程包含大位移、大变形等十分复杂的物理现象,使得对其成型控制非常困难,以前更多的是通过反复试验的方法制造出合乎要求的产品,其过程需要花费大量的时间和经费。随着有限元模拟技术的迅速发展,利用有限元软件模拟金属板料冲压成型过程及分析其回弹量已成为可能,本文介绍了利用有限元软件Ansys对金属板料冲压成型过程进行模拟和回弹分析的方法。 2 模型的建立及计算讨论 如图1所示,钢板冲压模型由两部分组成,分别是被冲压件钢板和冲压的刚性模具。在计算中采用刚-柔接触计算模型分析。把钢板假设为柔性件,模具为刚性件不考虑其变形。 计算中钢板采用双线性等向强化模型,来考虑冲压过程中的弹塑性变形。其计算参数如表1所示。

表1 计算中主要的参数 本文冲压模拟分为两个阶段,第一个阶段为刚性模具进行冲压阶段,第二阶段为回弹计算,计算中假设整个过程为准静态。在计算回弹时采用微量卸载来保证数值计算的稳定性。其个阶段的计算结果如下:

相关主题
相关文档
最新文档