(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理

(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理

弦切角定理及其应用

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)

弦切角定义

图1

如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。

弦切角定理

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.

如上图,∠PCA=1/2∠COA=∠CBA

弦切角定理证明:

证明一:设圆心为O,连接OC,OB,。

∵∠TCB=90°-∠OCB

∵∠BOC=180°-2∠OCB

∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)

∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.

求证:(弦切角定理)

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

∴∠CAB=90=弦CA所对的圆周角

(2)圆心O在∠BAC的内部. (B点应在A点左侧)

过A作直径AD交⊙O于D,

E

若在优弧m所对的劣弧上有一点

那么,连接EC、ED、EA

则有:∠CED=∠CAD、∠DEA=∠DAB

∴∠CEA=∠CAB

∴(弦切角定理)

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么∠CDA+∠CAD=∠CAB+∠CAD=90°

∴∠CDA=∠CAB

∴(弦切角定理)

3弦切角推论

推论内容

若两弦切角所夹的弧相等,则这两个弦切角也相等

应用举例

例1:如图,在⊙O中,⊙O的切线AC、BC交与

点C,求证:∠CAB=∠CBA。

解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。∴∠CAB=∠CBA。(等腰三角形“等边对等角”)。

例2:如图,AD是ΔABC中∠BAC的平分线,经过点A

的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求

证:EF//BC.

证明:连接DF

AD是∠BAC的平分线

∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC

⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDC

EF∥BC

例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB

于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.

证明:∵AB是⊙O直径∴∠ACB=90

∵CD⊥AB ∴∠ACD=∠B,

∵MN切⊙O于C ∴∠MCA=∠B,

∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。

割线定理

割线定理是现代词,是一个专有名词,指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等,英文“Secant Theorem”。

1定义

文字表达:从圆外一点引圆的两条割线,这一点到每条割

线与圆交点的距离的积相等。

数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D

则有LA·LB=LC·LD=LT^2。

几何语言:∵割线LDC和LBA交于圆O于ABCD点

∴LA·LB=LC·LD=LT^2

如右图所示。(LT为切线)

2证明一

已知:如图直线ABP和CDP是自点P引的⊙O

的两条割线

求证:PA·PB=PC·PD

证明:连接AD、BC∵∠A和∠C都对弧BD

∴由圆周角定理,得∠A=∠C

又∵∠P=∠P

∴△ADP∽△CBP (A,A)

∴AP:CP=DP:BP

即AP·BP=CP·DP

3证明二

既然圆内接四边形定理可以从割线定理而得,

那么或许割线定理就可以从圆内接四边形定理而

得。

如图所示。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D

求证:AP·BP=CP·DP

证明:连接AC、BD

由圆内接四边形定理得

∠ABD+∠DCA=∠CAB+∠BDC=180°

又∵∠ACP+∠DCA=∠DCP=180°,∠CAP+∠CAB=∠BAP=180°(平角的定义)

∴∠ABD=∠ACP,∠BDC=∠CAP(同角的补角相等)

∴△ACP∽△DBP(两角对应相等的三角形相似)

∴AP/DP=CP/BP(相似三角形对应边成比例)

∴AP·BP=CP·DP(比例基本性质)[1]

4证明三

根据切割线定理求证。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D

求证:AP·BP=CP·DP

过点P作圆O的切线,记切点为T

由切割线定理可知:AP·BP=PT^2,CP·DP=PT^2

所以AP·BP=CP·DP

相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。

1概念

定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

概述:相交弦定理为圆幂定理之一,其他两条定

理为:切割线定理、割线定理

2证明

证明:连结AC,BD

由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB

∴PA∶PD=PC∶PB,PA·PB=PC·PD

注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。

3比较

相交弦定理、切割线定理及割线定理(切割线定理推

论)以及他们的推论统称为圆幂定理。一般用于求线段长

度。

4相交弦定理推论

定理:如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。

几何语言:

若AB是直径,CD垂直AB于点P,

则PC2=PA·PB(相交弦定理推论)

切割线定理

1定理:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。

几何语言:

∵PT切⊙O于点T,PBA是⊙O的割线

∴PT2=PA·PB(切割线定理)

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)(割线定理)

由上可知:PT2=PA·PB=PC·PD

2证明

切割线定理证明:

设ABP是⊙O的一条割线,PT

是⊙O的一条切线,切点为T,则

PT2=PA·PB

证明:连接AT, BT

∵∠PTB=∠PAT(弦切角定理)

∠APT=∠APT(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT 2 =PB·PA

圆幂定理

圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理) 概述 相交弦定理为圆幂定理之一,其他两条定理为: 切割线定理 割线定理 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB ∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。 P 不是圆心 3比较

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=PA·PB(切割线定理推论)(割线定理) 由上可知:PT2=PA·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=PA·PB

证明:连接AT, BT ∵∠PTB=∠PAT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·PA 3比较 相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。 割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等, 1定义 文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。如下图所示。(LT为切线)

切线长定理弦切角定理切割线定理相交弦定理

切线长定理弦切角定理切割线定理相交弦定理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直 线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相 等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆 外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆 外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5) 圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定 理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦 定理 ⊙O中,AB、CD为 弦,交于P. PA·PB= PC·PD. 连结AC、BD,证: △APC∽△DPB.

相交弦定理的推论⊙O中,AB为直 径,CD⊥AB于P. PC2=PA·PB.用相交弦定理. 切割线定理⊙O中,PT切⊙O于 T,割线PB交⊙O于 A PT2=PA·PB连结TA、TB,证: △PTB∽△PAT 切割线定理推论PB、PD为⊙O的两 条割线,交⊙O于 A、C PA·PB= PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 圆幂定理⊙O中,割线PB交 ⊙O于A,CD为弦 P'C·P'D=r2- OP'2 PA·PB=OP2- r2 r为⊙O的半径 延长P'O交⊙O于 M,延长OP'交⊙O 于N,用相交弦定理 证;过P作切线用 切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

初中数学中被删掉的有用知识圆幂定理及其应用

圆幂定理及其应用 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程,从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD 是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外 一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过 的切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点 旋转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可 得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2; 在图(2)中,PA·PB=PT2=OP2-OT2 =OP2-R2 在图(3)中,PA·PB=PC·PD=PT2 =OP2-R2. 教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理. 二、例题分析(采用师生共同探索、讲练结合的方式进行) 例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

切割线定理(一)(含解析)

切割线定理(一)? 2011 菁优网

一、解答题(共10小题,满分100分,每小题10分) 1、(10分)(2010?江汉区)如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC 的外接圆的半径为r. (1)若∠E=30°,求证:BC?BD=r?ED; (2)若BD=3,DE=4,求AE的长. 2、(10分)(2009?淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD. (1)求BD的长; (2)求∠ABE+2∠D的度数; (3)求的值. 3、(10分)(2008?苏州)如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T. (1)求证:AK=MT; (2)求证:AD⊥BC; (3)当AK=BD时,求证:. 4、(10分)(2008?濮阳)如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC; (2)当时,①求tan∠ABE的值;②如果AE=,求AC的值.

5、(10分)(2007?厦门)已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP, (1)若∠AOP=60°,求∠OPB的度数; (2)过O作OC、OD分别交AP、BP于C、D两点, ①若∠COP=∠DOP,求证:AC=BD; ②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由. 6、(10分)(2007?天津)如图,⊙O和⊙O′都经过点A、B,点P在BA延长线上,过P作⊙O的割线PCD交⊙O于 C、D两点,作⊙O′的切线PE切⊙O′于点E.若PC=4,CD=8,⊙O的半径为5. (1)求PE的长; (2)求△COD的面积. 7、(10分)(2007?庆阳)如图EB是⊙O的直径,A是BE的延长线上一点,过A作⊙O的切线AC,切点为D,过B 作⊙O的切线BC,交AC于点C,若EB=BC=6,求:AD,AE的长. 8、(10分)(2007?河池)如图1,已知正方形ABCD的边长为,点M是AD的中点,P是线段MD上的一动点 (P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E. (1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线); (2)求四边形CDPF的周长; (3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF?FG=CF?OF?如果存在,试求此时AP的长;如果不存在,请说明理由.

相交弦定理、切割线定理、割线定理综合训练

相交弦定理、切割线定理、割线定理 一、单选题 1.如图,与切于点,是的割线,如果, 那么的长为() A. B. C. D. 2.是外一点,切于,割线交于点、,若, 则的长是() A. B. C. D. 二、填空题 3.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则 DE=_____. 4.如图⊙的半径为,弦,的长度分别为,,则弦,相交所 夹的锐角__________. 5.已知弦和弦相交于内一点,,,,则________. 6.如图,的直径与弦相交于点,若,,,则________. 7.如图,切于,是的割线,如果,,则的长为________.

8.如图,、是的割线,,,,则 ________. 9.如图,是的切线,为切点,是的割线,,, 则________. 三、解答题 10.如图,在半径为的中,直径与弦相交于点,,.求的大小; 求弦的长. 11.如图,⊙O直径AB和弦CD相交于点E,AE=4,EB=8,∠DEB=30°,求弦CD长. 12.如图,弦AB和弦CD相交于⊙O内一点E,AD=CB,求证:AB=CD.

13.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长. 14.如图,中,弦与弦相交于点,且.求证:. 15.如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC 的长.

参考答案 1.B 2.C 3.. 4.75°. 5. 6. 7. 8.9 3 9.5 10.(1);(2). CD 11.235 12.详见解析. 13.215 14.详见解析. 15.6.

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

椭圆中的“类切割线定理”

椭圆中的“类切割线定理” ——2016 年高考四川卷理科第20 题 江苏省东海县教师进修学校徐明 【原题呈现】 22 xy (2016年全国高考四川卷理科第20题)已知椭圆E: 2 2 1(a b 0)的两个焦点与短ab 轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T. (I)求椭圆E的方程及点T的坐标; (II )设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l 交于点P. 证明:存在常数,使得|PT |2 |PA| |PB |,并求的值. 【考情综述】 在高考中,解析几何综合题的地位是无人可以撼动的,无论是四川卷还是其它省市卷或全国卷,解答题中必有它的身影,并且往往还是以压轴题(倒数第二题)的身份出现.究其原 因,是其在中学数学中的地位决定的.解析几何倡导用代数方法研究几何问题,把代数的知识和方法系统地用于研究几何之中,数形结合的思想和方法使代数、几何获得统一.通过解析几何学习,可以使学生对已学知识融会贯通,把数和形的研究紧密地结合起来,提高综合应用数学知识的能力.同时,系统地掌握解析几何的基础知识,也会为今后学习高等数学奠定坚实的基础. 就全国高考四川卷中的解析几何综合题而言,近三年的理科试题都位于整卷第20 题的 位置,统一以直线与椭圆的位置关系为素材,主要考查直线、椭圆、曲线与方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想方法,并考查数学思维的严谨性、深刻性与灵活性. 从考查内容看,试题同样以两问的形式进行设置,第一问一般是“求椭圆的方程”,这一问都是送分题,往往是要求考生熟练掌握椭圆的标准方程和简单几何性质.如2013 年“已知椭圆的焦点坐标,椭圆过定点,求椭圆的离心率”;2014 年“已知椭圆的焦距,短轴的两个端点与长轴的一个端点构成正三角形,求椭圆的方程”;2015 年“已知椭圆的离心率,过特 殊点的特殊直线被椭圆截得的弦长(本质是椭圆过定点),求椭圆的方程”等.由此可见,今年的第一问设置较前几年难度有所增加,其难度在于:第一问中就要动用直线与椭圆联立方程组,使用“判别式”,无形中增加了运算量. 试题的第二问才是试题或者整卷中的“亮点”,也是难点,是考生发挥能力的“舞台”.这一问往往以定量或定性的方法研究直线与椭圆间形成的某指定几何元素或结构间的关系,要求考生灵活进行转化与化归、准确进行运算与求解、严密进行推理与论证.如2013 年“过定点的动直线与椭圆交于M,N两点,求线段MN 上满足221212的Q 点轨迹|AQ|2 |AM |2 |AN |2 方程”,要求考生熟练运用韦达定理、弦长公式,正确处理参数关系,从定量运算中探索动点的定性特征;2014 年“F 为椭圆左焦点,T 为左准线上动点,过F 作TF 的垂线交椭圆于点P,Q,证明OT 平分线段PQ,求|TF |最小值”,要求考生熟练运用韦达定理、弦长公式、|PQ| 斜率公式,除作定性分析外,还会用基本不等式对相关数据进行最值求解; 2015 年“是否存 在与定点P不同的定点Q,使得|QA| |PA |恒成立”,在要求考生熟练运用韦达定理的同时,|QB| |PB | 对考生转化与化归的能力提出较高要求.相比较而言,今年的第二问回到了对“韦达定理、弦长公式”的考查上,特别是动因的减少(定直线上已知斜率的动点),降低了试题的思维强度. 虽然今年是全国高考四川省自主命题的最后一年,解析几何综合题延续了自己的风格,但在今后的全国高考中,解析几何综合题的难度依然不会降低,考查的重点依然会聚焦在定点、定值问题,范围、最值问题等问题上,核心方法依然是“设而不求”,在进行弦长、斜率、距离等几何量的计算过程中巧妙运用韦达定理,只是考查内容有可能从椭圆的“一枝独秀”,发展到与抛物线“争奇斗艳”. 【考点解读】 在《2016 年普通高等学校招生全国统一考试(四川卷)数学(理)考试说明》中,对圆锥曲线的考试

初三数学相交弦定理和切割线定理人教版

初三数学相交弦定理和切割线定理 一. 本周教学内容:相交弦定理和切割线定理 二. 重点、难点: 1. [例 BP [例 证明: 作DN ∥EC ,交MF 于N ,则∠1=∠2,∠C=∠4 由弦切角定理得:∠3=∠1 ∴ ∠2=∠3 ∴ DN=DF 由切割线定理,CB CA CE ?=2 DA DB DF ?=2 ∵ AC=DB ∴ CB=DA ∴ 2 2 DF CE = CE=DF ∴ CE=DN 又 ∵ ∠5=∠6 ∴ DNM CEM ???(AAS ) ∴ CM=MD [例3] 已知PT 切⊙O 于T ,PBA 为割线,交OC 于D ,CT 为直径,若OC=BD=4cm ,AD=3cm ,求PB 长。 解:

设TD=x ,BP=y ,由相交弦定理得:TD CD DB AD ?=? 即x x )8(43-=? 61=x ,22=x (舍) 由切割线定理,BP AP PT ?=2 由勾股定理,222TD PT PD += ∴ 22TD BP AP PD +?= ∴ )7(6)4(2 2 ++=+y y y ∴ y =[例4] F ,若BC=9,解: 连AB ,∴ ∠1=∴ EF CE =由切割线定理得:1441692 =?=?=CF CB AC ∴ AC=12 [例5] P 为弦AB 上一点,C 在圆O 上,OP ⊥PC ,求证: (1)PB PA PC ?=2 (2)若证明: (1)延长CP

解: (2)易知32 1 == OC PM ,设x AP =,y MB = 由相交弦定理,MN CM MB AM ?=?,即27)63(3)3(=+?=+y x ① 由垂径定理,CP=PD ,故在CPO Rt ?中有20462 2 2 =-=PC ∴ 由(1)结论,20)3(=+y x ② 由①—②得:37+ =x y 代②得,0203 162=-+x x ∴ 0601632 =-+x x ,3 61 28±-= x (舍负) ∴ AP 长为 3 61 28+- [例6] 如图,AB 切⊙O 于B ,OB 交割线ACD 于E ,AC=CE=3,OE= 2 5 ,求AB 长。 解: 设⊙O 半径为r ,DE=a ,延长BO 交⊙O 于K 由相交弦定理,ED CE BE EK ?=?,故a r r 3)2 5)(25(=-+ ① 由AB 切⊙O 于B 知BE AB ⊥,故AD AC EB AE AB ?=-=2 2 2 ∴ )6(3)2 5(62 2 a r +=-- ② 由②—①得:018522 =--r r ,2 9 1= r ,22-=r (舍) ∴ 32)2 529(62 22=--=AB ,AB=24 [例7] 如图,⊙O 中直径AE ⊥BF ,M 为OE 中点,BM 延长交⊙O 于C ,连AC ,求ABC ?中三个内角的正切值。 解:易知?=∠= ∠452 1 BOA C ∴ 145tan tan =?=C 连CF 、CE ∵ BF 为直径 ∴ ?=∠90BCF 又 ∵ ?=∠90BOM ∴ BCF BOM ??~

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

专题13相似三角形定理与圆幂定理

专题十三相似三角形定理与圆幂定理 本专题主要复习相似三角形的进一步认识、圆的进一步的认识.通过本专题的复习,了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论.掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.【知识要点】 1.相似三角形概念 相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形. 相似比:相似三角形对应边的比. 2.相似三角形的判定 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为:两角对应相等两三角形相似). 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似). 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似). 3.直角三角形相似的判定定理 直角三角形被斜边上的高分成两个直角三角形和原三角形相似. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 4.相似三角形的性质 相似三角形对应角相等,对应边成比例. 相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比. 相似三角形的面积比等于相似比的平方. 5.相关结论 平行于三角形一边的直线截其他两边,截得的三角形与原三角形的对应边成比例. 三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比. 经过梯形一腰中点而平行于底边的直线平分另一腰. 梯形的中位线平行于两底,并且等于两底和的一半. 若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边平行. 6.弦切角定理 弦切角定义:切线与弦所夹的角. 弦切角的度数等于它所夹的弧的圆心角的度数的一半. 7.圆内接四边形的性质 圆的内接四边形的对角互补,并且任意一个外角等于它的内对角. 8.圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D则有PA·PB=PC·PD.【复习要求】 1.了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理. 2.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

切线长定理、弦切角定理、切割线定理、相交弦定理37508

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上 一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条 切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可 得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹 角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦定 理 ⊙O中,AB、CD为弦, 交于P. PA·PB=PC·PD. 连结AC、BD,证:△APC ∽△DPB.

相交弦定理的推论⊙O中,AB为直径,CD ⊥AB于P. PC2=PA·PB. (特殊情况) 用相交弦定理. 切割线定理⊙O中,PT切⊙O于T, 割线PB交⊙O于A PT2=PA·PB 连结TA、TB,证:△PTB ∽△PAT 切割线定理推论PB、PD为⊙O的两条割 线,交⊙O于A、C PA·PB=PC·PD 过P作PT切⊙O于T, 用两次切割线定理 (记忆的方法方法) 圆幂定理⊙O中,割线PB交⊙O 于A,CD为弦P'C·P'D=r2-OP'2 PA·PB=OP2-r2 r为⊙O的半径 延长P'O交⊙O于M, 延长OP'交⊙O于N,用 相交弦定理证;过P作切 线用切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE

【经典】圆的有关性质+知识点

圆的有关性质 一、〖知识点〗 圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1.正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题; 6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据; (2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

相关文档
最新文档