电磁感应中的单杆切割问答

电磁感应中的单杆切割问答
电磁感应中的单杆切割问答

电磁感应单杆切割问题

(2013安徽·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0.6)(B)

A.2.5m/s 1W

B.5m/s 1W

C.7.5m/s 9W

D.15m/s 9W

(2013全国Ⅰ·16)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线.可能正确的是(D)

(2013北京·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C)

A.c→a,2:1

B.a→c,2:1

C.a→c,1:2

D.c→a,1:2

(2013浙江·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。其E-t关系如右图所示。如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是(D)

A .

B .

C .

D .

根据感应电动势公式E =BLv 可知,其他条件不变时,感应电动势与导体的切割速度成正比,只将刷卡速度改为20v ,则线圈中产生的感应电动势的最大值将变为原来的2

1

。磁卡通过刷卡器的时间v

s

t =与速率成反比,所用时间变为原来的2倍.故D 正确。

(2013全国Ⅰ·25)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为C 。导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面。在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。

答案:(1)Q =CBLV (2)22(sin cos )

m v gt m B L C

θμθ-=+

解析:

(1)当棒下滑速度为v 时,感应电动势为:E =BLv 平行板电容器两极板之间的电势差为:U =E 此时电容器极板上积累的电荷量为:Q =CU 解得:Q =C BLv

(2)当电流为i 时,棒受到的磁场作用力方向沿导轨向上,大小为:f 1=BLi

在Δt 内,流经棒的电荷量为ΔQ ,有:Q CBL i t t ??==

??v 式中:a t

?=?v

据牛顿第二定律有:1sin cos mg f mg ma θμθ--=解得:22(sin cos )

m a g m B L C

θμθ-=+

棒做初速度为零的匀加速运动,有:22(sin cos )

m at gt m B L C

θμθ-==+v

(2013重庆·7)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示。在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的计数为G 1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计。直铜条AB 的两端通过导线与一电阻连接成闭合回路,总阻值为R 。若让铜条水平且垂直于磁场,以恒定的速率v 在磁场中竖直向下运动,这时电子测力计的计数为G 2,铜条在磁场中的长度L 。 (1)判断铜墙条所受安培力的方向,G 1和G 2哪个大?

(2)求铜条匀速运动时所受安培力的大小和磁感应强度的大小。

答案:(1)安培力的方向竖直向上,G 2>G 1(2)安培力大小F 安培力=G 2-G 1;磁感应强

度的大小211B L v

(G -G )R

(2012山东·20)『不定项』如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g 。下列选项正确的是(AC )

A .P =2mgvsin θ

B .P =3mgvsin θ

C .当导体棒速度达到

2

v

时加速度大小为sin 2g

D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功

(2012四川·20)『不定项』半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B。杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示。则(AD)

A.θ=0时,杆产生的电动势为2Bav

B.

3

π

θ=时,杆产生的电动势为3Bav

C.θ=0时,杆受的安培力大小为

2

3

(2)R

B av

π+

D.

3

π

θ=时,杆受的安培力大小为

2

3

(53)R

B av

π+

(2012上海·33)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一

电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t=0时,一水平向左的拉力F垂直作用在导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。(1)求回路中感应电动势及感应电流随时间变化的表达式;

(2)经过多长时间拉力F达到最大值,拉力F的最大值为多少?

(3)某过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。

答案:(1)感应电流的表达式ε=BL at;感应电流随时间变化的表达式

2

2

)

2

1

(

2at

R

R

BLat

at

R

R

BLat

R

BLv

I

+

=

+

=

=

(2)

2

2

max2

1

RR

a

L

B

mg

Ma

F

(μ

μ

+

+

+

=

(3))

(Q

W

mg

Ma

Mas

E

k

μ

μ

-

=

=

?

解析:

(1)感应电动势ε=BLv

导轨做初速度为零的匀加速直线运动v=at

所以感应电流的表达式ε=BL at

2

2

1

at

s=

回路中感应电流随时间变化的表达式2

020)2

1(2at R R BLat

at R R BLat R BLv I +=

+==

总 (2)导轨受外力F ,安培力F A ,摩擦力F f 。其中

2

022at R R at

L B BIL F A +=

= )()(2

022at

R R at

L B mg BIL mg F F N f ++=+==μμμ 由牛顿第二定律F -F A -F f =Ma

2

0221at

R R at

L B mg Ma F F Ma F f A ++++=++=)(μμ 上式中,当

at R t R

0=,即0

aR R t =

时外力F 取极大值 ∴0

2

2max 2

1RR a

L B mg Ma F )(μμ++

+= (3)设在此过程中导轨运动距离s ,由动能定理 W 合=△E k W 合=Mas

由于摩擦力F f =μ(mg +F A ),所以摩擦力做功W =μmgs +μW A =μmgs +μQ ∴mg

Q

W s μμ-=

)(Q W mg

Ma

Mas E k μμ-=

=?

(2012天津·11)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5m ,左端接有阻值R =0.3Ω的电阻。一质量m =0.1kg ,电阻r =0.1Ω的金属棒MN 放

置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4T .棒在水平向右的外力作用下,由静止开始以a =2m/s 2的加速度做匀加速运动,当棒的位移x =9m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1。导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。求

(1)棒在匀加速运动过程中,通过电阻R 的电荷量q ; (2)撤去外力后回路中产生的焦耳热Q 2; (3)外力做的功W F 。

答案:(1)4.5C (2)1.8 J (3)5.4J 解析:

(1)设棒匀加速运动的时间为△t ,回路的磁通量变化量为△Φ,回路中的平均感应电动势为

E ,由法拉第电磁感应定律得E t

Φ

?=

?① 其中△Φ=Blx ②

设回路中的平均电流为I ,由闭合电路的欧姆定律得

E

I R r

=

+③ 则通过电阻R 的电荷量为q I t =?④ 联立①②③④式,代入数据得q =4.5C ⑤

(2)设撤去外力时棒的速度为v ,对棒的匀加速运动过程,由运动学公式得v 2=2ax ⑥ 设棒在撤去外力后的运动过程中安培力做功为W ,由动能定理得W =0-1

2

mv 2⑦ 撤去外力后回路中产生的焦耳热 Q 2=-W ⑧

联立⑥⑦⑧式,代入数据得 Q 2=1.8J ⑨

(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1,可得Q 1=3.6J ⑩ 在棒运动的整个过程中,由功能关系可知W F =Q 1+Q 2? 由⑨⑩?式得W F =5.4J

(2011全国新课标·18)『不定项』电磁轨道炮工作原理如图所示。待发射弹体可在两平行

轨道之间自由移动,并与轨道保持良好接触。电流I从一条轨道流入,通过导电弹体后从另一条轨道流回。轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比。通电的弹体在轨道上受到安培力的作用而高速射出。现欲使弹体的出射速度啬至原来的2倍,理论上可采用的办法是(BD)

A.只将轨道长度L变为原来的2倍

B.将电流I增加至原来的2倍

C.只将弹体质量减至原来的一半

D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其它量不变

(2011福建·17)如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电量为q时,棒的速度大小为v,则金属棒ab在这一过程中(B)

A.F运动的平均速度大小为1

2

ν

B.平滑位移大小为qR

BL

C.产生的焦二热为qBLv

D.受到的最大安培力大小为

22

sin B L

R

ν

θ

(2011江苏·5)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨一闪身垂直。阻值为R的导体棒垂直于导轨静止放置,且与导轨接触。T=0时,将形状S由1掷到2。q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。下列图象正确的是(D)

当开关S由1掷到2时,电容器开始放电,此时电流最大,棒受到的安培力最大,加速度最大,此后棒开始运动,产生感应电动势,棒相当于电源,利用右手定则可以判断出棒上端为正极,下端为负极,与电容器的极性相同,当棒运动一段时间后,电路中的电流逐渐减小,当电容器极板电压与棒两端电动势相等时,电容器不再放电,电路电流等于零,棒做匀速运动,加速度减为零,所以C错误,B错误,D正确;因电容器两极板间有电压,q=CU不等于零,所以A错误。

(2011全国大纲·24)如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L,

电阻不计。在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g 。求: (1)磁感应强度的大小:

(2)灯泡正常发光时导体棒的运动速率。

答案:(1)2mg

R B L P =2)2P v mg

= 解析:

(1)设小小灯泡的额定电流为I 0,有P =I 02R ①

由题意,在金属棒沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN 的电流为I =2I 0②

此时金属棒MN 所受的重力和安培力相等,下落的速度达到最大值,有mg =BIL ③ 联立①②③式得2mg R B L P

=

(2)设灯泡正常发光时,导体棒的速率为v ,由电磁感应定律与欧姆定律得 E =BLv ⑤ E =RI 0⑥

联立①②③④⑤⑥式得2P

v mg

=

(2010全国新课标·21) 如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场。一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直。让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2。忽略涡流损耗和边缘效应。关于E 1、E 2的大小和铜棒离开磁场前两端的极性,下列判断正确的是(D ) A .E 1>E 2,a 端为正 B .E 1>E 2,b 端为正 C .E 1<E 2,a 端为正 D .E 1<E 2,b 端为正

将立体图转化为平面图如图所示

由几何关系计算有效切割长度L

96.02)2.0(22222

121R R R h R L =-=-= 36.02)8.0(22222

222R R R h R L =-=-=

由机械能守恒定律计算切割速度v ,即:22

1

mv mgh =

,得gh v 2=,则: gR R g v 4.02.021=?=,gR R g v 6.18.022=?=

根据E =BLv ,gR R B E 4.0.61.6021???=, gR R B E 6.136.022??=,可见E 1<E 2。又根据右手定则判断电流方向从a 到b ,在电源内部,电流是从负极流向正极的,所以选项D 正确。

(2010全国Ⅰ·17)『不定项』某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5T。一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为2m/s。下列说法正确的是(BD)A.河北岸的电势较高

B.河南岸的电势较高

C.电压表记录的电压为9mV

D.电压表记录的电压为5mV

(2010山东·16)如图5所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M'N'的过程中,棒上感应电动势E随时间t变化的图示,可能正确的是(A)

(2010四川·20)『不定项』如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两

相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。现用一平行于导轨的恒力F作用在a的中点,使其向上运动。若b始终保持静止,则它所受摩擦力可能(AB)

A.变为0

B.先减小后不变

C.等于F

D.先增大再减小

(2010江苏·13)如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求:

(1)磁感应强度的大小B;

(2)电流稳定后,导体棒运动速度的大小v;

(3)流经电流表电流的最大值I m。

答案:(1)IL

mg

B =(2)mg R I v 2=(3)IR gh mg I m 2=

解析:

(1)电流稳定后,导体棒做匀速运动BIL =mg ,解得IL

mg

B =① (2)感应电动势E =BLv ② 感应电流R

E I =

③ 由①②③解得mg

R

I v 2=

(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m 机械能守恒

mgh mv m =2

2

1 感应电动势的最大值E m =BLv m 感应电流的最大值R

E I m

m = 解得IR

gh

mg I m 2=

(2009福建·18)『不定项』如图所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m(质量分布均匀)的导体杆Ab 垂直于导轨放置,且与两导轨保持良

好接触,杆与导轨之间的动摩擦因数为μ。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离l 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程(BD )

A.杆的速度最大值为

22d B R

ng F )(μ-

B.流过电阻R 的电量为r

R Bdl

+

C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量

D.恒力F 做的功与安培力做的功之和大于杆动能的变化量

(2009天津·4)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于(A ) A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R 上放出的热量

(2009江苏·15)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未画出)。线框的边长为d(d<l),电阻为R,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g。求:

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q;

(2)线框第一次穿越磁场区域所需的时间t1;

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离x m。

答案:(1)4mgdsinα-BIld

(2)

α

αsin 2)sin 2(23

2mg R d B mgd BIld m +

- (3)

α

sin mg BIl BIld

-

解析:

(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W

由动能定理mgsin α·4d +W -BIld =0 且Q =-W

解得Q =4mgdsin α-BIld.

(2)设线框刚离开磁场下边界时的速度为v 1,则接着向下运动2d 由动能定理212

102sin mv BIld d mg -=-?α 装置在磁场中运动时受到的合力 F =mgsin α-F ′ 感应电动势ε=Bdv 感应电流R

I ε

=

'

安培力F ′=BI ′d

由牛顿第二定律,在t 到t +Δt 时间内,有t m

F v ?=

? 则∑∑?-

=?t mR v

d B g v ]sin [22α 有mR

d B gt v 3

2112sin -=α

解得α

αsin 2)sin 2(23

21mg R d B mgd BIld m t +

-=

(3)经过足够长时间后,线框在磁场下边界与最大距离x m 之间往复运动 由动能定理mgsin α·x m -BIl(x m -d)=0 解得α

sin mg BIl BIld

x m -=

电磁感应现象中的单杆切割磁感线问题

电磁感应现象中的单杆切割磁感线问题 一、教学内容:电磁感应知识与应用复习之单杆切割磁感线问题 二、教学课时:二课时 三、教学课型:高三第一轮复习课 四、教学设计适合对象:高三理科学生 五、教学理念: 电磁感应现象知识的应用历来是高考的重点、热点,问题可将力学、电磁学等知识溶于一体,能很好地考查学生的理 解、推理、分析综合及应用数学处理物理问题的能力。通过近年高考题的研究,电磁感应问题每年都有“单杆切割磁感线 问题”模型的高考题出现。 而解决电磁感应单杆切割磁感线问题的关键就是借鉴或利用相似原型来启发、理解和变换物理模型,即把最基础的物 理模型进行细致的分析和深入的理解后,有目的的针对某些关键位置进行变式,从而把陌生的物理模型与熟悉的物理模型 相联系,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法?巧妙地 运用“类同”变换,“类似”变换, “类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化,从而提高了课堂教学的有效 性。 六、电磁感应教学内容与学情分析研究: 6. 1 ?教学内容分析: 电磁感应中的单杆模型包括:导轨、金属棒和磁场,所以对问题的变化点主要有: 1.针对金属棒 1)金属棒的受力情况:平行轨道方向上,除受安培力以外是否存在拉力、阻力; 2)金属棒的初始状态:静止或有一个初速度V。; 3)金属棒的运动状态:与导轨是否垂直,与磁场是否垂直,是不是绕中心点转动; 4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线。 2?针对导轨 1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等; 2)导轨的闭合性:导轨本身可以开口,也可闭合; 3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; 4)导轨的放置:水平、竖直、倾斜放置。 3.针对磁场 1 )磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化; 2)磁场的分布:有界或无界。 6 . 2 .学生学情分析:

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型 秋飏 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ (2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为

U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面ab 棒的电阻为R =0.10Ω,其他各 部分电阻均不计。开始时,磁感应强度B T 0050 =.。 图2 (1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 (2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t =0时,F N F F ma f 113=-=, 当t =2s 时,F 2=8N F F B B Lat R L ma f 200--= 联立以上式得: a F F R B L t m s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:

电磁感应导体棒平动切割类问题综述

试卷第1页,总61页 2013-2014学年度北京师范大学万宁附属中学 电磁感应导体棒平动切割类问题训练卷 考试范围:电磁感应;命题人:孙炜煜;审题人:王占国 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ( ) A .匀速滑动时,I 1=0,I 2=0 B .匀速滑动时,I 1≠0,I 2≠0 C .加速滑动时,I 1=0,I 2=0 D .加速滑动时,I 1≠0,I 2≠0 【答案】D 【解析】 试题分析:当AB 切割磁感线时,相当于电源.电容器的特点“隔直流”,两端间电压变化时,会有充电电流或放电电流.匀速滑动,电动势不变,电容器两端间的电压不变,所以I 2=0,I 1≠0,故AB 均错误;加速滑动,根据E BLv 知,电动势增大,电容两端的电压增大,所带的电量要增加,此时有充电电流,所以I 1≠0,I 2≠0,故C 错误,D 正确.所以选D . 考点:本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律及电容器对电流的作用. 2.如图所示,在匀强磁场中,MN 、PQ 是两根平行的金属导轨,而ab ?cd 为串有电压表和电流表的两根金属棒,同时以相同速度向右运动时,正确的有( ) A .电压表有读数,电流表有读数 B .电压表无读数,电流表有读数 C .电压表无读数,电流表无读数

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型 单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 应电动势E = 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R ,安培力F =BIL =B2L2v R ,做减速运 动:v ?F ?a , 当v =0时,F =0,a =0,杆保持静止 此时 a =BLE mr ,杆 ab 速度v ?感 应电动势 BLv ?I ?安 培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL BLv ?I ?安 培力F 安= BIL ,由F -F 安 =ma 知a ,当a =0时,v 最大, v m = FR B2L2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv20 2 C .整个过程中金属棒在导轨上发生的位移为qR BL

2018年高考物理二轮复习 100考点千题精练 第十章 电磁感应 专题10.9 转动切割磁感线问题

专题10.9 转动切割磁感线问题 一.选择题 1. (2018洛阳联考)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法中正确的是 ( ) A. 铜片D 的电势高于铜片C 的电势 B. 电阻R 中有正弦式交变电流流过 C. 铜盘转动的角速度增大1倍,流过电阻R 的电流也随之增大1倍 D. 保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生 【参考答案】C 【名师解析】根据右手定则,铜片中电流方向为D 指向C ,由于铜片是电源,所以铜片D 的电势低于铜片 C 的电势,选项A 错误;电阻R 中有恒定的电流流过,选项B 错误;铜盘转动的角速度增大1倍,,根据转 动过程中产生的感应电动势公式E =12BL 2 ω,产生是感应电动势增大1倍,根据闭合电路欧姆定律,流过电 阻R 的电流也随之增大1倍,选项C 正确;保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中没 有电流产生,选项D 错误。 2.如图所示为一圆环发电装置,用电阻R =4 Ω的导体棒弯成半径L =0.2 m 的闭合圆环,圆心为O ,COD 是一条直径,在O 、D 间接有负载电阻R 1=1 Ω。整个圆环中均有B =0.5 T 的匀强磁场垂直环面穿过。电阻 r =1 Ω的导体棒OA 贴着圆环做匀速运动,角速度ω=300 rad/s ,则( )

最新高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt

势E =BLv ,电流I = E R =Blv R ,安培力F =BIL = B 2L 2 v R ,做减速运动: v ?F ?a ,当v =0时,F =0,a =0, 杆保持静止 此时a =BLE mr ,杆 ab 速度v ?感应电动势BLv ?I ?安培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL 应电动势E =BLv ?I ?安培力F 安=BIL ,由F -F 安 =ma 知a ,当 a =0时,v 最大, v m = FR B 2L 2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值 为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv 202

电磁感应中地单杆切割问题

电磁感应单杆切割问题 (2013·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0.6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线.可能正确的是(D) (2013·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2 (2013·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。其E-t关系如右图所示。如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是(D)

高中物理 河北省保定市高三上学期单棒切割模型(一)求解电磁感应中的电量、位移、焦耳热模型

河北安国中学电磁感应中单杆模型的动态分析(一)高亚敏

动能全部转化为内能:F做的功中的一部分转化为杆的动能,一 1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN成水平沿导轨滑下,在与导轨和电阻R组成的闭合电路中,其他电阻不计。当金属杆MN进入磁场区后,其运动的速度图像可能是下图中的( ACD )

在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q = =总 R n φ ?

B v0

连接,放在竖直向上的匀强磁场中,磁感应强度为B,杆的速度为v0,电阻不计,如图,试求棒所滑行的距离。 3、如图所示,间距为L,电阻不计的足够长平行光滑金属导轨水平放 置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m, 电阻也为R的金属棒,金属棒与轨道接触良好.整个装置处于竖直向 上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v0沿导轨向 右运动,若金属棒在整个运动过程中通过的电荷量为q.下列说法正确的是( D ) A.金属棒在导轨上做匀减速运动 B.整个过程中电阻R上产生的焦耳热为C.整个过程中金属棒在导轨上发生的位移为D.整个过程中金属棒克服安培力做功为 4、(多选)如图,两根平行光滑金属导轨MN和PQ放置在水平面上,间距为L,电阻不计,磁感应强度为B的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻阻值为R。在导轨上有一均匀金属棒ab,其长度为2L,阻值为2R.金属棒与导轨垂直且接触良好,接触点为C、d。在ab棒上施加水平拉力使其以速度v向右匀速运动,设金属导轨足够长,下列说法正确的是(BD ) A、金属棒c、d两点间的电势差为BLv

电磁感应定律应用之杆切割类转动切割问题

考点4.4杆切割类之转动切割问题 1.当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v -=12 Bl 2ω,如图所示. 2.导体的一部分旋转切割磁场,如图所示,设ON =l 1,OM =l 2,导体棒上任意一点到轴O 的间距为r ,则导体棒OM 两端电压为E =B (l 2-l 1)·ω l 2+l 1 2=Bωl 222-Bωl 212 ,其中(l 2-l 1)为处在磁场中的长度,ω· l 2+l 1 2 为MN 中点即P 点的瞬时速度. 3.其他的电量与能量问题求解与单杆模型类似。 1. 一直升机停在南半球的地磁极上空,该处地磁场的方向竖直向上,磁感应强度为B ,直升机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示.如果忽略a 到转轴中心线的距离,用E 表示每个叶片中的感应电动势,则( A ) A. E =πfl 2B ,且a 点电势低于b 点电势 B. E =2πfl 2B ,且a 点电势低于b 点电势 C. E =πfl 2B ,且a 点电势高于b 点电势 D. E =2πfl 2B ,且a 点电势高于b 点电势 2. 如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图

中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大 小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( C ) A.4ωB 0π B.2ωB 0π C.ωB 0π D.ωB 02π 3. (多选)如下图所示是法拉第做成的世界 上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( BC ) A . 回路中有大小和方向作周期性变化的电流 B . 回路中电流大小恒定,且等于BL 2ω2R C . 回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘 D . 若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡 中也会有电流流过 4. 如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆 时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计,R 左侧导线与圆盘边缘接触,右侧导线与圆盘中心接触)( D ) A.由c 到d ,I =Br 2ωR B.由d 到c ,I =Br 2ωR C.由c 到d ,I =Br 2ω2R D.由d 到c ,I =Br 2ω2R 5. 如图所示,半径为a 的圆环电阻不计,放

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析 速度V 0≠0 V =0 示意图 单杆以一定初 速度v0在光滑 水平轨道上滑 动,质量为m, 电阻不计,杆长为L 轨道光滑水 平,杆质量 为m,电阻不 计,杆长为L,拉力F恒定 力学和运动学分析导体杆以速度v切割磁感线产生感 应电动势BLv E=,电流 R BLv R E I= =,安培力 R v L B BIL F 2 2 = =,做减速运动: ↓ ↓?a v,当0 = v时,0 = F, = a,杆保持静止 开始时 m F a=,杆ab速度↑? v感应 电动势↑? ↑? =I BLv E安培力 ↑ =BIL F 安 由a F F m = - 安 知↓ a,当 = a时,v最大, 2 2L B FR v m = 图像观点 F B R v0 B R

1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD ) 在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。 v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ? 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。 能 量 观 点 动能全部转化为内能: 202 1mv Q = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W + = v 0 B R

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

电磁感应中常见模型

答案:(1)设在整个运动过程中,棒运动的最大距离为 S,则△^^BLS 又因为q=「左=BLS/R,这样便可求出 S=qR/BL 。 (2)在整个运动过程中,金属棒的动能,一部分转化为电能,另一部分克服摩擦力做功,根据能量守恒 定律,则有 mv 2 /2=E+ mgS 又电能全部转化为 R 产生的焦耳热即 E=Q 由以上三式解得:Q= mv 2 /2-卩mgq/BL 。 《电磁感应中的常见模型》学案 一、单杆模型 1?如图水平放置的光滑平行轨道左端与一电容器 C 相连,导体棒ab 的 电阻为R,整个装置处于竖 ab 向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下 直向上的匀强磁场中,开始时导体棒 列结论的有(BD ) A .此后ab 棒将先加速后减速 B . ab 棒的速度将逐渐增大到某一数值 C ?电容C 带电量将逐渐减小到零 D .此后磁场力将对 ab 棒做正功 2 ?如图两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向 垂直,从磁场外同一高度开始同时下落,则 X X X X X X X X X X B X X X X X X A ?两线框同时落地 B .粗线框先着地 C ?细线框先着地 D .线框下落过程中损失的机械能相同 3?如图所示,在竖直向上磁感强度为 B 的匀强磁场中,放置着一个宽度为 L 的金属框架,框架的右 v 沿框架向左运动。已知 端接有电阻R 。一根质量为 m,电阻忽略不计的金属棒受到外力冲击后,以速度 棒与框架间的摩擦系数为 仏在整个运动过程中,通过电阻 R 的电量为q,求:(设框架足够长) (1) 棒运动的最大距离; (2) 电阻R 上产生的热量。

电磁感应定律应用之线框切割类问题

考点4.3线框切割类问题 1.线框的两种运动状态 (1)平衡状态——线框处于静止状态或匀速直线运动状态,加速度为零; (2)非平衡状态——导体棒的加速度不为零. 2.电磁感应中的动力学问题分析思路 (1)电路分析:线框处在磁场中切割部分相当于电源,感应电动势相当于电源的电动势,感应电流I= Blv R. (2)受力分析:处在磁场中的各边都受到安培力及其他力,但是根据对称性,在与速度平行方向的两个边所受的安培力相互抵消。安培力F安=BIl= B2l2v R,根据牛顿第二定律列动力学方程:F合=ma. (3)注意点:①线框在进出磁场时,切割边会发生变化,要注意区分;②线框在运动过程中,要注意切割的有效长度变化。 3. 电磁感应过程中产生的焦耳热不同的求解思路(1)焦耳定律:Q=I2Rt; (2)功能关系:Q=W克服安培力(3)能量转化:Q=ΔE其他能的减少量 4. 电磁感应中流经电源电荷量问题的求解:(1)若为恒定电流,则可以直接用公式q=It;(2)若为变化电流,则依据 = N E t q I t t t N R R R ?Φ ?Φ ? =?=??= 总总总 1.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、 边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(A) A.Q1>Q2,q1=q2 B.Q1>Q2,q1>q2 C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2 2.一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区

电磁感应中的单杆切割问题

电磁感应单杆切割问题 (2013安徽·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0、5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0、8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0、6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac与MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且与导轨保持良好接触。下列关于回路中电流i与时间t的关系图线、可能正确的就是(D) (2013北京·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其她条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2

(2013浙江·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v 0刷卡时,在线圈中产生感应电动势。其E-t 关系如右图所示。如果只将刷卡速度改为v 0/2,线圈中的E-t 关系可能就是(D ) A. B. C. D. 根据感应电动势公式E =BLv 可知,其她条件不变时,感应电动势与导体的切割速度成正比,只将刷卡速度改为20v ,则线圈中产生的感应电动势的最大值将变为原来的21。磁卡通过刷卡器的时间v s t 与速率成反比,所用时间变为原来的2倍.故D 正确。 (2013全国Ⅰ·25)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为C 。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值 为R的电阻.一根与导轨接触良好、阻值为R/2的金属 导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L= m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分 电阻不计,框架足够长.垂直于框平面的方向存在向上的 匀强磁场,磁感应强度B=为金属杆,其长度为L= m,质量m= kg,电阻r=Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=(已知sin37°=,cos37°=;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一 端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应 强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab 从高h处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间问金属棒的做什么运动棒落地时的速度为多大 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ、MN光滑,相距5.0 l m,处在同一水平面中, 磁感应强度B=的匀强磁场竖直向下穿过导轨 面.横跨在导轨上的直导线ab的质量m =、电阻 R=Ω,导轨电阻不计.导轨间通过开关S将电动 势E =、内电阻r =Ω的电池接在M、P两端,试计算分析: (1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速

公开课-电磁场中的单杆模型

电磁感应中的单杆问题 授课教师:孟庆阳 一、教学目标: 1、知识与技能: 掌握电磁感应中单杆问题的求解方法。 2、过程与方法: 能够运用理论知识从力电角度、电学角度和力能角度处理电磁感应中的单杆问题。 3、情感、态度与价值观 提高学生处理综合问题的能力,找出共性与个性的辩证唯物主义思想。 二、教学重点、难点:电磁感应中单杆问题的求解方法及相关的能量转化。 三、知识准备: 1、感应电流的产生条件 2、感应电流的方向判断 3、感应电动势的大小计算 四、模型概述: 电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点,主要类型有:“单杆”模型,“单杆+电源”模型、“单杆+电容”模型。 五、基本思路: 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考: 1、力电角度; 2、电学角度; 3、力能角度。 六、专项练习: 例1、如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L,两轨道之间用电阻R 连接,有一质量为m、电阻为r的导体棒静止地放在轨道上与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直轨道平面向上。现用水平 恒力F沿轨道方向拉导体棒,使导体棒从静止开始运动。 ①分析导体棒的运动情况并求出导体棒的最大速度; ②画出等效电路图;若此时E 感 =10V,R=3Ω,r=2Ω,那么导体棒两端电压为? ③分析此过程中所涉及的能量转化。 P

变1、两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。质量为m 、长度为L 、阻值为r 的金属棒ab 垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。导轨处于磁感应强度为B 、方向水平向里的匀强磁场中,ab 由静止释放,在重力作用下运动,若ab 从释放至其运动达到最大速度时下落的高度为h 求: ①ab 运动的最大速度? ②ab 从释放至其运动达到最大速度此过程中金属棒产生的焦耳热为多少? ③ab 从释放至其运动达到最大速度的过程中,流过ab 杆的电荷量? ④ab 从释放至其运动达到最大速度所经历的时间? 变式2、如图ab 、cd 为间距L 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场,将一根阻值为 r 、长度为L 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定的速度,重力加速度为g 。求: ①金属棒下滑到MN 的过程中通过电阻R 的电荷量; ②金属棒的稳定速度的大小。 例2、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试求: ①在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? ②在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).

电磁感应切割问题

b a 电磁感应切割及能量问题 1.物理实验中常用一种叫做"冲击电流计"的仪器测定通过电路的电量.如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电量为q ,由上述数据可测出磁场的磁感应强度为( ) A.S qR B. nS qR C . nS qR 2 D. S qR 2 2、图为地磁场磁感线的示意图在北半球地磁场的坚直分量向下。飞机在我国上空匀逐巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属机翼上有电势差设飞行员左方机翼未端处的电势为U 1,右方机翼未端处的电势力U 2则: A .若飞机从西往东飞,U 1比U 2高 B.若飞机从东往西飞,U 2比U 1高 C .若飞机从南往北飞,U 1比U 2高 D.若飞机从北往南飞,U 2比U 1高 3.一直升飞机停在南半球某处上空。设该处地磁场的方向竖直向上,磁感应强度为B 。直 升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f 。顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示。如果忽略到转轴中心线的距离,用E 表示每个叶片的感应电动势,则 A .E =πfl 2B ,且a 点电势低于b 点电势 B .E =2πfl 2B ,且a 点电势低于b 点电势 C .E =πfl 2B ,且a 点电势高于b 点电势 D . E =2πfl 2B ,且a 点电势高于b 点电势 4.有一矩形线圈在竖直平面内,从静止开始下落,磁场水平且垂直于线圈平面,当线圈的下边进入磁场,而上边未进入匀强磁场的过程中,由于下落高度的不同,线圈的运动状态可能是(设线圈一直在竖直平面内运动,且没有发生转动): ( ) A .一直匀速下落 B .匀减速下落 C .加速度减小的加速运动 D .加速度减小的减速运动 5.如图有两根和水平方向成α角的光滑平行的金属轨道,端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B 质量为m 杆的速度会趋近于一个最大速度Vm ,则( ) A. 如果B 增大,Vm 将变大 B. 如果 α 增大,Vm 将变小 C . 如果R 增大,Vm 将变大 D. 如果m 增大,Vm 将变小 6.如图所示,粗糙水平桌面上有一质量为m 的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB 正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N 及在水平方向运动趋势的正确判断是 ( ) A .F N 先小于mg 后大于mg ,运动趋势向左

电磁感应切割类问题

电磁感应切割类问题 一、单选题(注释) 1、如图所示,先后以速度v1和v2匀速把一矩形线圈拉出 有界匀强磁场区域,v1=2v2。在先后两种情况下: A.线圈中的感应电流之比为I1∶I2=1∶2 B.线圈中的感应电流之比为I1∶I2=2∶1 C.通过线圈某截面的电荷量之比q1∶q2=1∶2 D.通过线圈某截面的电荷量之比q1∶q2=2∶1 2、两个线圈A、B绕在一个铁芯的两侧,分别跟电流表和 导轨相连,导轨上垂直搁置一根金属棒ab,垂直导轨平面 有一个匀强磁场,如图7所示.在下列情况下能使电流计 中有电流通过的是 ( ) A.ab向右作匀速运动. B.ab向左作匀速运动. C.ab向右作加速运动. D.ab向左作加速运动. 3、2.如图所示,平行金属导轨间距为d,一端跨接电阻为R,匀 强磁场磁感强度为B,方向垂直平行导轨平面,一根长金属棒与 导轨成θ角放置,棒与导轨的电阻不计,当棒沿垂直棒的方向以 恒定速度v在导轨上滑行时,通过电阻的电流是 A.Bdv/(Rsinθ) B.Bdv/R C.Bdvsinθ/R D.Bdvcosθ/R 4、如图,在磁感应强度为B、方向垂直纸面向里的匀强 磁场中,金属杆MN在平行金属导轨上以速度v向右匀速 滑动,MN中产生的感应电动势为El,若磁感应强度增为 2B,其他条件不变,MN中产生的感应电动势变为E2。 则通过电阻R的电流方向及E1与E2之比El∶E2分别为 A.c→a,2∶1 B.a→c,2∶1 C.a→c,1∶2 D.c→a, 1∶2 5、如图所示,平行导轨a、b和平行导轨c、d在同一平面内,两导轨分别和两线圈相连接,匀强磁场的方向垂直两导轨所在的平面.金属棒L1和L2可在两导轨上沿导轨自由滑动,棒L2原来静止,用外力使L1向左运动,下列说法中正确的是 A.当L1向左匀速运动时,L2将向左运动 B.当L1向左匀速运动时,L2将向右运动 C.当L1向左加速运动时,L2将向左运动 D.当L1向左加速运动时,L2将向右运动 6、图中回路竖直放在匀强磁场中,磁场的方向垂直于回路平面向 外,导体AC可以贴着光滑竖直长导轨下滑.设回路的总电阻恒定为 R,当导体AC从静止开始下落后,下面叙述中正确的说法有 ( ) A.导体下落过程中,机械能不守恒 B.导体加速下落过程中,导体减少的重力势能全部转化为在电阻上 产生的热量 C.导体加速下落过程,导体减少的重力势能转化为导体增加的动能和回路中增加的内能D.导体达到稳定速度后的下落过程中,导体减少的重力势能全部转化为 回路中增加的内能 7、如图所示,导体棒长为,匀强磁场的磁感应强度为,导体绕过点垂直 纸面的轴以角速度匀速转动, .则端和端的电势差的大小等于 A.B.C.D.

2020年高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab从磁场上方h处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 v ≠0 v0=0 示 意 图 单杆ab以一定初速度 v0在光滑水平轨道上 滑动,质量为m,电阻 不计,两导轨间距为L 轨道水平光滑, 单杆ab质量为 m,电阻不计,两 导轨间距为L 轨道水平光滑, 单杆ab质量为 m,电阻不计,两 导轨间距为L, 拉力F恒定 轨道水平光滑,单杆ab质量为 m,电阻不计,两导轨间距为L, 拉力F恒定 力 学 导体杆以速度v切割 磁感线产生感应电动 S闭合,ab杆受 安培力F= BLE r, 开始时a= F m,杆 ab速度v?感 开始时a= F m,杆ab速度v? 感应电动势E=BLv,经过Δt

观 点 势E =BLv,电流I= E R = Blv R,安培力F=BIL = B2L2v R,做减速运动: v?F?a,当v =0时,F=0,a=0, 杆保持静止 此时a= BLE mr,杆 ab速度v?感 应电动势 BLv?I?安 培力F=BIL? 加速度a,当E 感=E时,v最大, 且v m= E BL 应电动势E= BLv?I?安 培力F安= BIL,由F-F 安=ma知a,当 a=0时,v最大, v m= FR B2L2 速度为v+Δv,此时感应电动 势E′=BL(v+Δv),Δt时间内 流入电容器的电荷量Δq= CΔU=C(E′-E)= CBLΔv电流I= Δq Δt=CBL Δv Δt= CBLa安培力F安=BLI= CB2L2a F-F安=ma,a= F m+B2L2C ,所以杆以恒定的加 速度匀加速运动 图 象 观 点 能 量 观 点 动能全部转化为内 能:Q= 1 2mv 2 电源输出的电能 转化为动能W电 = 1 2mv 2 m F做的功一部分 转化为杆的动 能,一部分产生 电热:W F=Q+ 1 2 mv2m F做的功一部分转化为动能, 一部分转化为电场能:W F= 1 2 mv2+E C 【题1】如图所示,间距为L,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m,电阻也为R的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q。下列说法正确的是 A.金属棒在导轨上做匀减速运动 B.整个过程中电阻R上产生的焦耳热为 mv20 2

相关文档
最新文档