详解三相四线制供电线路中负载失衡可能产生的后果

详解三相四线制供电线路中负载失衡可能产生的后果
详解三相四线制供电线路中负载失衡可能产生的后果

三相四线制供电线路中负载失衡可能产生的后果

在三相四线制供电线路中,一般都力争使三相负载平衡,以确保供电线路安全可靠运行。但是,要做到完全平衡是很难的,尤其是在民用线路中,根本就做不到这一点。

三相负载失衡有以下两种可能:

(1) 某相或某两相负载过多,相电流较大,中性线电流也可能较大,如果长期运行,相线和中性线绝缘层易先老化。

(2) 负载看上去比较接近,各相电流也较相近,但中性线电流却很大,甚至超过最大相电流,这是一种较为严重的失衡现象。

在实验中,三相四线制供电线路原理如图1所示,测得相电压U A=U B=U C=220V,测得I A=I B=4A,I C=3.2A,I N=4.2A。

图1 三相四线制实验线路图

图2 电流电压相量图

为什么三相输入电压对称,各相电流有效值也较接近的情况下,中性线电流却大于最大相电流?排除测量方法不当及测量仪表误差等因素,经过反复分析,得出的结论:三相负载的性质不同所引起的,通过测量各相负载的功率因数角可得|ΦA|=|ΦB|=40°,Φ C=0°,在Z A和Z B中必有一相为感性,一相为容性。

(1) 假设Z A为感性,Z B为容性。

向量图如图2所示。

|ìA+ìB|=2cos20°ìA=7.5A;

ìN=|ìA+ìB+ìC|=4.3A。

理论分析计算和仪表测量结果基本吻合。

(2) 假设Z A为容性,Z B为感性。

向量图如图3所示。

图3 电流电压相量图

|ìA+ìB|=2cos80°·ìA=1.4A

ìN=|ìA+ìB+ìC|=4.6A

由此可见,如果将A、B两相负载互换,中线电流会更大。所以在三相四线制供电线路中,三相负载是数值相等并不等于三相负载对称平衡。三相负载性质不同,将会引起中线电流过大,造成严重失衡。

以上是通过实验得到的结论,实际中,现代大楼办公设备上使用较多的单相净化稳压电源,这些负载往往呈容性,而传统的白炽灯、日光灯均呈阻性和感性,这样不同负载接成三相四线制,就会出现中性线电流过大的现象。

四线制道岔控制电路(启动电路跑图、表示电路跑图)

信号基础四线制道岔控制电路 道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。 一、道岔启动电路: 1、道岔启动电路应满足的技术条件: (1)道岔区段有车时,道岔不应转换。此种锁闭的作用叫做区段锁闭。 (2)进路在锁闭状态时,进路上的道岔,都不应再转换。此种锁闭的作用叫做进路锁闭。 (3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。 (4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。 (5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。 (6)道岔转换完毕,应自动切断电动机的电路。 2、道岔控制方式: 控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。 (1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。 (2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接通道岔启动电路使该道岔转向反位。全进路上的道岔按进路要求一次排出。 (3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。 进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。3、道岔启动电路的工作原理: 道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。

四线制方向电路办理反方向发车的操作方法

四线制方向电路办理反方向发车的操作方法 一、正常办理反方向发车 改变运行方向的操作由原接车站,即需要向区间办理反向发车作业的车站进行作业,而原发车站会随着对方站办理了发车进路而自动的成为接车站。 办理步骤: 一、原接车站处于接车状态,“接车”表示灯亮黄灯,监督区间灯(JD)灭灯。 两站发车锁闭继电器FSJ↑监督区间继电器JQJ↑ 原接车站(以下称甲站):GFJ↓ GFFJ↑ JQJF↑ JQJ2F↑ FJ1定位 原发车站(以下称乙站):GFJF↑ JQJF↓ JQJ2F↓GFFJ↓ FJ1反位 二、此时原接车站值班员按下该方向的“允许改变方向”按钮,排列反向发车进路,则“接车”表示灯黄灯熄灭,“发车”绿灯点亮,这样本站改为发车站,对方站改为接车站。 甲站:GFJ↑ FAJ↑ FSJ↓ JQJ↓ GFFJ↓ JQJ2F↓ FJ1反位 乙站:GFJ↓ JQJ↓ JQJF↓ JQJ2F↓ GFFJ↑ FJ1定位 运行方向改变完毕后,反方向发车口的“监督区间”表示灯亮红灯。 二、辅助办理反方向发车 当区间检查设备发生故障(双方站的”监督区间“表示灯都亮红灯)或者方向电路故障出现相邻两站同为接车站的“双接”现象,此时都采用辅助办理方式才能改变运行方向。 办理步骤: 一、原接车站,即需要向区间办理反向发车作业的车站首先办理。车站值班员破封按压发车方向的“总辅助”按钮(非自复式),再破封按下“发车辅助”按钮(一直按压),此时辅助灯开始闪白灯。 甲站:FFJ↑ (自闭)DJ↑ (自闭)

二、经双方值班员电路联系确认区间无车、双方均未办理发车进路,本站值班员通知邻站值班员按下接车方向的“总辅助”按钮及“接车辅助”按钮。 乙站:JQJ ↓DJ↑ JFJ↑ 乙站值班员松开“接车辅助”按钮 乙站:JFJ↑(靠电容放电)DJ↑(自闭) FJ2转极 甲站:FGFJ↑ FFJ↑(自闭)DJ↑(自闭)JQJ2F↑ GFJ↑(自闭) 乙站:JFJ↓(电容放电完毕)DJ↓ 甲站:FGFJ↓(缓)FFJ↓ 乙站:FJ2转极GJF↓ DJ↓ 甲站:FJ2转极JQJF↓ JQJ2F(缓)↓ FJ1转极 此时两站的辅助灯立即点亮稳定白灯,本站即原接车站值班员可以松开按钮。几秒种后,本站的发车绿色箭头点亮,运行方向即被改变。随后邻站、本站的辅助灯先后熄灭,辅助办理手续结束。 三、列车进入区间后,甲乙站拉出“总辅助”按钮,防止单方误动“接车辅助”按钮。

三相四线制概念

1.什么是三相五线制? 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。三相五线制包括三根相线、一根工作零线、一根保护零线。三相五线制的接线方式如下图1所示。 图1 三相五线制接线示意图 该接线的特点是:工作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种接线能用于单相负载、没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N 是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 2.三相五线制与三相四线制的比较 (1)基本供电系统简介 常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN 系统、IT系统。其中TN系统又分为TN-C、TN-S系统。 TT式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地, TN方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN表示。TN-C方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,即常用的三相四线制供电方式。TN-S式供电系统是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,即常用的三相五线制供电方式。 IT方式供电系统,其中I表示电源侧没有工作接地,或经过高阻抗接地。第二个字母T 表示负载侧电气设备进行接地保护。IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如连续生产装置、大医院的手术室、地下矿井等处。 (2)三相四线制(TN-C)与三相五线制(TN-S)系统的比较

三相四线制配电系统-下载

三相四线制配电系统,适用于低电压用户。 三相说白了就是常说的三根火线,但是他们互相之间有个120度的角度差。 也就是说,在同一时间,三根火线上的电压,电流之和都等于零。 三相四线制配电,是由一般的供电变压器低压侧引出,变压器低压侧为星(Y)型接线,它一共有4根出线,每相的通过三个相同的负载后都要通过中性线(零线)回到变压器。 零线不带电。电路要畅通总得有电压高的和电压低的。这样才能从电压高的流向电压低的。零线0电压 没有零线可以 1,零线是单相电,电流回路线,电压通常是220伏,电流经过火线与零线之间的电器就作功了,没有作功的电就经过零线回电厂了。两根或三根火线也能组成回路,其电压就是380伏。 2,家庭用电是单相电,供电部门送来的是一根火线,一根零线,家里墙上插座的火线零线就是这么接过来的,另外还有个孔是接地线,以防电器漏电,也叫安全线 电压是两点之间的电势差,平时说的电压隐含了以大地为零电势面的前提。零线是三相供电制的相平衡(电势连)线,理论上对大地电压应是 0V,实际上相平衡不能时刻保证,所以零线会有微弱的电压。 为什么火线有电压而零线没有? 简单一点说,在两相电中不是电从火线流向零线的,而是在相互交替变化着来回的流,一秒钟变化50次,也就是我们说的频率是50赫兹,发电厂出来的电,其中一相输出的同时,进行接地连接,那么这一相就是零线了。而另一相则为火线,大地本身导电,两根线又是同相所以不存在电压差,因此也不会有电压。 远距离高压输电用三相三线制,三根都是火线,没有零线。到变压成我们用的380V或是220V工频电源时,在变电处将零线接地所以地线和零线在变压器处同点位,除非它的接地处发生故障,我们不应该感觉出零线带电。但由于大地的电阻比零线的大,所以当某处漏电时,就会发生零线带电的状况,还由于零线通过的电流比地线漏电流大的多,导致零线上的电压降低,使用户端零线电位与地不一致,也会造成零线带电。 现在我国是三相四线制,火线就是其中一个相线。零线就是中线,地线是保护线。

低压供电系统中三相四线制和三相五线制有何区别

低压供电系统中三相四线制和三相五线制有何区别 三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S:L1L2L3+PE(保护线)+N(中性线) TN-C:L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S:L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下: 1、第一个字母表示配电系统的对地关系: T:电源端有一点直接接地; I:电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T:外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N:外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点) 在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:在1、10区爆炸危险环境中不能采用TN-C系统。同时由于PEN线在同一建筑物内往往相互有电气连接,当PEN线断线或相线直接与大地短路时,都将呈现相当高的对地故障电压,这时可能扩大事故范围。 2、在TN-S系统中,保护线与中性线分开,具有TN-C系统的优点,但价格较贵。由于正常情况下PE线不通过负荷电流,与PE线相连的电气设备金属外壳不带电位,所以适用于数据处理和精密电子仪器设备的供电,也可用于有爆炸危险的环境中。在民用建筑中,家用电器大都有单独接地极的插头,采用TN-S供电,既方便又安全。但TN-S系统仍不能解决相线对大地适中引起电压升高和对地故障电压的蔓延问题。 3、在TN-C-S系统中,PEN线自A点起分为保护线和中性线,分开以后,N线应对地绝缘。为了防止分开后的PE线与N线混淆,应按国标GB7947-87的规定,给PE线和PEN线涂以黄绿相间的色标,给N线涂以浅蓝色色标。PEN自分开后,PE线与N线不能再合并,否则将丧失分开后形成的TN-S系统的特点。 TN-C-S是广泛采用的配电系统,在工矿企业中,对电位敏感的电气设备往往设置在线路未端,而线路前端大多数为固定设备,因此,到了线咱未端改为TN-S系统十分不利。在民用建筑中,电源线咱采用TN-C系统,进入建筑物内改为TN-S系统。这种系统,线路结构简单又能保证一定的安全水平。在电源侧的PEN线上难免有一定的电压降,但对工矿企业的固定设备及作为民用建筑的电源线都没有影响,PEN分开后即有专用的保护线,可以确保TN-S所具有的特点。

四线制道岔控制电路图2014-12-17

四线制道岔控制电路培训教案 第一章四线制道岔控制电路原理分析 道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。 一、道岔启动电路: 1、道岔启动电路应满足的技术条件: (1)道岔区段有车时,道岔不应转换。此种锁闭的作用叫做区段锁闭。 (2)进路在锁闭状态时,进路上的道岔,都不应再转换。此种锁闭的作用叫做进路锁闭。 (3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。 (5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。 (6)道岔转换完毕,应自动切断电动机的电路。 2、道岔控制方式: 控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。 (2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接

通道岔启动电路使该道岔转向反位。全进路上的道岔按进路要求一次排出。 (3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。 进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。 3、道岔启动电路的工作原理: 道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。 (1)按进路方式动作的道岔启动电路: 图示电路道岔在定位状态,当选路将该道岔选至反位时,FCJ励磁吸起

电气供电系统的分类

电气供电系统的分类 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制三相四线制,三相五线制等,但这些名词术语内涵不是十分严格。国际电工委员会( IEC )对此作了统一规定,称为 TT 系统、 TN 系统、 IT 系统。其中TN 系统又分为 TN-C 、TN-S 、 TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。 TT 系统 TN-C 供电系统→ TN 系统→ TN-S IT 系统 TN-C-S (一)工程供电的基本方式 根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。 ( 1 ) TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。 3 ) TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图 1-2 所示。 图中点画线框内是施工用电总配电箱,把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线(N)可以有电流,而专用保护线(PE)没有电流;③ TT 系统适用于接地保护占很分散的地方。—— TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用 TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是 TT 系统的 5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 ) TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比 TT 系统优点多。 TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为 TN-C 和 TN-S 等两种。

三相五线制和三相四线制比较

1.什么是三相五线制? 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图1 所示. 图1 三相五线制接线示意图 该接线的特点是:工作零线N与保护零线PE 除在变压器中性点共同接地外,两线不再有任何的电气连接.由于该种接线能用于单相负载、没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用.在三相负载不完全平衡的运行情况下,工作零线 N是有电流通过且是带电的,而保护零线 PE 不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位. 2.三相五线制与三相四线制的比较 (1)基本供电系统简介常用的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格.国际电工委员会(IEC)对此作了统一规定,称为TT 系统、TN系统、IT 系统.其中TN 系统又分为TN-C、TN-S 系统. TT 式供电系统是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统.第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关.在TT 系统中负载的所有接地均称为保护接地。 TN 方式供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用 TN 表示.TN-C 方式供电系统是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示,即常用的三相四线制供电方式.TN-S 式供电系统是把工作零线N 和专用保护线PE 严格分开的供电系统,称作TN-S 供电系统,即常用的三相五线制供电方式. IT 方式供电系统,其中I 表示电源侧没有工作接地,或经过高阻抗接地.第二个字母T表示负载侧电气设备进行接地保护.IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好.一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如连续生产装置、大医院的手术室、地下矿井等处. (2)三相四线制(TN-C)与三相五线制(TN-S)系统的比较 在三相四线制供电方式中,由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化、导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利. 在零线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的. 采用三相五线制供电方式,用电设备上所连接的工作零线 N 和保护零线 PE 是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在"地"电位,从而消除了设备产生危险电压的隐患. 发电机中,三组感应线圈的公共端作为供电系统的参考零点,引出线称为中线(在单相供电中称为零线);另

三相三线制与三相四线制

三相三线制 三相三线制(three-phase three-wire system )不引出中性线的星型接法和三角形接法。电力系统高压架空线路一般采用三相三线制,三条线路分别代表a,b,c 三相,我们 在野外看到的输电线路,一回即有三根线(即三相),三根线可能水平排列,也可能是三角 形排列的;对每一相可能是单独的一根线(一般为钢芯铝绞线),也有可能是分裂线(电压 等级很高的架空线路中,为了减小电晕损耗和线路电抗,采用分裂导线,多根线组成一相线, 一般2-4 分裂,在特高压交直流工程中可能用到6-8 分裂),没有中性线,故称三相三线制。 三相交流发电机的三个定子绕组的末端联结在一起,从三个绕组的始端引出三根火线 向外供电、没有中线的三相制叫三相三线制。 电晕:曲率半径小的导体电极对空气放电,便产生了电晕。 (电晕产生热效应和臭氧、氮的氧化物,使线圈内局部温度升高,导致胶粘剂变 质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。) 三相四线制 概述 在低压配电网中,输电线路一般采用三相四线制,其中 三相四线制 三条线路分别代表A,B,C 三相,另一条是中性线N(如果该回路电源侧的中性点接地,则中性线也称为零线,如果不接地,则从严格意义上来说,中性线不能称为零线)。在进入 用户的单相输电线路中,有两条线,一条我们称为火线,另一条我们称为零线,零线正常情 况下要通过电流以构成单相线路中电流的回路。而三相系统中,三相平衡时,中性线(零线)是无电流的,故称三相四线制;在380V 低压配电网中为了从380V 线间电压中获得220V 相间电压而设N 线,有的场合也可以用来进行零序电流检测,以便进行三相供电平衡的监控。

三相五线制供电方式

三相五线制供电方式 一、概述 在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线 (该接线的是: 工 作零线N与保护零线PE除在变压器中性点共同接地外,两线不再有任何的电气连接。由于该种接线能用于单相负载,没有中性点引出的三相负载和有中性点引出的三相负载,因而得到广泛的应用。在三相负载不完全平衡的运行情况下,工作零线N是有电流通过且是带电的,而保护零线PE不带电,因而该供电方式的接地系统完全具备安全和可靠的基准电位。 二、三相五线制供电的原理 众所周知,在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处

在“地”电位,从而消除了设备产生危险电压的隐患。 三、对三相五线制敷设的要求 (1) 在用绝缘导线布线时,保护零线应用黄绿双色线,工作零线一般用黑色线。沿墙垂直布线时,保护零线设在最下端,水平布线时,保护零线在靠墙端。 (2) 在电力变压器处,工作零线从变压器中性瓷套管上引出,保护零线从接地体的引出线引出。 (3) 重复接地按要求一律接在保护零线上,禁止在工作零线上重复接地。 (4) 采用低压电缆供电时应选用五芯低压电力电缆。 (5) 在终端用电处(如闸板、插座、墙上配电盘等)工作零线和保护零线一定分别与零干线相连接。 (6) 对老企业的改造应逐步实行保护零线和工作零线分开的办法。例如在车间入户时零干线做重复接地,重复接地以后工作零线单独敷设,保护零线由此重复接地体引出;使用四极漏电保护断路器的,在断路器前是三相四线制,在断路器后改为三相五线制; 在架空线路供电又实行动力电和照明电分开架设的(两棚线),可以用随照明线横担架设的零线为工作零线,随动力线横担架设的零线做保护零线。 四、三相五线制供电的应用范围 凡是采用保护接零的低压供电系统,均是三相五线制供电的应用

TNS三相五线制电路布线详解

施工现场用电大全 定义:三级配电系统 总配电箱为一级,分配电箱为二级,末级配电箱为三级 定义:三相电的概念 我们知道线圈在磁场中旋转时,导线切割磁场线会产生感应电动势,它的变化规律可用正弦曲线表示。如果我们取三个线圈,将它们在空间位置上相差点120度角,三个线圈仍旧在磁场中以相同速度旋转,一定会感应出三个频率相同的感应电动势。由于三个线圈在空间位置相差点120度角,故产生的电流亦是三相正弦变化,称为三相正弦交流电。工业用电采用三相电,如三相交流电动机等。相与相之间的电压是线电压,电压为380V。相与中心线之间称为相电压,电压是220V。 什么是电源中性点? 中性点是指变压器低压侧的三相线圈构成星形联结,联结点称中性点,又因其点为零电位,也称零线端,一般的零线就从此点引出的。中性点接地后,所有该电网覆盖面的设备接地保护线可就近入地设置为地线,一旦出现漏电可通过大地传导回路到变压器中性点,以策安全。 定义:三相五线制 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式.三相五线制包括三根相线、一根工作零线、一根保护零线.三相五线制的接线方式如下图所示. 为什么不是“五相”“六相”? 你先要明白“相”在电中的含义,相是指相位角,比如常说的三相电,是指相位角在空间互成120°交流电。如果使用移相技术,就比如简单的电容移相,我们一样可以得到四相、五相、N相都可以!但那在电力拖动中没有实际的应用意义,只在电子技术中有时用到。为什么在电力拖动中大都使用三相(当然有时会用到单相),而不是四相、五相呢?因为发电机的三相绕组在空间120°分布时,交变磁力线均可最大限度的切割它们,成而最以限度的发出电能。而三相用电器呢,除了相反的原理外,三相互成120°的回路又能最大限度的使用电能! 三相五线制供电的原理 在三相四线制供电中由于三相负载不平衡时和低压电网的零线过长且阻抗过大时,零线将有零序电流通过,过长的低压电网,由于环境恶化,导线老化、受潮等因素,导线的漏电电流通过零线形成闭合回路,致使零线也带一定的电位,这对安全运行十分不利。在零干线断线的特殊情况下,断线以后的单相设备和所有保护接零的设备产生危险的电压,这是不允许的。 如采用三相五线制供电方式,用电设备上所连接的工作零线N和保护零线PE是分别敷设的,工作零线上的电位不能传递到用电设备的外壳上,这样就能有效隔离了三相四线制供电方式所造成的危险电压,使用电设备外壳上电位始终处在“地”电位,从而消除了设备产生危险电压的隐患。 从线路的性质上来说,火线(相线)是提供能源的线路,零线是单相电路中,给提供能源的线路一条电流回路(和相线形成电流通道)的线路,地线是作为保护电器设备、防止漏电而发生事故的一条“非正常”电流通道。这三条线,正常工作时,由相线(某一个单位时间内)提供电流,经过用电设备(负载)后由零线回到电源端;正常情况下,地线是没有任何电流通过的。所以从性质上来看,这三条线路中的零线和地线,是不允许“并用”或合用的。接地及中性点的英文缩写 PE”即英文“protecting earthing”的缩写,意思是“保护导体、保护接地”。“N”即英文“neutral point”意思“中性点,零压点” 按照规定,380伏(三相)的民用电源的中性点是不应该在进户端接地的(在变压器端接地,这个接地是考虑到不能因悬浮点位造成高于电源电压的点位,用户端的接地与变压器端的接地在大地中是存在一定的电阻的),如果把电源的中性点直接接地(这在民用电施工中是不允许的),漏电保护器就失去了作用,不能保护人身和电器设备的短路了。 因此,三相五线制地线在供电变压器侧和中性线接到一起,但进入用户侧后不能当作零线使用,否则发生混乱后就与三相四线制无异了。 定义:TN—S接零保护系统 它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,TN-S供电系统的特点如下:

详解三相四线制系统中零线的重要作用

三相四线制系统中零线的重要作用 在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。 在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。尽管这些地方在设计、安装供电线路时都尽可能使三相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。 对于没有零线时中性点电位发生位移这个问题,很多同学甚至一些电工无法理解,而理论计算又涉及到较深的电工基础知识(如电动势和阻抗的复数表示法以及复数的四则运算等),特别是当负载不是纯电阻时,计算相当繁琐,学生也难以弄懂,在大多数情况下也没有必要去计算。下面仅举个特例来帮助同学们理解没有零线时各相负载两端电压的变化。 现在我们假定某住宅楼为三层,三相电源分别送入一楼、二楼和三楼住户。

三相四线主要应用和联接方法

三相四线 主要应用 在低压配电网中,输电线路一般采用三相四线制,其中三条线路分别代表A,B,C三相,不分裂,另一条是中性线N,故称三相四线制。 不论N线还是PE线,在用户侧都要采用重复接地,以提高可靠性。但是,重复接地只是重复接地,它只能在接地点或靠近接地的位置接到一起,但绝不表明可以在任意位置特别是户内可以接到一起。 应用中最好使用标准/规范的导线颜色:A线用黄色,B线用绿色,C线用红色,N线用褐色,PE线用黄绿色。 联接方法 三相交流电机的电枢有三组线圈,其联接有星形接法及三角形接法两种,一般采用星形接法。 星形联接方法 三相交流发电机向外供电时,把三组线圈的末端X、Y、Z联在一起,从联接点引出一条线,这条线叫零线,也叫中性线。再从线圈绕组另一端A、B、C各引出一条线,这三条线叫相线或火线,这种联接方法叫星形联接法。 发电机的这种向外输电方法构成三相四线制。若不引出中线,用三条线向外供电则称三相三线制。 因为三相四线制供电能同时供出220V、380v两种不同的电压,因而得到广泛应用。星形接法用Y表示,也叫Y接法。 采用星形接法时。线电压与相电压的关系如何? 星形接法时,线电压与相电压之间的关系是:U线≈1.732U相

三相交流电如何产生旋转磁场? 在三相异步电动机的每相定子绕组中,流过正弦交流电流时,每相定子绕组都产生脉动磁场。由于三相绕组在铁心中摆放的空间位置互差120°电角度空间相位,绕组中分别流过三相交流电流,而各相电流在时间上又互差120°,使它们同时产生的三个脉动磁场在空间所合成的总磁场,成为一个旋转磁场。 三相五线制是指A、B、C、N和PE线,其中,PE线是保护地线,也叫安全线,是专门用于接到诸如设备外壳等保证用电安全之用的。PE线在供电变压器侧和N线接到一起,但进入用户侧后均不能当作零线使用,否则,发生混乱后就与三相四线制无异了。但是,由于这种混乱容易让人丧失警惕,可能在实际中更加容易发生触电事故。现在民用住宅供电已经规定要使用三相五线制,如果你的不是,可以要求整改。为了安全,要斩钉截铁地要求!

方向电路详解

自动闭塞四线制方向电路(电号0041) (与EI32-JD结合) 一、简介 方向电路是双向自动闭塞的关键电路,它是两站间闭塞关系的基础,并通过它建立各站间的双向自动闭塞区间。因此它是双向自动闭塞制式中不可缺少的关键组成部分。 我国过去使用的方向电路均为两线制方向电路,该电路在我国单线自动闭塞区段使用甚广,在长期的使用过程中,结合我国的情况作过一些修改,但据现场反映该电路运用过程中经常出现故障,影响了现场的正常运输。为此,根据我国国情及在国产器材的基础上,参考国外有关发展动态,研制了新的方向电路。将方向回路与区间轨道电路的监督回路分别独立设置,构成四线制方向电路。 本电路在室内试验的基础上,又结合工程进行了室外试验,五年多来使用正常,并于1986年在南京通过了部级审查。 当时的铁道部部基建总局、鉴定委员会分别以(1986)198号文、铁鉴(1986)629号文下达了审查意见和对双方向自动闭塞方向电路标准设计意见书的批复,要求对“单线自动闭塞四线制方向电路,进行相应的修改,使其适用于需要双向运行的自动闭塞区段,为此编制了“自动闭塞四线制方向电路图册”电号0041(试用标准图)。 为使大家更好地学习理解和EI32-JD计算机联锁结合的自

动闭塞四线制方向电路,特编写以下电路原理说明。 二、技术条件: 1、电路应能监督区间的空闲及占用和相邻车站的接车、发车状态。当确认整个区间空闲及对方站未建立发车进路时方能改变运行方向的办理而自动改变运行方向。 2、改变运行方向应由处于接车状态的车站办理,随发车进路的办理而改变运行方向。 3、电路应防止当区间轨道电路瞬时分路不良时,错误改变运行方向。 4、电路应符合故障导向安全的原则,保证不出现敌对发车的可能。 5、电路应适用于各种制式的自动闭塞。 6、因故不能改变运行方向时,可使用辅助方式办理。按辅助方向改变运行方向后,第一次出站信号的开放必须检查该相邻站间区间的空闲。 7、使用该电路的车站,应有相应的表示,可在控制台上分别设置接车、发车方向,接发车区间占用及辅助办理表示灯。并设置相应的接车、发车辅助按钮。 三、与EI32-JD计算机联锁结合的四线制方向电路特点 1、当一站为接车方向、另一站为发车方向时,接车站的FJ、CFJ吸起,发车站的FJ、CFJ落下。 2、方向电路的1线(FQ)、2线(FQH)为方向回路线,如

低压供电系统中三相四线制和三相五线制有何区别

三相四线制就是动力负载和照明负载共用-根零线。三相五线是动力照明分开。 三相四线制: 相线 A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;三相五线制: 相线 A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流); 前者属于TN-C接地系统,后者属于TN-S接地系统。如今我国民用建筑的配电方式采用后者。 三相四线制分两种情况: TN-S: L1L2L3+PE(保护线)+N(中性线) TN-C: L1L2L3+PEN(二者合一) 三相五线制有一种情况: TN-C-S: L1L2L3+前半部PEN,后半部PE+N 具体如下: 低压系统接地制式按配电系统和电气设备接地的不同组合分类,可分为TN、TT、IT三种形式,其文字代号的意义如下:

1、第一个字母表示配电系统的对地关系: T: 电源端有一点直接接地; I: 电源端所有带电部分与地绝缘,或有一点经阻抗接地。 2、第二个字母表示电气装置的外露导电部分与地的关系: T: 外露导电部分对地直接做电气连接,与配电系统的任何接地点无关; N: 外露导电部分与配电系统的接地点直接做电气连接(在交流配电系统中,接地点通常就是中性点)在TN系统中,所有电气设备的外露导电部分接到保护线上,与配电系统的接地点相连接。这个接地点通常是配电系统的中性点。如果没有中性点(如配电变压器二次侧为三角形接线)或未引出中性点,可将变压器二次侧的一相接地,但该接地线不能用作PEN线。保护线应在每个变电所附近接地。配电系统引入建筑物时,保护线在其入口处接地。为了在故障时,保护线的电位尽量接近地电位,应尽可能将保护线与附近的有效接地极相连,如有必要,可增加接地点,并使其均匀分布。 根据中性线N与保护线PE是否合并的情况,TN系统又分为TN- C、TN-S及TN-C-S。 1、在TN-C系统中,保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地故障时,故障电流大,可采用一般过电流保护电器切断电源,以保证安全。但对于单相负荷或三相不平衡负荷以及有谐波电流负荷的线路,正常PEN线有电流,其所产生的压降呈现在电气设备的金属外壳和线路金属套管上,这对敏感的电子设备不利。另外,PEN线上的微弱电流在爆炸危险环境也能引起爆炸,因此,我国《爆炸危险环境电力设备设计规范》中明确规定:

三相四线制和三相五线制的区别

三相四线制和三相五线制的区别_三相四线制和三相五线制哪种好? 一、三相四线制和三相五线制符号含义解答: (R 黄、S绿、T红、N蓝或黑、地黄加绿双色线)三相五线制(R 黄、S绿、T红、N蓝或黑色线、)三相四线制 (R 黄、S绿、T红、地黄加绿双色线)三相四线制 三相四线制:相线A、B、C,保护零线PEN,PEN线上有工作电流通过,PEN在进入用电建筑物处要做重复接地;属于TN-C接地系统. 三相五线制:相线A、B、C,零线N,保护接地线PE,N线有工作电流通过,PE线平时无电流(仅在出现对地漏电或短路时有故障电流);我国民用建筑的配电方式采用TN-S接地系统。 二、三相四线制为何三相五线制多一根线

输电线路三相电源电气连接图 低压配电网电缆中,输电线路一般采用三相四线制,其中三相四线制 三条线路分别代表A,B,C三相,另一条是中性线N称三相四线制,三相五线制包括三相电的三个相线(A、B、C线)、中性线(N线);以及地线(PE线),因此区别为多了一条地线。 三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。 三相五线制的学问就在于这两跟"零线"上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是0电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险. 零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的,在正规公司里,这两根线规定要分开接. 现在实际中还有一种三相六线的接法,除工作零线,保护接地外,还专门另配一路接地线,这根线跟设备地线分开来接,不与其他任何线相接,用做对仪器设备的保护,因为电气件的损坏往往只几微秒的时间,所以要将误动作电流更快的引回大地,需要仪器直接接地.

关于四线制方向电路故障应急处理的预案

关于四线制方向电路故障应急处理的预案 1、严格按照《自动闭塞反方向正常(辅助)办理操作程序》进行操作,严禁未与邻站沟通擅自触动改方按钮。仔细观察控制台的表示灯状态,当双方车站的发车信号均未开放,区间监督灯灭灯时,接车站(接车表示灯亮黄灯)才有改方权,可进行改方操作,发车站(发车表示灯亮绿灯)无改方权。改方电路进行二次操作必须经13S后方可再次办理。 2、进行改方操作时,必须先破封按下允许改方按钮,此时允许改方表示灯亮红灯,改方完毕必须立即拉出允许改方按钮,使允许改方按钮表示灯熄灭,防止错误办理。 3、辅助改方在监督电路故障或因故出现“双接”使用辅助办理,登记,接车站先破封按下总辅助按钮和发辅助按钮,(保持发辅助按钮在按下状态),发车站破封按下总辅助按钮和接辅助按钮,当原街车站发车表示灯亮起,办理完毕。 4、若是监督区间电路发生故障而进行的辅助办理改方,方向变后,由于发车控制继电器KFJ在落下状态,第一次发车进路办理会信号不能开放,需要路票发车待列车出发压入出站信号机内方,列车驶出1LQ区段(反方向为完全进入邻站进站信号机内方)后,第二次办理发车进路信号可正常开放。做条件(DJ 81-83)或(JQJ31-32)或(模拟正常逻辑JKJ落下:区段锁闭、占用径路)。 3、在因故出现改方电路不能正常办理时,应急情况下,可将方向电路的继电器拍成反方向位置。具体做法是先将发车站的FJ1、FJ2

拍到吸起位置,控制台接车表示灯应亮黄灯;再将接车站的FJ1、FJ2拍到落下位置,控制台发车表示灯应亮绿灯,此时即可办理发车进路。 3.1 在拍继电器的过程中必须先与车站值班员联系,确认区间无车,严禁区间有车时进行改方操作或用非正常的办法进行改方; 3.2 拍方向继电器时,必须按照以下顺序进行操作,先将发车站拍到接车位置,再将接车站改到发车位置(防止出现双发的局面),先将FJ1拍到另一位置,后拍FJ2,(防止FJ1断开,而将FJ2再次带回到原来位置)。 3.3在进行应急操作处理的双方必须明确改方的线路,找准室内继电器位置,并随时观察控制台动态,防止出现故障范围扩大。 4、日常维护工作中注意做好以下工作: 4.1上下行线路的四个口继电器名称和定位位置标记。 接车口:S进站FJ1↑、FJ2↑、GFJ↓、GFFJ↑; 发车口:SN进站FJ1↓、FJ2↓、GFJ↑、GFFJ↓。 4.2区间电源的测试和检查。 FZ、FF电源测试:发车站供出的FZ、FF电源电压; FJ1、FJ2继电器端压:FJ1、FJ2采用JYXC-270电流继电器,转极值20~32mA,开通时测试接车站的继电器端压,并做成记录,供日常测试参考; JQZ、JQF电源测试:发车站供出的监督区间电源电压; JQJ端压:测试区间空闲且发车站发车进路未排列时JQJ端压不低于20V;

相关文档
最新文档