向量的点乘和叉乘,以及几何意义

向量的点乘和叉乘,以及几何意义
向量的点乘和叉乘,以及几何意义

所谓点乘(也常称作内积),数学定义如下:

点乘只是表达这个结果的一种方式,符号不重要,叫法也不重要,我可以叫点乘,内积,也可以叫"相乘",定义"#"字符代替“·” 符号都可以,只是人们约束习惯这么这么写,那我们就也都这么写。而且,也不要纠结为什么是这么定义,没有为什么,人们就是这么“龟腚”这个公式的,我们要研究的是这个规定到底能干嘛?有啥具体意义?

a.点乘的具体几何意义:

根据公式,我们可以得出a·b=|a| |b|cosθ我试着证明为什么会是这样(为了能让大家看的方便,我将向量标为蓝色,具体长度标为红色):

定义向量c=a - b这样就形成了一个封闭的三角形,c向量为他的第三边

由于余弦定理我们可以知道c2 =a2 +b2 - 2ab cos(θ) (这里的a,b,c全部都是每一边的具体长度)根据定义我们可以推导出c·c=c2(有兴趣的朋友可以去试着推导一下)

所以:c·c=a·a+b·b- 2ab cos(θ)

因为向量的点乘满足分配率:a·(b+c)=a·b+a·c

c=a - b

c·c=(a -b)·(a - b)

c·c=(a·a-2a·b+b·b)

(a·a - 2a·b + b·b)=a2+b2- 2ab cos(q)

约掉a·a=a2,b·b=b2;

-2a·b= -2ab cos(θ)

a·b=ab cos(θ)

因为a=|a|

所以a·b=|a| |b|cosθ

跟据这个公式,我们能拿到两个向量之间的夹角,这对于判断两个向量是否同一方向,是否正交(也就是垂直),很有用处。具体判断如下:

a·b>0 方向基本相同,夹角在0°到90°之间

a·b=0 正交

a·b<0 方向基本相反,夹角在90°到180°之间

所以,点乘的几何意义和用处就是计算两个向量之间的夹角,以及在某一方向上的投影。至于为什么要判断两个向量是否方向一致,这在3D中很有用处。比如:3D技术中的光栅化(光栅化的任务是为了绘制每个三角形单元,如何计算构成三角形单元的每个像素的颜色值)过程中,我们可以根据两个面的法向量的点乘判断两个面是否处于同一面,如果不是,那么只要光栅化其中需要显示出来的一面,而另一面我们就不用光栅化它(因为我们根本看不到被遮住的面),这样就节省了很多很多计算,能加快效率。

向量的叉乘(也叫做叉积)

为什么是这样,上面已经说过,规定就这样。

同样,我们给出叉乘的几何解释:

在3维几何中,我们可以一眼看出来,叉乘的结果也是一个向量,而且这个向量不是一般的向量,而是大名鼎鼎的"法向量",3D技术中法向量有多重要我就不吹了,反正是个VIP概念。

在2维集合中,axb等于由向量组成的平行四边形的面积(证明很简单,你们可以自己试着证明)

总之:向量的叉积最重要的应用就是创建垂直于平面,三角形,或者多边形的向量。

向量的点乘和叉乘以及几何意义

所谓点乘(也常称作内积),数学定义如下: 点乘只是表达这个结果的一种方式,符号不重要,叫法也不重要,我可以叫点乘,内积,也可以叫"相乘",定义"#"字符代替“·” 符号都可以,只是人们约束习惯这么这么写,那我们就也都这么写。而且,也不要纠结为什么是这么定义,没有为什么,人们就是这么“龟腚”这个公式的,我们要研究的是这个规定到底能干嘛?有啥具体意义? a.点乘的具体几何意义: 根据公式,我们可以得出a·b=|a| |b|cosθ我试着证明为什么会是这样(为了能让大家看的方便,我将向量标为蓝色,具体长度标为红色): 定义向量c=a - b这样就形成了一个封闭的三角形,c向量为他的第三边 由于余弦定理我们可以知道c2 =a2 +b2 - 2ab cos(θ) (这里的a,b,c全部都是每一边的具体长度)根据定义我们可以推导出c·c=c2(有兴趣的朋友可以去试着推导一下) 所以:c·c=a·a+b·b- 2ab cos(θ) 因为向量的点乘满足分配率:a·(b+c)=a·b+a·c c=a - b c·c=(a -b)·(a - b) c·c=(a·a-2a·b+b·b) (a·a - 2a·b + b·b)=a2+b2- 2ab cos(q) 约掉a·a=a2,b·b=b2; -2a·b= -2ab cos(θ) a·b=ab cos(θ) 因为a=|a| 所以a·b=|a| |b|cosθ 跟据这个公式,我们能拿到两个向量之间的夹角,这对于判断两个向量是否同一方向,是否正交(也就是垂直),很有用处。具体判断如下: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交 a·b<0 方向基本相反,夹角在90°到180°之间 所以,点乘的几何意义和用处就是计算两个向量之间的夹角,以及在某一方向上的投影。至于为什么要判断两个向量是否方向一致,这在3D中很有用处。比如:3D技术中的光栅化(光栅化的任务是为了绘制每个三角形单元,如何计算构成三角形单元的每个像素的颜色值)过程中,我们可以根据两个面的法向量的点乘判断两个面是否处于同一面,如果不是,那么只要光栅化其中需要显示出来的一面,而另一面我们就不用光栅化它(因为我们根本看不到被遮住的面),这样就节省了很多很多计算,能加快效率。

向量点乘(内积)和叉乘(外积、向量积)概念及几何意思解读

概念 向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组; 向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的行列数相同。 点乘几何意义 点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a 向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成:

定义向量: 根据三角形余弦定理有: 根据关系c=a-b(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ: 根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交,相互垂直 a·b<0 方向基本相反,夹角在90°到180°之间 叉乘公式

两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。 对于向量a和向量b: a和b的叉乘公式为: 其中: 根据i、j、k间关系,有: 叉乘几何意义 在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。 在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

向量的加减法运算及其几何意义

课题 向量的加减法运算及其几何意义 知识点一:向量的基本概念: (一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行, 要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

《向量加法运算及其几何意义》教学设计

《向量加法运算及其几何意义》教学设计 一、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(版))。第二章2.2平面向量的线性运算的第一节“向量加法运算及其几何意义”(89--94页)。《向量》这一章是前一轮教材中新增的内容。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标

向量加法运算及其几何意义(教学设计)(精选、)

2.2.1向量加法运算及其几何意义(教学设计) [教学目标] 一、知识与能力: 1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量; 2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算; 二、过程与方法: 1.经历向量加法三角形法则和平行四边形法则的归纳过程; 2.体会数形结合的数学思想方法. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. [教学重点] 向量加法定义的理解;向量加法的运算律. [教学难点] 向量加法的意义 一、复习回顾,新课导入 1.物理学中,两次位移, OA AB的结果与位移OB是相同的。 2.物理学中,作用于物体同一点的两个不共线的合力如何求得? 3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。 二、师生互动,新课讲解 1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB BC AC += 求两个向量和的运算,叫做向量的加法. 这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。 以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a 例1(课本P81例1)已知向量a,b,用两种方法(三角形和平行四边形法则)求作向量a+b。 作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b. 作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。 变式训练1:当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系? 2.归纳: 1.两个向量的和仍是一个向量。 2.当a,b不共线时,a+b的方向与a、b都不同向,且|a+b|<|a|+|b|. 3.当a与b共线时, (1)若a与b同向,则a+b的方向与a、b同向,且|a+b|=|a|+|b|. (2)若a与b反向,当|a|>|b|时,a+b的方向与a相同,且|a+b|=|a|-|b|;当|a|<|b|时,a+b的方向与b相同,且|a+b|=|b|-|a|. 3. 向量加法的运算律 探究:数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c),任意向量a,b的加法是否也满足交换律和结合律? 要求学生画图进行探索. (1)如图作ABCD,使AB=a,AD=b,则BC=b,DC=a,

向量 - 向量叉乘 向量点乘

向量- 向量叉乘向量点乘 2010年07月28日星期三14:33 向量(Vector) 在几乎所有的几何问题中,向量(有时也称矢量)是一个基本点。向量的定义包含方向和一个数(长度)。在二维空间中,一个向量可以用一对x和y来表示。例如由点(1,3)到(5,1的向量可以用(4,-2)来表示。这里大家要特别注意,我这样说并不代表向量定义了起点和终点。向量仅仅定义方向和长度。 向量加法 向量也支持各种数学运算。最简单的就是加法。我们可以对两个向量相加,得到的仍然是一个向量。我们有: V1(x1, y1)+V2(x2, y2)=V3(x1+x2, y1+y2) 下图表示了四个向量相加。注意就像普通的加法一样,相加的次序对结果没有影响(满足交换律),减法也是一样的。 点乘(Dot Product) 如果说加法是凭直觉就可以知道的,另外还有一些运算就不是那么明显的,比如点乘和叉乘。点乘比较简单,是相应元素的乘积的和: V1( x1, y1) V2(x2, y2) = x1*x2 + y1*y2 注意结果不是一个向量,而是一个标量(Scalar)。点乘有什么用呢,我们有: A B = |A||B|Cos(θ) θ是向量A和向量B见的夹角。这里|A|我们称为向量A的模(norm),也就是A的长度,在二维空间中就是|A| = sqrt(x2+y2)。这样我们就和容易计算两条线的夹角:Cos(θ) = A B /(|A||B|) 当然你知道要用一下反余弦函数acos()啦。(回忆一下cos(90)=0 和cos(0) = 1还是有好处的,希望你没有忘记。)这可以告诉我们如果点乘的结果,简称点积,为0的话就表示这两个向量垂直。当两向量平行时,点积有最大值 另外,点乘运算不仅限于2维空间,他可以推广到任意维空间。(译注:不少人对量子力学中的高维空间无法理解,其实如果你不要试图在视觉上想象高维空间,而仅仅把它看成三维空间在数学上的推广,那么就好理解了)

向量的减法及其几何意义

2.2.2 向量的减法运算及其几何意义 一、学习目标: 1. 通过实例,掌握向量减法的运算,并理解其几何意义; 2. 能运用向量减法的几何意义解决一些问题. 二、重难点 : 1. 重点:向量减法的三角形法则及其应用; 2. 难点:对向量的减法定义的理解. 三、知识回顾: 1、向量加法的法则: 。 2、向量加法的运算定律: 。 四、探究新知: 1.用“相反向量”定义向量的减法 (1)“相反向量”的定义: 。 (2) 规定:零向量的相反向量仍是 . --=a a ( ). 任一向量与它的相反向量的和是 +- =0a a () 如果a 、b 互为相反向量,则=-,=-,+0a b b a a b = (3)向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法. (4).用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b x a +=,则x 叫做a 与b 的差,记作 。 2.向量的减法的三角形法则: 特点:共起点,连终点,方向指向被减向量. 五、典例分析:

例1、已知向量a 、b 、c 、d ,求作向量a b -、c d -. 练习:已知向量,求作向量。 例2.化简:(AB →-CD →)-(AC →-BD → ). ,a b a b -

练习:化简:(1)AB →-CB →-DC →+DE →+F A → ; 例3、平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量、. 变式一:当a ,b 满足什么条件时,+a b 与a b -垂直? 变式二:当a ,b 满足什么条件时,|+a b | = |a b -|? 变式三:+a b 与a b -可能是相等向量吗?

向量的加法及其几何意义

向量的加法及其几何意义 一、教材分析 高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标 根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为: 1、理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律。 2、理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识。 3、培养类比、迁移、分类、归纳等能力。 4、进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案 教学目标: 1、 掌握向量的加法运算,并理解其几何意义; 2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法: 数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景: 1、 复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、 情景设置: (1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+ (2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+ (4)船速为,水速为,则两速度和: AC =+ 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. A B C A B C A B C

点乘与叉乘

点乘 目录 点乘 叉乘 点乘 点乘(dot product),也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。 向量a·向量b=|a||b|cos 指向量a与向量b之间的夹角) 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。 坐标化表示 将向量用坐标表示(三维向量), 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则,向量a·向量b=a1a2+b1b2+c1c2 运用 (一)点乘可用于判断向量垂直 判断条件: 在向量a与向量b的模皆不为0的情况下,向量a·向量b=0 由向量a·向量b=|a||b|cos可很容易的得出 当|a| 、|b|皆不为0时,cos为0 也即向量a与向量b互相垂直。 (二)关于用点乘判断向量平行的误区 判断平行: 向量a·向量b=|a|*|b|; 而非向量a·向量b=1(×) 由向量a·向量b=|a||b|cos可很容易的得出 叉乘

叉乘(cross product),也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。 |向量c|=|向量a×向量b|=|a||b|sin 指向量a与向量b之间的夹角) 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的食指先表示向量a的方向,然后中指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 因此 向量的外积不遵守乘法交换率,因为向量a×向量b= - 向量b×向量a 在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。 坐标化表示 将向量用坐标表示(三维向量), 若向量a=(a1,b1,c1),向量b=(a2,b2,c2), 则,向量a×向量b= | i j k ||a1 b1 c1||a2 b2 c2| =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1) (i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

向量组线性相关的几何意义

y O x 12345612 3 4 56图11)由两个2 维向量构成的向量组A : a 1, a 2M 1(1,2) M 2(2,4)M 3(3,6)在直线y =2x 取三点M 1, M 2, M 3, 作三个向量: )21(11,OM a ==)4,2(22==OM a )6,3(33==OM a 显然, 这三个向量中的 任意两个向量构成的向 量组都是线性相关的.线性相关的几何意义是: a 1, a 2共线. 向量组线性相关的几何意义

2)由3 个3 维向量构成的向量组线性相关的几2)(1,1,11-==RM a )2,0,2(22-==RM a 2),2,0(33-==RM a 向量组a 1, a 2, a 3 线性相关,因为2a 1 -a 2-a 3 = 0.M 1 M 2 M 3O x 3y 3z 3 R 图2 向量: 在π上取三点:M 1(1,1,1), M 2(2,0,1), M 3(0,2,1),作三个何意义是这3 个向量共面.如给定平面π: x+y+z =3.

3)四维向量组线性相关的几何意义 设有四维向量组 ,6914,13283,5421,41324321??????? ??--=??????? ??-=??????? ??--=??????? ??=αααα有α3= 2α1-α2, α4= α1+ 2α2, 所以向量组α1,四个平面交于同一条直线. 如图3 对应的非齐次线性方程组中的四个方程所表示的α2, α3, α4线性相关, 其几何意义为:该向量组所

2x+3y+z=4 3x+8y-2z=13 x-2y+4z=-5 4x-y+9z=-6图3

特征向量的几何意义

特征向量的几何意义 长时间以来一直不了解矩阵的特征值和特征向量到底有何意义(估计很多兄弟有同样感受)。知道它的数学公式,但却找不出它的几何含义,教科书里没有真正地把这一概念从各种角度实例化地进行讲解,只是一天到晚地列公式玩理论——有个屁用啊。 根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个特定的变换特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx, cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。 这里给出一个特征向量的简单例子,比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[1 0;0 -1](分号表示换行),

显然[1 0;0 -1]*[a b]'=[a -b]'(上标'表示取转置),这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0 b]'(b不为0)也是其特征向量。 综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。 Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: 从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握

向量的点乘和叉乘以及几何意义

向量的点乘和叉乘以及几何意义 |b|cosθ我试着证明为什么会是这样(为了能让大家看的方便,我将向量标为蓝色,具体长度标为红色):定义向量 c=a2abcos(θ) (这里的a,b,c全部都是每一边的具体长度)根据定义我们可 以推导出cc=c(有兴趣的朋友可以去试着推导一下)所以: cc=aa+bb-2abcos(θ)因为向量的点乘满足分配率: a(b+c)=ab+acc=ab)(a2ab+bb)(aa2abcos(q)约掉aa=a,bb=b;-2ab= -2abcos(θ)ab=abcos(θ)因为a=|a|所以ab=|a| |b|cosθ跟据这个公式,我们能拿到两个向量之间的夹角,这对于判断两个向 量是否同一方向,是否正交(也就是垂直),很有用处。具体判断 如下:ab>0方向基本相同,夹角在0到90之间ab=0正交ab<0方向基本相反,夹角在90到180之间所以,点乘的几何意义和用 处就是计算两个向量之间的夹角,以及在某一方向上的投影。至 于为什么要判断两个向量是否方向一致,这在3D中很有用处。比如:3D技术中的光栅化(光栅化的任务是为了绘制每个三角形单元,如何计算构成三角形单元的每个像素的颜色值)过程中,我 们可以根据两个面的法向量的点乘判断两个面是否处于同一面, 如果不是,那么只要光栅化其中需要显示出来的一面,而另一面我们就不用光栅化它(因为我们根本看不到被遮住的面),这样 就节省了很多很多计算,能加快效率。向量的叉乘(也叫做叉积)

为什么是这样,上面已经说过,规定就这样。同样,我们给出叉乘的几何解释:在3维几何中,我们可以一眼看出来,叉乘的结果也是一个向量,而且这个向量不是一般的向量,而是大名鼎鼎的"法向量",3D技术中法向量有多重要我就不吹了,反正是个VIP概念。在2维集合中,axb等于由向量组成的平行四边形的面积(证明很简单,你们可以自己试着证明)总之:向量的叉积最重要的应用就是创建垂直于平面,三角形,或者多边形的向量。

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读教学教材

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读

概念 向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组; 向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的行列数相同。 点乘几何意义 点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a 向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成: 定义向量:

根据三角形余弦定理有: 根据关系c=a-b(a、b、c 均为向量)有: 即: 向量a,b 的长度都是可以计算的已知量,从而有a和b 间的夹角θ: 根据这个公式就可以计算向量a和向量 b 之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交,相互垂直 a·b<0 方向基本相反,夹角在90°到180°之间 叉乘公式 两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是 一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。 对于向量a和向量b: a和b 的叉乘公式为:

其中: 根据i、j、k间关系,有: 叉乘几何意义 在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。 在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个 垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示: 在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。

向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读(完整资料).doc

【最新整理,下载后即可编辑】 概念 向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组; 向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。 点乘公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的行列数相同。 点乘几何意义 点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成:

定义向量: 根据三角形余弦定理有: 根据关系c=a-b(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ: 根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为: a·b>0 方向基本相同,夹角在0°到90°之间 a·b=0 正交,相互垂直

a·b<0 方向基本相反,夹角在90°到180°之间 叉乘公式 两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。 对于向量a和向量b: a和b的叉乘公式为: 其中: 根据i、j、k间关系,有: 叉乘几何意义 在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。 在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:

向量的减法运算及其几何意义教案

2.2.2向量的减法运算及其几何意义 教学目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物间可以相互转 化的辩证思想. 教学重点:向量减法的概念和向量减法的作图法. 教学难点:减法运算时方向的确定. 教学思路: 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律: 例:在四边形中,=++AD BA CB . 解: =+=++ 二、 提出课题:向量的减法 1. 用“相反向量”定义向量的减法 (1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量a - b ∵(a -b) + b = a + (-b) + b = a + 0 = a 作法:在平面内取一点O , 作= a , = b 则= a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1?表示a - b. 强调:差向量“箭头”指向被减数 2?用“相反向量”定义法作差向量,a - b = a + (-b) O A a B’ b -b b B a + (- b ) a b O a b B a b a -b

向量的几何意义

向量的几何意义 1.已知△ABC 是边长为1的正三角形,则AB 在BC 方向上的投影为( ) A .2 1- B .2 3- C . 2 1 D . 2 3 2、已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC → =0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形 3.设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为( ) A .-9 B .-6 C .9 D .6 4.已知向量(1,1)m λ=+ ,(2,2)n λ=+ ,若()()m n m n +⊥- ,则λ=( ) A .-4 B .-3 C .-2 D .-1 5.已知向量)1,2(),2,1(=-=x ,当a ∥b 时x 的值是 ( )A.3 B.4 C.5 D.6 6.已知ABC ?,点O H ,为ABC ?所在平面内的点,且?=?,?=?, OH OC OB OA =++, 则点O 为ABC ?的 ( )A.内心 B.外心 C.重心 D.垂心 7.如右图所示,D 是△ABC 的边AB 的中点,则向量CD 等于( ) A .1BC BA 2 + B .1BC BA 2-- C .1BC BA 2-+ D .1BC BA 2- 8.已知向量a 表示“向东航行1km ”,向量b 表示“向南航行1km ”,则向量a b +表示( ) A. 向东南航行2km C. km D.向东北航行2km 9.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC = ,则BD 等于( ) A .(2,4)-- B .(3,5)-- C .(3,5) D .(2,4) 10.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则向量a ,b 夹角的余弦值等于( ). A .865 B .865- C .1665 D .16 65- 11.已知||=2,||=4,向量与的夹角为60°,当(+3)⊥(k -)时,实数k 的值是 ( )A.1 4 B.34 C.13 4 D.13 2 12.如图,已知,,3AB a AC b BD DC === ,用,a b 表示AD ,则AD = ( ) A .34a b + B .1344a b + C .1144a b + D .3144 a b + 13. 已知点O 、A 、B 不在同一条直线上,点P 为该平面上一点,且

向量内积、外积和混合积

向量内积、外积和混合积 1 点乘 1.1 定义 点乘,也叫向量的内积、数量积。两个向量的点乘结果是一个标量,不妨假定向量为a b 、,则点乘大小为: cos ,a b a b a b =<> 令cos ,a b θ<>= ,则[]0,θπ∈。 1.2 坐标表示 设a =(x1,y1,z1),b =(x2,y2,z2),则: 121212a b x x y y z z =++ 1.3 几何意义 点乘的几何意义是:是一条边向另一条边的投影乘以另一条边的长度。 1.4 应用 (1)计算两个矢量的夹角,取值范围为[]0,θπ∈。这里有两个特殊值,当点乘为零时,则表示两个向量垂直;点乘取最大值(等于两个向量模的乘积)时,表示两个向量平行;(非零向量) (2)如果两个矢量均为单位矢量(即模为1),则点乘结果表示夹角余弦; (3)如果其中一个矢量是单位矢量,则点乘结果表示非单位矢量在单位矢量方向上的投影; (4)从视点到多边形任意一个顶点的矢量与多边形的法向量的点积的符号(>0)多边形在视点背面看不到应 删除。(<0)多边形在视点的正面能看到。 (5)求平面外一点到平面的距离。从该点向平面上的点画一条矢量再与平面的法向量点乘求的绝对值。 (6)方向角与方向余弦。方向角定义为非零向量与坐标轴正向的夹角。设于x, y, z 轴的夹角分别为,,αβγ,则: 222cos ,cos ,cos cos cos cos y x z a a a a a a αβγαβγ ===++ 如果是单位向量,则()0cos ,cos ,cos a αβγ= 。 2 叉乘 2.1 定义 叉乘,也叫向量的外积、向量积。两个向量叉乘的结果仍为一向量,不妨设为c (x3,y3,z3)。向量c 的方向与a,b 所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a 的方向,然后手指朝着手心的方向摆动到向量b 的方向,大拇指所指的方向就是向量c 的方向)。大小为: sin ,c a b a b =<> 令sin ,a b θ<>= ,则[]/2,/2θππ∈-,指的是a 到b 的夹角,具有方向性。 2.2 坐标表示 c =(x3,y3,z3)=(y1z2-z1y2, z1x2-x1z2, x1y2-y1x2),矩阵表示为

向量的点积与叉积

习题二 向量的点积与叉积 一、是非题 解:1.(×)满足000=?≠≠b a b a ,,的向量a 与b 平行,可能同向或反向. 2.(√)由向量点积定义可得. 3.(×)b a ?的大小表示a ,b 两向量构成的平行四边形的面积. 4.(√)c a b a ?=?,即0)(=-?c b a ,所以)(c b a -⊥. 二、填空题 解:1. 1413)2(2 2 2 =++-=a ,21)1(2 2 =+-=b , 所以夹角余弦为7 1 72221411)1(302cos -=-=??+-?+?-=??= b a b a θ. 而以向量a ,b 为邻边的平行四边形的面积即为b a ?,所以 62)7 1(1214cos 1sin 2 2=- -??=-?=?=θθb a b a S . 2. 由向量加法的三角形法则及余弦定理,有2 32 3222)32(2cos 2 22= ??-+=θ,得a 与b 的夹角为6 π= θ. 3. k j i a 2++-=,k j i b 2+-=,所以 222)1(11)1(=?+-?+?-=?b a ,j i j i b a 442 11211+=--=?k . 4. 22 2224πsin =??=?=?b a b a . 三、选择题 解:1.(A) 因为1)32( )3 1()3 2(22 2 =-++,所以),,(3 23132-可以作为方向余弦.

2. (C)因为向量的点积满足乘法分配律. 3. (B)因为k j i a ++=,k j i j 010++=,所以同时垂直于a 和Oy 轴的单位向量为)(21 1 )1(22k i k i k i k i j a j a c +-±=+-+-±=+-+-±=??± =. 4.(C)由三角形法则及余弦定理,133 π 2cos 432432 2 =???-+=+b a . 四、解:1. k j i k j i b a 7351 1223 1 -+=-=?,83)7(35222=-++=?b a , 所以同时垂直于a ,b 的单位向量为{}73583 1-± ,,,即??? ?? ?-±837833 83 5 , , . 2.设{}p n m ,,=b ,由题意有??? ??=++-==, 14,2 36222p n m p n m 解得12±=m ,6±=n ,4μ=p ,因此所求向量为{ }4,6,12-±=b . 3.{}2,3,1-=,{}8,0,2-=,k j i k j i 612248 2 231 ++=--=?AC AB , ABC ?的面积是以AC AB ,为邻边的平行四边形面积的一半,于是 213612242 1 222=++== ?S ABC .

平面向量加法运算及其几何意义教学设计

《平面向量加法运算及其几何意义》教学设计 〖教学目标〗 (1)知识与技能:理解掌握向量加法运算,能够运用向量加法三角形法则和平行四边形 法则求任意两个向量的和向量;初步尝试用向量方法解决几何问题及实际问题; (2)过程与方法:经历概念的形式过程,提高数学建设模能力;通过自主探究活动,体 验数学发现和创造的过程,提高概括、分析归纳,数学表达等基本数学思维能力; (3)情态与价值:通过师生互动,生生互动的教学活动,形成学生的体验性认识,体会 成功的愉悦,提高学习数学的兴趣。形成锲而不舍的钻研精神和合作交流的科学态度。 〖教学重点、难点〗 教学重点:理解向量加法的意义,掌握向量加法三角形法则和平行四边形法则; 教学难点:向量加法概念的形成过程; 〖教学方法与教学手段〗 教学方法:启发探究式教学 教学手段:多媒体辅助教学 〖教学过程〗 一、设置情境、尝试探求 1.设置问题情境 今年夏天,我国某些地区洪灾泛滥,某城外有一条东西流向的大河,河两岸高筑堤坝,河 宽4km, 水深10km,当时河水流速为4km/h, 有一天,三名巡防队员在巡逻中发现正对岸堤 坝有一处决口,情急之下,三人跳上船以8km/h 的速度直向决口处驶去,同学们想一想, 如果船不改变方向,他们能否准确、及时到达出事地点? 2、学生自主探究与研讨

学生会直观猜测:不能及时准确及时到达(有了猜测就有探式的欲望) V船 V 教师引导学生:能否运用你所学的知识进行说明; V水 学生得出:船的实际速度应是船行驶速度和水的速度的合成。如图 教师小结:速度是一个看矢量,矢量的合成与数量相加不同,要同时考虑方向。 提问,根据已有知识你还能举出一些有关矢量合成的例子吗? 3、师生共同探究 学生举例:(1)位移的合成(2)力的合成; (1)如图:某对象从A点经B点到C点,两次位移,的结果,与A点直接到C 点的位移结果相同。

相关文档
最新文档