实验六 多边形建模及实例

实验六  多边形建模及实例
实验六  多边形建模及实例

(3)在边命令下,选中2圈边,移动成如图所示

(4)点击面命令,再点击卷展览中的挤出,最后点击网格平滑即可

(5)效果图

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

生活中的数学模型案例

生活中的数学模型案例 吉林省松原市宁江区第五中学 二年三班许立伟 指导教师:李光辉

生活中的数学模型案例 吉林省松原市宁江区第五中学许立伟 生活与数学是分不开的,在很多领域中人们总在用不同的数学模型来描述、刻画某些生活现象或规律。其实数学和数学模型离我们很近,它是和语言一样具有国际通用性的一种工具,无论你从事什么职业。都不同程度地会用到数学知识与技能以及数学模型的思考方法。本文是我对日常生活中一般数学模型的了解,并运用数学模型来分析和解决生活中常见的几个实际问题。 案例一三角形具有稳定性 通过课本的学习我知道三角形具有稳定性,有着稳固、坚定、耐压的特点。原因是一旦三角形的三个边长确定了,三角形就确定了,各个角的角度,三个边所围成的面积,等等都不会改变,我也学过三个点可以确定一个面。一个三条腿的板凳不论在哪里都可以放稳。所以其实三角形是稳定的。埃及金字塔、钢轨、起重机、三角形吊臂、屋顶、三角形钢架、钢架桥中都应用三角形的原理。 案例二轴对称图形 什么是轴对称图形呢?如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。在我们的生活中,有很多美丽的轴对称图形。数字:0 3 8 字母:E H 汉字:中由日等,还有很多建筑如

案例三黄金分割比 黄金分割比是把一条线段分割为两部分,使其中一部分与全长之比等于 另一部分与这部分之比。近似值是0.618。由于按此比例设计的造型十分美丽, 因此称为黄金分割。也称为中外比。 一个常见的生活案例:女士们多数喜欢穿高跟鞋.因为 高跟鞋使人的身材更美,那穿多高的跟才能使女士显得迷人呢? 经过计算发现,人体的腿长与身高的比值近似0.618时(也即是黄金分割比值)。 其身材显得迷人漂亮(肚脐足理想的黄金分割点),也就是说,若此比值愈接近0.618.就愈给人一种美的感觉,一般女士由脚底至肚脐的长度与身高比都不 能达到此比值,要通过高跟鞋来调节。 总之,生活中的数学和数学模型可以说是无处不在的。在数学的发展进程 中,无时无刻不留下数学模型的印记,在数学应用的各个领域中到处都可以找 到数学模型的身影。随着科学技术的发展,它的作用就显得更加突出和重要。 因此.我们要重视它并最大限度地开发、利用它,使之更好地为人类服务。 指导老师评语: 数学模型是解决现实生活生产中一些最优方案的数学方法,徐立伟同学选择 这一题目,可见他已经懂得把学到的知识用到生活中去,用科学知识指导自己 的活动,在生活中体验到了学到知识的乐趣。

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

3Ds max多边形建模主要功能命令

3Ds max多边形建模主要功能命令.doc 3Ds max多边形建模主要功能命令 3Ds max多边形建模方法比较容易理解,非常适合初学者学习,并且在建模的过程中用者有更多的想象空间和可修改余地。在这篇教程里,我们要通过循序渐进的讲解及相应的小实例来对3Ds max7中的多边形建模进行剖析,使读者可以比较全面的了解和掌握3Ds max7中的多边形建模方式与流程。 本节介绍3Ds max多边形建模所用到的主要功能命令,另外为了让大家了解的更彻底,还会在文章末尾补充讲解一些不太常用的命令。 (一)选择功能 首先讲关于多边形中的选择功能,也就是使我们可以更有效地选择多边形中子物体的命令,打开选择卷展栏(如图39所示)。 图39 这个卷展栏中包含了选择子物体方面的所有功能,上面的五个按钮分别对应于多边形的五种子物体(点,边,边界,面,元素),被激活的子物体按钮为上图所示的黄色显示,再次单击可以退出当前的子层级,也可以直接点击进入别的子层级,它们的快捷键是数字键的1,2,3,4,5(注意不是小键盘上的数字键)。 中间是三个复选框。第一个是By Vertex(通过点选择),它只能在除了点以外的其余四个子层级中使用。比如进入边层级,勾选此项,然后在视图中的多边形上点

击,注意要点击有点的位置,那么与此点相连的边都会被选择(如图40所示),在其它层级中也是同样的操作;第二个是Ignore Backfacing(忽略背面),一般在选择的时候,比如框选时会将背面的子物体一起选中,如果勾选此项,再选择时只会选择可见的表面,而背面不会被选择,此功能只能在进入子层级时被激活;第三个是 by angle(通过角度选择),如果与选择的面所成角度在后面输入框中所设的阀值范围内,那么这些面会同时被选择。 图40 下方是四个加强选择功能的按钮。Shrink和Grow分别是收缩和扩张选择区域,具体效果如图41所示;Ring为选中与当前边平行的所有边(如图42所示),此功能只能应用在边和边界层级中;Loop为选中可以与当前选择的部分构成一个循环的子物体(如图43所示),此功能也只能应用在边和边界层级中。

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

将数学应用到实际生活中去

将数学应用到实际生活中去 ——试析数学建模的理论与实践随着现代科学技术的迅猛发展,人们在解决各种实际问题时须更加精确化和定量化,尤其是在计算机得到普及和广泛应用的今天,数学更加深入得渗透到各种科学技术领域。马克思说过:“只有充分应用了数学的科学才是完美的”。数学建模正是从定性和定量的角度去分析和解决实际问题,为人们解决问题提供了一种数学方法、一种思维形式,因此越来越受到人们的重视。一个企业该上什么项目?一个投资商如何投资风险最小、收益最大?在战争尚未消灭的今天,武器的发展方向是大而多还是少而精?人口众多已成为全球性的问题,如何制定一个国家的人口政策?……所有这些问题都需建立数学模型加以论证,为投资者提供理论依据。 一、关于数学建模的注解 (一)数学教育的弊端 我国的数学教育,一个较为突出的弊端是“忽视数学的应用”。虽然我们在课上总是听到老师谈到“数学的广泛应用性”,但我们还只是周旋于纯数学的概念和推理之中,只重理论,不求实用,只管解题,不讲思想,其结果就是课本上的数学知识掌握的滚瓜烂熟,考试门门优秀,可一遇到实际问题,就丈二和尚摸不着头脑,不知从何下手,这可能就是所谓的“高分低能”吧。究其原因是没能跳出应试教育的束缚,不少教育工作者认为“正因为数学具有广泛应用性,到处都有用,毕业以后总有用,学好理论自然有用,因此不必教应用。”“考试不考应用,当然不必教应用。”……从而使原本生动活泼的数学问题变成枯燥乏味的解题程式,使很多人讨厌、畏惧数学。 面对当前数学教育的弊端,不少有识之士提出应强调数学应用是数学教学改革的方向。怎样才能把数学知识应用于其他学科和日常生活中呢?数学建模就是数学知识与数学应用之间的一座桥梁。有些人把数学建模看得高深莫测,甚至有还人把“数学建模”误认为是“航模、造船”,其实我们早就已经接触过数学建模,大家一定都记得我们在小学阶段做过很多应用题,实际上那些就是简单的数学建模。数学建模的确切含义尚无定论,但专家们比较趋于一致的看法是:通过对实际问题的抽象、归纳、简化,确定变量与参数,并应用数学的理论和方法,建立起合理数学模型;然后运用数学和相关学科的理论、方法与计算机等技术手段,求解数学模型;同时对该模型进行验证、解释、讨论,并对该模型进行修正、改进和推广,使之规范化,并展示其实际应用的前景。简而言之,数学建模就是以现实为背景,以数学科学理论为依托,来解决实际问题的过程。事实上,任何数学概念、命题、定理、结构都是数学模型。17世纪伟大的科学家牛顿在研究变速运动的过程中发明了微积分,并以此为工具发现了万有引力定律,便是科学发展史上成功的数学建模范例。 (二)数学建模的一般方法和步骤 数学建模的一般方法是理论分析的方法,即根据客观事物本身的性质,分析因果关系,在适当的假设下用数学工具去描述其数量特征。它的主要步骤有:第一步,了解问题,明确目的。在建模前要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察。明确所要解决问题的目的和要求,并按要求收集必要的数据。

B1.3.4 生活中的算法实例 教案

1.3.4 生活中的算法实例 教学要求:通过生活实例进一步了解算法思想. 教学重点:生活实例的算法分析. 教学难点:算法思想的理解. 教学过程: 一、复习准备: 1. 前面学习了哪几种算法案例?每种算法的作用及操作方法是怎样的? 2. 算法思想在我们的生活中无处不在,如何利用我们所学习的知识解决生活中的实际问题? 二、讲授新课: 1. 霍奇森算法: 提问:同学们经常会面对一个共同的问题,就是有时有太多的事情要做. 例如,你可能要面临好几门课的作业的最后期限,你如何合理安排以确保每门课的作业都能如期完成?如果根本不可能全部按期完成,你该怎么办?(霍奇森算法可以使得迟交作业的数目减到最小. 这一算法已经广泛应用于工业生产安排的实践中.) 例如:当你拿到下面这组数据后,你会如何安排你的时间,以确保每门课的作业都能如期完 法可用自然语言描述为:①把这些作业按到期日的顺序从左到右排列,从最早到期的到最晚到期的;②假设从左到右一项一项做这些作业的话,计算出从开始到完成某一项作业时所花的时间. 依次做此计算直到完成了所列表中的全部作业而没有一项作业会超期,停止;或你算出某项作业将会超期,继续第三步;③考虑第一项将会超期的作业以及它左边的所有作业,从中取出花费时间最长的那项作业,并把它从表中去掉;④回到第二步,并重复第二到四步,直到做完. 2. 孙子问题: 韩信是秦末汉初的著名军事家. 据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数. 韩信先令士兵排成了3列纵队进行操练,结果有2人多余;接着他立刻下令将队形改为5列纵 队,这一改又多出3人;随后他又下令改为7列纵队,这一次又剩下2人无法成整行. 由此得出共有士兵2333人. 如何用现在的算法思想分析这一过程? 《孙子算经》中给出了它的具体解法,其步骤是:选定57?的倍数,被3除余1,即70;选定37?的一个倍数,被5除余1,即21;选定35?的一个倍数,被7除余1,即15. 然后按下式计算702213152105m p =?+?+?-,式中105为3,5,7的最小公倍数,p 为适当的整数,使得0105m <≤,这里取2p =. 求解“孙子问题”的一种普通算法: 第一步:2m =. 第二步:若m 除以3余2,则执行第三步;否则1m m =+,执行第二步. 第三步:若m 除以5余3,则执行第四步;否则1m m =+,执行第二步. 第四步:若m 除以7余2,则执行第五步;否则1m m =+,执行第二步. 第五步:输出m . 3. 小结:算法的基本思想. 三、巩固练习: 略 四、作业:教材P38第3题

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

数学建模实践心得

数学建模实践心得 大学以来的第一个暑假,我参加了数学建模培训, 来作为一次暑期社会实践。或许并不像其他社会实践队可以走出校园,接触社会,但我们可以通过这次的培训,更系统化,更具体化地学习数学建模,并进一步理解其所体现的一些思想和精神。 数学建模是接触实际科学问题的第一步,利用所学的知识,利用各种数学和计算机工具,为某一具体问题建立抽象模型,并解决问题、最后撰写论文,给出客观的评价。 在两个星期的数学建模培训的过程中,我学到了很多知识,比如 LINGO软件、MATLAB软件和一些算法,可以说,这是迄今为止任何一门课程都无法比拟的,各种从未接触过的高级数学软件,令人眼花缭乱的编程和神秘的多维图像。 当初参加校级数学建模比赛的时候,起初我和我的队友都激情高昂的,但是随着三天的建模下来,我们的斗志越来越低迷,出于对数学建模的不了解,可以说,无从下手,自然最后只能草草结束。经过那次的接触后,我明白首先我们要加强建模技能和拓展课外知识面;再者,态度也是主导因素之一,态度决定一切,如果抱着试一试的态度,是不会有什么结果的。 其实,数学建模的一些思想和为人处世之道是相通的。在生活中,无论做什么事情,我们都要端正自己的态度,时常给自己一点鼓励,要相信自己的潜力,把自己融入激情之中,不要越做越懈怠。江南春曾说过“最终你相信什么,就能成为什么”。 在数学建模的培训中,我接触到一些参加过国赛的学长和学姐。执着和认真,是我在建模时从他们候身上找到的共同点。认真的人改变自己,执着的人改变命运。的确,在数学建模的过程中,只有驱除浮躁,踏实做事,全神贯注,注重每一个细节,才能把事情做好。

在和他们交流的过程中,曾有一位学姐说道,要想有进步,就要踏踏实实学好理论、弄懂原理、看会例题、做好练习,而不是浮在面上。参加数学建模培训,还要放正心态,急功近利的想法是要不得的。数学建模的思想是在潜移默化中作用于你,而非立竿见影。所以要真正学到有益的知识和思想才是最重要的,而非顾于是否获奖之类的。 数学建模,通过利用数学知识,对一些生活中的实际问题建立模型。所以,它需要的不仅仅是数学的逻辑思维,还需要计算机编程能力,论文写作能力,其实更重要的是团队协作能力。我想,这对以后的工作与生活,有非常大的帮助的,对人生更是如此。 在建模的三天里,初看题目,感觉摸不着头脑,没有相关理论的基础,没有高人 的指点,三个伙伴只能借助唯一的网络,去找寻找问题的入手点。在反复的搜索之后,我们终于有了初步的理解。写论文的过程,我们可以说是“痛并快乐的”。当然,在数学方法上,我们很多地方也感觉困难重重,所以不断地查询资料,理解它们的含义,让比赛的过程成为我们学习的动力。虽然最终没有取得预期的结果, 但是,过程带来的快乐,远远超越了结果。令我感触最深的是,知识的扩充,和 交识了一些新朋友。 与我建模的两位同学,可以说,初次接触,不了解对方。相对于其他建模小组而言,我们还需要在短暂的几天内去了解彼此。不过,还好,我们都是随和的性子,很快就熟悉起来。在建模的过程中,我们仨一同讨论,一同努力,一同交上一份尽心尽力的答卷。可以说,我们合作的过程也可以算是一种锻炼,怎样才能更好的沟通,怎样才能各抒己见,但最终可以把各自的观点融于一体,也算是一种挑战。学会与他人合作,在相互的谦虚中学习彼此的长处,汲取对方的优点,接收别人的建议。或许,三天的交流,并不长,也并不深入,但起码,我们成为了朋友,曾经一起为数学建模奋斗过。我想,这也是数学建模的另一番魅力所在。短短的三天,可以拉近三个性格迥异的人。

3Ds max多边形建模主要功能命令

3Ds max多边形建模主要功能命令 3Ds max多边形建模方法比较容易理解,非常适合初学者学习,并且在建模的过程中用者有更多的想象空间和可修改余地。在这篇教程里,我们要通过循序渐进的讲解及相应的小实例来对3Ds max7中的多边形建模进行剖析,使读者可以比较全面的了解和掌握3Ds max7中的多边形建模方式与流程. 本节介绍3Ds max多边形建模所用到的主要功能命令,另外为了让大家了解的更彻底,还会在文章末尾补充讲解一些不太常用的命令。 (一)选择功能 首先讲关于多边形中的选择功能,也就是使我们可以更有效地选择多边形中子物体的命令,打开选择卷展栏(如图39所示)。 图39 这个卷展栏中包含了选择子物体方面的所有功能,上面的五个按钮分别对应于多边形的五种子物体(点,边,边界,面,元素),被激活的子物体按钮为上图所示的黄色显示,再次单击可以退出当前的子层级,也可以直接点击进入别的子层级,它们的快捷键是数字键的1,2,3,4,5(注意不是小键盘上的数字键)。 中间是三个复选框。第一个是By Vertex(通过点选择),它只能在除了点以外的其余四个子层级中使用。比如进入边层级,勾选此项,然后在视图中的多边形上点击,注意要点击有点的位置,那么与此点相连的边都会被选择(如图40所示),在其它层级中也是同样的操作;第二个是Ignore Backfacing(忽略背面),一般在选择的时候,比如框选时会将背面的子物体一起选中,如果勾选此项,再选择时只会选择可见的表面,而背面不会被选择,此功能只能在进入子层级时被激活;第三个是by angle(通过角度选择),如果与选择的面所成角度在后面输入框中所设的阀值范围内,那么这些面会同时被选择。

生活中的数学应用案例

数学研究学习 ——生活中的数学应用案例及做一个尽可能大的长方体 生活中无处不存在数学,数学是应用到我们的每个细节。学数学不是当死知识,而是要灵活运用。我们只有真正的学好数学,才能用到实际生活当中。 这天,我正在玩物理学具,因为电学下学期还要学,所以我就玩起了电学里的连接电路。看着那一闪一亮的灯泡,我突然心中起了一个问号,灯泡的容积怎么求呢?那不方不正,又不是球形的灯泡,又怎么能计算求出它的容积呢?最简单的办法就是碗里面灌满水,然后倒出来量。可是灯泡又扭不开,也不可能打碎,这怎么求。我低头思考了一会,就想出办法。 我首先找出一个玻璃钢(鱼缸),然后将灯泡放进去,测量说升高了多少。然后套用公示:升高的高度*长*宽,就计算出来了。 还有一个实例:过年的时候,小姑要和姑父回家乡过年,说是要给我带纪念品。不知道他们什么时候走的,等的我就急了,问爸爸,他这就考我了:“你小姑回去一周,平年2月有28天.,你算算吧。” 我不假思索的回答,“她7号回来,对不对?” 知道我是怎么算的吗?是这样的。设这七天最中间的一天为x,得到一个方程: (x-3+x-2+x-1)+x+(x+1+x+2+x+3)=28 解得x=4 4+3=7 数学在生活中十分有用,只有不断探索,才会获得更多收获 做一个尽可能大的长方体 步骤 1.准备:一张边长为20 cm的正方形纸板,一个无盖的长方体,以及剪刀、直尺、透明胶、细沙。 2.操作:展开一个无盖长方体 3.设疑:一张正方形的纸怎样才能制成一个无盖的长方体? (1)几何思想 (2)把小正方形的边长在2.5cm到4cm之间进行细分,按0.5cm的间隔取值,即分别取2.5cm,3cm,3.5cm,4cm时,折成的无盖长方体形纸盒 的容积将如何变化?请学生按照昨天所分的小组填写下面的表格:

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

(完整版)生活中的数学例子

一天有个年轻人来到王老板的店里买了一件礼物 这件礼物成本是18元,标价是21元。 结果是这个年轻人掏出100元要买这件礼物。 王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。 但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。 现在问题是:王老板在这次交易中到底损失了多少钱? 在这问题中,大多数人都认为答案损失197元,或者200元.其实答案是97元。这个可是10个人之中有9个人都会错的题目哦。 我们把问题反过来想,想想街坊和年轻人都得到了什么?就更明了了~~ 街坊给老板换了100元的零钱后又和老板换回了100元钱,也就是说街坊和老板是没有利益关系的。老板收到年轻人的100元假币,给了年轻人找给年轻人79元钱,也就是说年轻人得到是的礼物18元的成本+3元的利润和79元钱,这样就很清楚的知道老板失去的就是给年轻人的礼物18元的成本+3元的利润和找给他的79元钱。 老板损失的是79+18=97 元 今天,妈妈带我到超市买东西,妈妈买了许多用品,刚想去结账,又想起还有洗洁精没买,于是我和妈妈又去买洗洁精,我们来到了卖洗洁精的地方,看到两种一样的洗洁精,但价钱,优惠都不同。妈妈说:“你给我算一下,买哪一种划算。”第一种是14元500毫升,第二种是16元500毫升赠80毫升。我便算了起来:500÷14≈35(毫升)每元35毫升,500+80=580(毫升),580÷16=36.25(毫升)每元36.25毫升,我拿起第二种走向了结账台。妈妈对我啧啧赞叹,说我真聪明。 妈妈考我题目:“最近,我在一张试卷上看见一道题目,甲数是乙数的3倍,如果乙数给甲数6,那甲数就是乙数的5倍,求甲,乙是几?” 我思考了一会说:“我还真不会,你能教我吗?”妈妈说:“他说甲数是乙数的3倍,那我们先将乙数是1倍,甲数是3倍,乙数给甲数6,甲数是乙数的5倍,由此可以想到,乙数去掉6,甲数就加上6,现在,甲数是乙数的3倍多6,我们可以将甲数分成跟乙数一样多,都去掉6,可以去掉3个6,再加上乙数给的6,一共是4个6,用4乘6等于24,24加上6等于30,再用30除以2等于15,15加上6等于21,求出原来的乙数,那甲数就好求了,现在我不说了,你能求出甲数么?” “太简单了。用21乘3等于63,甲数是63,乙数是21。 一天,我正在家里写作业,忽然,一道数学题将我难住了:a、b两地相距546千米,两列客车同时从两地出发,相对开出,3小时相遇。已知甲车的速度是乙车的3倍,甲车每小时行多少千米?我相信很多同学看了之后,都会觉得头疼,我也是,这分明不好算吗!最后,还是用>老师上课教我的知识,令我茅塞顿开,解开了这道题。老师不是教过我假设吗?那我可以先假设乙车每小时行a千米,那乙车一共行驶了3a千米,甲车的速度是乙车三倍,一共行驶了9a千米,那么它们一共行驶了12a千米,也就是12a千米=546千米。你看,这样假设之后,解开这个问题就非常简单了。用546÷12=45.5千米,算出乙车的时速是45.5千米,再用45.5×3=136.5千米,算出甲车的时速是136.5千米。可见假设是数学解题的一个小妙招。

简单数学建模100例

“学”以致用 -----简单数学建模步骤 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备。 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)。 四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。 五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出 精品

预报或对类似实际问题进行分析、解释,以供决策者参考称为 精品

. 精品

第一关:接触数学建模 【 1 】一副扑克牌有54张,从中任取 多少张,可以保证一定有5张牌的花色 是一样的? 分析除去大、小鬼还有52张牌,其中4种花色各13张.运气最好的情况下所取 的5张牌都是同一花色的,哪运气不佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样的呢? 假设假定至少要取N张,才能保证一定有5张牌的花色是一样的. 模型逆向地思维 解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。 所以442119 N=?++=张就可以保证一定有5张牌的花色是一样的. 检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷. 练习题公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次? 精品

生活中的数学实例

生活中的数学实例 一、现实的数学 20世纪60年代兴起的"新数学"运动,对全球的数学教育界产生了巨大影响。根据结构主义的观念,数学本身就是一个有组织的、封闭的演绎体系;因而,数学教育也就意味着应该以体系的结构作为学习过程的指导方针,洞察数学的结构就成了数学教育的最重要的根本;从而提出了数学教育的目的就在于训练学生的逻辑演绎思维与公理化方法,必须以集合论与现代公理为基础,提供给学生一个完善的演绎理论体系。 人们通过数学教学的实践,发现了结构主义的片面性。根据数学发展的历史,无论是数学的概念,还是数学的运算与规则,都是由于现实世界的实际需要而形成的。数学不是符号的游戏,而是现实世界中人类经验的总结。数学来源于现实,因而也必须扎根于现实,并且应用于现实。数学如果脱离了那些丰富多彩而又错综复杂的背景材料,就将成为"无源之水,无本之木"。 另一方面,我们也认为数学是充满了各种关系的科学,通过与不同领域的多种形式的外部联系,不断地充实和丰富着数学的内容;与此同时,由于数学本身内在的联系,形成了自身独特的规律,进而发展成为严谨的形式逻辑演绎体系。因此,也应该让学生了解数学的整个体系一一充满着各种各样内在联系与外部关系的整体结构。 学习数学就意味着能够做数学:熟练地运用数学的语言去解决问题、探索论据并寻求证明,而最重要的活动则应该是从给定的具体情境中,识别或提出一个数学概念。所以,要想引入一个新概念,却缺少足够的具体事实作为基础,或者反复介绍一个概念,却没有具体的应用,这都无法使学生产生求知的冲动;过早地形式化不可能有效果,而过早的抽象化也会引起学生的抵触情绪;因为他们希望知道这究竟有什么用处,又为什么是关联的。 从具体情境中提取适当的概念,从观察到的实例进行概括,再通过归纳、类比,在直觉的基础上形成猜想,这是数学思维的方式。而要引

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

3DSMax放样法建模精解与实例

3DSMax放样法建模精解与实例 3DSMax放样法建模精解与实例 在3DSMax中有大量的标准几何体用于建模,使用它们建模方便快捷、易学易用,一般只需要改变几个简单的参数,并通过旋转、缩放和移动把它们堆砌起来就能建成简单美观的模型,这对于初学者来说无疑是最好的建模方法。 但当经过一段时间学习以后,我们会发现很多物体并不能通过上述方法实现,而对于对3DSMax刚有一些认识的学习者来说,面片(PATCH)建模过于复杂,而NURBS建模又显得高深莫测,这时放样(LOFT)法生成物体模型则是最简单易行的办法。 一、生成 放样法建模是截面图形(SHAPES)在一段路径(PATH)上形成的轨迹,截面图形和路径的相对方向取决于两者的法线方向。路径可以是封闭的,也可以是开敞的,但只能有一个起始点和终点,即路径不能是两段以上的曲线。所有的SHAPES物体皆可用来放样,当某一截面图形生成时其法线方向也随之确定,即在物体生成窗口垂直向外,放样时图形沿着法线方向从路径的起点向终点放样,对于封闭路径,法线向外时从起点逆时针放样,在选取图形的同时按住Ctrl键则图形反转法线放样。用法线方法判断放样的方向不仅复杂,而且容易出错,一个比较简单的方法就是在相应的窗口生成图形和路径,这样就可以不用考虑法线的

因素。 字串9 放样法建模的参数很多,大部分参数在无特殊要求时用缺省即可,下面只对影响模型结构的部分参数进行介绍: 在创建方式(Creative Method)中应选择关联方式(Instance),这样以后在需要修改放样物体时可直接修改其关联物体。 皮肤参数(Skin Parameters)中选项(Option)下的参数是直接影响模型生成的重要参数,并对以后的修改有较大影响。 图形步幅(Shapes Steps)设置图形截面定点间的步幅数,加大它的值可提高纵向光滑度。 路径步幅(Path Steps)设置路径定点间的步幅数,加大它的值可提高横向光滑度。 图形优化(Optimize)可优化纵向光滑度,忽略图形步幅。 适配路径步幅(Adaptive Path Steps)可优化横向光滑度,忽略图形步幅。 轮廓(Contuor)放样是由于路径和图形的夹角不定,往往得到的图形有缺陷,开启它,可是截面图形自动更正自身角度以垂直路径,得到正常模型。 路径参数(Path parameters)中可以以多种方式确定图形在路经上的插入点,用于多截面放样。在路径上的位置可由百分率(Percentage)、距离(Distance)、和路径的步幅数来控制。 二、编辑 在生成模型时如采用关联方式,则可通过直接改变原有的图形和路径来改变模型

相关文档
最新文档