水下激光成像系统探测距离的计算与仿真

水下激光成像系统探测距离的计算与仿真
水下激光成像系统探测距离的计算与仿真

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

基于盖革模式APD的光子计数激光雷达探测距离研究

第40卷第12期 光电工程V ol.40, No.12 2013年12月Opto-Electronic Engineering Dec, 2013 文章编号:1003-501X(2013)12-0080-09 基于盖革模式APD的光子计数 激光雷达探测距离研究 罗韩君,詹杰,丰元,张禹涛 ( 湖南科技大学物理与电子科学学院,湖南湘潭 411201 ) 摘要:最大探测距离是表征光子雷达性能的重要参数,本文利用盖革模式雪崩光电二极管阵列对直接探测脉冲光子雷达的最大探测距离进行了研究。从激光雷达方程出发,根据盖革模式雪崩光电二极管阵列探测像元中回波激发初始电子数的泊松统计模型和系统最小可接受探测概率条件,建立了光子雷达的最大探测距离理论模型。利用光子雷达系统设计参数,研究了对最大探测距离产生影响的五个主要因素。研究结果表明发射激光脉冲能量越高,噪声越小,回波位置在距离门中越靠前,大气传输系数越大,目标反射率越高,获得的最大探测距离越大;使用脉宽为5 ns,脉冲能量为50 μJ的激光脉冲,最小可接受探测概率为0.9时,可获得大于1 km的最大探测距离; 同时,选择合适的系统最小可接受探测概率对系统探测性能的改善十分重要。 关键词:激光雷达方程;盖革模式;阵列;最大探测距离 中图分类号:TN958.98 文献标志码:A doi:10.3969/j.issn.1003-501X.2013.12.014 Detection Range of Photon Counting Laser Radar Based on Geiger-mode APD LUO Hanjun,ZHAN Jie,FENG Yuan,ZHANG Yutao ( School of Physics and Electronic Science, Hunan university of Science and Technology, Xiangtan 411201, Hunan Province, China ) Abstract: Maximum detection range is an important parameter for evaluating the performance of photon ladar. In this paper, the maximum detection range of direct-detection pulse photon ladar which uses Geiger-mode Avalanche Photodiode (GM-APD) array as the detector is investigated. Based on the laser radar equation and the model of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons in the GM-APD pixel obey Poisson distribution, the theoretical model estimating the maximum detection range is proposed. By using the system design parameters, the influence of five main factors on the maximum detection range is investigated. The results show that the stronger emitted pulse energy, lower noise level, front echo position in the range gate, large atmospheric transmission, and high target reflectivity can result in larger maximum detection range. When the minimum acceptable detection probability is selected to 0.9, by using emitted laser pulse with pulse width 5 ns and energy 50 μJ, the system maximum detection range more than 1 km can be achieved. At the same time, it is important to select the minimum acceptable detection probability for producing a high system detection performance. Key words: laser radar equation; Geiger mode; array; maximum detection range 收稿日期:2013-07-12;收到修改稿日期:2013-09-16 基金项目:国家自然科学基金(6117289/F010202; 61377024);湖南省教育厅重点项目(12A045)资助项目 作者简介:罗韩君(1975-),男(汉族),湖南邵阳人。讲师,博士,主要研究工作是单光子成像探测。E-mail: 393593928@https://www.360docs.net/doc/878430946.html,。 https://www.360docs.net/doc/878430946.html,

水下光学探测发展综述

一、水下探测技术发展现状 光在水中传播,接收器接收的光信息主要由3 部分组成:从目标反射回来并经水介质光在水中传播,接收器接收的光信息主要由3 部分组成:从目标反射回来并经水介质吸收、散射损耗后的成像光束;光源与目标之间水介质散射的影响图像对比度的后向散射光;目标与接收器之间水介质散射较小角度并直接影响目标细节分辨率的前向散射光。与大气成像技术相比,水下成像技术的研究重点就是减小水介质所具有的强散射效应和快速吸收功率衰减特性对水下通信、成像、目标探测所造成的影响。目前主要有几种成像技术在实际中得到应用且达到较好的工作效果,它们的工作原理和技术特点如下所述。 1 同步扫描成像 同步扫描技术是扫描光束(连续激光)和接收视线的同步,利用的是水的后向散射光强相对中心轴迅速减小的原理。该技术采用准直光束点扫描和基于光电倍增管的高灵敏度探测器的窄视域跟踪接收。如图1,激光扫描装置器使用窄光束的连续激光器, 同时使用窄视场角的接收器, 探测器与激光扫描装置分开放置,这样使得被照明水体和接收器视场的交迭区域尽量减少, 从而让后向散射光尽量少地进入接收器中,再利用同步扫描技术, 逐个像素点探测来重建图像,有效地提高成像的信噪比和作用距离。 美国Westinghouse 公司为美国海军生产的一种机械同步扫描SM2000 型水下激光成像系统, 其成像距离是普通水下摄像机的3 ~5 倍,有效视场可达70°,在30m 作用距离上可分辨25mm

量级的图像。该系统的有效视场大约为距离选通技术的5 倍, 成像质量(即分辨率)也比距离选通好。 图1: 2、距离选通技术 距离选通技术是利用脉冲激光器和选通摄像机,以时间的先后分开不同距离上的散射光和目标的反射光,使由被观察目标反射回来的辐射脉冲刚好在摄像机选通工作的时间内到达摄像机并成像。如图2,采用脉冲激光源照明目标,接收端使用距离选通门,在照射的短脉宽激光的光从目标返回前,相机快门一直关闭,信号光抵达时,快门才打开,这样使得接收器几乎同时接收到整个视场内所有景物的反射光。在该系统中, 非常短的激光脉冲照射目标物体,照相机快门打开的时间相对于照射目标的激光发射时间有一定的延迟, 并且快门打开的时间很短, 在这段时间内, 探测器接收从目标返回的光束, 从而排除了大部分的后向散射光。 此种方法对解决由海水中的悬浮颗粒引起的后向散射问题很有力。系统的距离分辨率由激光脉冲宽度和探测器选通门宽度决定,宽

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/878430946.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

激光雷达在军事中的应用讲解

激光雷达在军事中的应用 作者 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状. 关键词:激光雷达;探测;军事应用 1.引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应 可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在 20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响.由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好. 激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达. 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息.例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64 X 64 元,视场内物体的图像可显示在屏幕上,每秒钟更新4 次,并用不同颜色和灰度显示物体的相对距离.这种激光雷达能对运动的装甲车辆产生实时图像,图像分辨率足以识别车辆型号. 美国雷西昂公司研制的ILR100 型砷化稼激光雷达,可安装在高性能飞机和无人机上,当飞机在120m~460m 高空飞行

水下光学成像系统的设计

水下光学成像系统的设计 班级: 姓名: 学号:

试验一simulink辅助设计基础一、试验目的 熟悉Simulink软件,启动Simulink并建立下述系统的模型:系统输入: , sin )(≥=t t t u; 系统输出: ), ( )(≠ =a t au t y。 二、试验过程 启动simulink。在matlab窗口中输入simulink指令,弹出器件库窗口。并在器件库中找到以下元件。 连接元件如下图所示: 在下图对话框中修改增益为2。 得到增益效果如下图:

试验二简单系统的Simulink仿真 一、试验目的 建立实现信号平方运算系统的Simulink模型并进行简单的仿真分析 二、试验步骤 1、打开matlab,输入simulink,出现一个元件库,在元件库中选择正玄信号发生器,设置振幅为2。 2、在signal routing中选择mux ,在match operating中选择product,在sinks中选择示波器。

3、生成系统运算部分的子系统 用鼠标选择将要生成子系统的区域,选择subsystem ,得到运算部分的子系统如图所 示。将中间部分建立成子系统,并添加标签。 试验三 动态系统的Simulink 仿真 一、试验目的 ???≤>=25)(1025)(2)(t t u t t u t y ,其中)(t u 为系统输入,)(t y 为系统输出。为了实现改函数需设 计判决比较的系统。 二、实验步骤: 1、在matlab 中输入simulink ,新建文件 2、在sourses 中选择正玄信号,为了达到一个比较的功能,选择一个比较器,通过比较 大小来控制开关switch ,当时间t 大于25时,倍数变为2,当t 小于25时,y 变为之前信号 的十倍,为了达到这个目的如图建立系统。

水下激光成像发展现状及主要参数的理论计算

电子轰击式CCD 像管及其技术处理 傅德讠廉 (中国科学院北京天文台 100080) 在已有研究工作进展的基础上(参看《光学技术》,1996年9月增刊),对电子轰击式CCD 像管的实际结构和整管的技术处理问题,进行了实验研究。根据对电子光学系统及其各构成部分配合公差方面的计算分析结果,确定了各个电极的精确尺寸并据此进行它们的加工制造。采用内壁均匀涂敷了半导体层的陶瓷管,把各个电极相互绝缘地分隔组装起来,构成所需要的电子成像系统,并统一安装到一个薄壁的不锈钢圆管中。圆管上端具有可供同光电阴极组件完成热铟封的沟槽,其中充填有共晶点约为72℃的铟铋共熔合金;圆管的下端,则有可供安装CCD 芯片的接口。这样,就构成了一个结构紧凑、并能在必要时可以拆卸开来进行重新处理的小型化整管结构。为了在对整管进行制备光电阴极时,防止高温烘烤和防止碱金属蒸汽对CCD 芯片产生不利影响,必须采用一种具有超高真空环境的分隔、传递并能完成最终铟封处理的专用设备。研制这样的设备,会涉及许多相当复杂的工艺技术问题。用具有特殊结构的天文电子照相机,它是一个具有超高真空环境和相当完备传递操作功能以及相当大尺寸的金属容器,可供用来处理小型化整管的专用设备,是十分合适的。 (国家自然科学基金资助项目) 水下激光成像发展现状及主要参数的理论计算 胡正荣 刘雪明 谭志飞 郑 宇 (东南大学电子工程系 南京 210018) 介绍了同步扫描和距离选通两种水下激光成像发展现状。利用双流辐射理论,导出了信号光辐照度的表达式。从理论上计算了同步扫描系统的信号光和后向散射光传回到探测器端的辐照度与衰减长度的定量关系。减小视场角和增大光源到探测器的距离可增大成像距离。一般水质下成像距离理论值约12倍衰减长度。 网络医院的构建方案 王占昌 (大连理工大学力学系 116024) 随着计算机和高速网络技术的发展,医院可利用先进的电子医疗设备,结合计算机网上的媒体技术,对患者的各种检查图文资料(如X 光片、 CT 及各类检查结果数据等)进行网上专家会诊,及时得出治疗方案,亦称之为网络医院。我国网络医院刚刚起步,主要受经济、技术影响。因患者的病志记录档案没有统一标准,图片的有效性和功能完备性也欠缺,另有费用和安全性等方面原因。本文结合我国目前综合性医院和大型专科医院具体情况,制定构建出网络医院的方案,并可依实际情况作适当完善和改进。 1 92S 增刊2 信息获取、处理、分类及显示技术? 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved. https://www.360docs.net/doc/878430946.html,

光电雷达-距离选通技术

距离选通激光雷达技术 摘要:成像激光雷达无论在军用领域还是民用领域日益得到广泛的应用。其中,激光距离选通成像技术经过数十年的发展,在军事侦察、搜救、监视、水下探测等方面获得重要的应用。本文介绍了距离选通激光雷达的工作原理,对距离选通激光雷达设计中的关健技术进行分析,给出了几种具备代表性的元件及其指标。 关键词:激光雷达;同步控制;距离选通;主动成像 引言 1960 年世界上第一台激光器诞生以来,激光雷达便以其独特的优势成为雷达研究领域的热门项目,其中无扫描成像是激光雷达发展趋势之一[1]。 一般的成像激光雷达在对水中的目标进行成像探测时,或者陆地探测而大气中含有较多的雨、雾或烟等悬浮颗粒时,就会产生很强的前向和后向散射,又或者在海上、雪地或者白天等环境中探测时,会产生很强的背景光辐射,这些情况都会对成像质量造成严重影响。为了使激光雷达能在上述情况中也能够很好的工作,人们发明了距离选通技术,并且逐步成为人们研究的热点[2]。 距离选通激光雷达能很好的消除背景光及散射的影响,在上述复杂环境中获得目标的 2D强度像,并且经过进一步的数据处理还可以从多幅的 2D像中获得关于距离的 3D距离像[3]。距离选通激光成像激光雷达系统属于主动成像,它不仅可以克服被动成像的一些缺点,比如能够获得更高的成像分辨率,不受环境的背景光的影响等;而且同时它也可以弥补主动成像的一些不足,降低大气散射、湍流等对激光脉冲的前行波和回波的影响,使其在水底目标成像和矿产探测,远距离军事目标识别和跟踪方面都可以有很广泛应用[4]。 1 成像激光雷达 近年来人们对成像激光雷达的研究越来越关注,并且成像激光雷达有着取代传统微波雷达的趋势[5]。这是因为激光成像雷达有着微波雷达无法比拟的优

激光雷达测距测速原理

激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发 t θ为发r D 通过 定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发 的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测量。回波的延迟产生了相位的延迟,测 出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为c,往返的间隔时间为t,则有: 图2相位法测距原理图 假设f为调制频率,N为光波往返过程的整数周期,??为总的相位差。则间隔时间t还可以 因为L 不能测得 优点:测量距离远,一般大于1000m。系统体积小,抗干扰能力强。 缺点:精度较低,一般大于1m。 激光雷达相位法测距: 优点:测量精度高。

缺点:测量距离较近,一般为一个刻度L内的距离。(300-1000m)。受激光调制相位测试精度和相位调制频率的限制,系统造价成本高。相位法测距存在矛盾:测量距离大会导致精度不高,要想提高精度测量距离又会受限(刻尺L较短)。 3.激光雷达测速基本原理 激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距 它的 f 式中, d v< 反之0 f 移 d

激光雷达点云数据

激光雷达点云数据 LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称,另外也称Laser Radar或LADAR(Laser Detection and Ranging),由激光雷达进行扫描所获取的数据,即为激光雷达点云数据。 激光雷达是用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。激光雷达采用脉冲或连续波2种工作方式,探测方法按照探测的原理不同可以分为米散射、瑞利散射、拉曼散射、布里渊散射、荧光、多普勒等激光雷达。 激光雷达的特点: 与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有: (1)分辨率高 激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3km距离上相距0.3m的两个目标(这是微波雷达无论如何也办不到的),并可同时跟踪多个目标;距离分辨率可达0.lm;速度分辨率能达到10m/s以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显著的优点,其多数应用都是基于此。 (2)隐蔽性好、抗有源干扰能力强 激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。

三维激光成像

激光测距系统是复合光电系统的一个重要单元,将激光测距技术与摄影测量技术相结合,实现三维激光成像,对提高目标识别准确性和观测能力有重要意义。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 三维激光成像 根据有无照明光源,成像系统可以分为主动成像系统和被动成像系统两种。被动成像系统最大的特点就是本身不带光源,依赖于环境或目标的发光,容易受到环境光源的影响。主动成像系统采用一个人造光学辐射源(一般为激光器)和接收器,其接收器用于收集和探测目标景物直接或反射的部分光辐射,具有成像清晰、对比度高,不受坏境光源的影响等优点。 激光由于它有亮度高、单色性和方向性好三个方面的优点,是人们早就渴望得到的理想的测距光源,因此在它出现后不到一年的时间就被用于测距。激光测距系统是复合光电系统的一个重要单元,它虽然经过了多代的更新和变化,且型号繁多,诸如激光测月系统、火炮激光测距系统、测地激光测距系统、测距光雷达等系统,但无论怎么变,其基本原理和技术还是大同小异。 一.激光测距分类 随着激光测距的广泛应用和不断发展,测距系统的种类也愈来愈多样化。按照激光测距的原理区分,大体有如下三类。 1.脉冲测距法 在测距点向被测目标发射一束短而强的激光脉冲,光脉冲发射到目标上后其中一小部分激光反射到测距点被光功能接受器所接收。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t ,那么被测目标的距离R 为: 2ct R = (1) 式中,c 为光速。 当认为光速一定时(不考虑大气中光速的微小变化),测距精度 2t c R ?=? (2) 2.相位测距法 相位法是通过测量单色连续激光的调制波在待测距离上往返传播所发生的相位变化,间接测量时间t 2D 。来计算距离D )2/)(2/()2/(2f c t c D D πΦ== (3) 式中:c 为光速在空气中传播的速度,Ф为调制光信号经过被测距离D 而产生的相位移,f 为信号的调制频率。

激光雷达应用

光电传感技术与应用 课程作业 学院 专业 姓名 学号

课程论文题目激光雷达技术 评审意见 演示文稿张数14 评审意见

激光雷达 林无穷 江南大学理学院光电信息科学与工程系江苏无锡 214122 摘要:本文介绍了激光雷达技术的原理、发展与历程,还有它在当今时代的多方面应用。我们把工作在红外和可见光波段的,以激光为工作光束的雷达称为激光雷达,它由激光发射机、光学接收机、转台和信息处理系统等组成。它在地形检测,导航,测距,追踪以及军事方面有着显著作用。 关键词:激光,雷达,环境检测 引言 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。 激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。 原理 激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-

激光雷达测距测速原理.doc

1.激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: 4KPT ta1 t T a 2 D r2 r P r t2 R12 . . 4 R22 . 4 P r为回波信号功率, P t为激光雷达发射功率,K是发射光束的分布函数, T a1T a 2分 别是激光雷达发射系统到目标和目标到接收系统的大气透过率, t r 分别是发射 系统和接收系统的透过率, t 为发射激光的发散角,R1R2分别是发射系统到目标和目标到接收系统的距离,为目标的雷达截面,D r 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2.激光雷达测距基本原理 2.1脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激 光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为 L,激光脉冲往返的时间间隔是t ,光速为 c,那么测距公式为L=tc/2 。 时间间隔 t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器 和脉冲计数器来确定时间 t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N T。由此可得出

L=NC/2f。 图 1 脉冲激光测距原理图 2.2相位法 相位测距法也称光束调制遥测法,激光雷达相位法测距是利用发射的调制光 和被目标反射的接受光之间光强的相位差包含的距离信息来实现被测距离的测 量。回波的延迟产生了相位的延迟,测出相位差就得到了目标距离。 假设发射处与目标的距离为D,激光速度为 c,往返的间隔时间为t ,则有: 2D t c 图 2 相位法测距原理图 假设 f 为调制频率, N 为光波往返过程的整数周期,为总的相位差。则间隔时间 t 还可以表示为: t N 1 2 f 所以: D 1 ct c N 2 2 f 2 定义 c L 为测尺或刻度,N 为余尺2 f 2 则: D L N N

激光雷达与激光成像雷达

激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 人通过感觉器官感知,认识外部世界的一切。用耳朵听音乐、话音、机器的轰隆声、钟声、铃声等一切通过声音传递的信息;用手感觉温度、物体的硬软以及物质的存在;用眼睛观察外部世界的形状、颜色、运动状态、速度、位置、识别物体的种类等等。人的眼睛之所以可以看见外部世界,是因为太阳光谱中的可见光照射在物体上反射的结果。那么除了“可见光谱”之外还存在别的“不可见的光谱”吗?事实上,广义的光谱按频段的不同,有大家所熟悉的电磁波、远红外、近红外、可见光、紫外光谱,而可见光谱区中,红色的光波长最长,紫色的波长最短。而且人们已经发现不同的物质辐射不同的谱线,在特定的条件下还可以只辐射某一单一波长的谱线,当其人们发现不可见光谱区中的单一的光谱谱线具有可贵的特性的时候,就力图去产生、开发、利用这种单一光谱谱线,由此产生了激光及用于不同场合的激光系统。 视觉引发人们的形象思维,眼睛从外界事物所获取的信息量大,直接而快速,是其他感觉器官所不能代替的,这也就是古人所说的“眼见为实”的深切内涵。正是因为这个道理,人们不愿受限于“可见光”的可见,而想去探求自然光条件下所看不见的东西,如想在漆黑的夜晚,去观察外部世界,就开发出了“夜视仪”。被动“红外热成像仪”也不是依赖于可见光的反射特性去观察变幻莫测的外部世界的,而是依赖于物体本身的热辐射,无论白天或黑夜都可以用以观察人类世界的一切,而且已经是超视距的。目前最新的热成像仪,1ms内热敏成像。红外成像高速测温用来检测来复枪,其射出的弹头在弹道上飞行速度为840m/s,弹头距枪口0.914 4m处的热成像还能分辨出弹头上不同部位摩擦热的温差。 遥感仪则可以依据物体本身的辐射谱线,包括电磁波段与红外光区,远距离成像,把肉眼原本看不见的自然变化,转化为可见,以照片的形式或屏幕显示的图像,甚至动态图像的形式展现出来,这就是当今人们感兴趣的可视化技术。人们力图从各个领域做这方面的研究和开发应用。 通过眼睛人们能够确定方向——定位,作为控制手的动作的依据,当然这是受限于“视距”之内的,通过望远镜可以延伸视距;但是“定位”的精度达不到人们通用目的需要,所谓“差之毫厘,失之千里”。雷达满足了远距离定位和精度的要求,雷达源于英文Radio Detection And Ranging的缩写RADAR,于1935年问世。 当其“激光”这种波长处于红外光谱波段的“激光光源”被研究出来之后,人们自然想到利用微米波段(红外光谱波段)的光波作为信息的载体去探测、获取其他手段难于探测、观测到的目标的信息。激光雷达研制成功后,相继激光成像雷达应运而生。激光雷达的英文名字“LADAR”是Laser Detection And Ranging的缩写。激光雷达的研究是从目标探测和测距入手的,早期(1962~1976年)的研究系统被称为光雷达(Optical RADAR),并命名为LIDAR(Light Detection And Ranging)。可以说军事应用对测量系统精确度的要求日

相关文档
最新文档