生物大分子药物

生物大分子药物
生物大分子药物

生物大分子药物

近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。

[ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学

生物大分子药物是指一类利用现代生物技术方法生产的源自生物体并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。

药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体降解等特点,使其在生物体的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。

1 生物大分子药物的体吸收

生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。

1.1 给药方式的选择

由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗透性。但蛋白酶抑制剂容易造成体蛋白酶的缺乏,而吸收促进剂容易损坏生物膜造成局部炎症。此外,载药系统如纳米、微球、脂质体以及衍生化或化学修饰也是研究如何实现生物大分子药物口服用药的主要方法。环孢素是一种预防同种异体器官或组织移植发生排斥反应的药物,特殊的环肽结构使得其口服后具有较好的生物利用度。一项meta 分析数据表明,山地明(环孢素的普通制剂)是新山地明(环孢素微乳化

口服液)生物利用度的76%,其药时曲线下面积(AUC)显著低于新山地明,提示新型载药系统可以有效提高蛋白多肽药物的吸收。但总体上成功案例很少,还处于研发与探索阶段。

1.2 皮下给药的淋巴转运

1958 年Malek 等首次发现外源性大分子物质可以通过淋巴转运,之后抗体等的淋巴转运也开展了相关研究。研究发现,皮下注射给药时,大分子药物可以通过组织间液的对流运输进入淋巴循环,继而随淋巴管中淋巴液的单向流动运输至静脉系统进入血液循环。

皮下给药后药物的吸收过程会受到相对分子质量、分子载电荷量以及给药体积与给药部位等许多因素的影响。生理因素如年龄、体质量也会对同一药物的生物利用度产生影响,导致出现较大的差异。一项在绵羊体开展的实验显示,皮下注射给药后,不同相对分子质量的药物(5-氟-2'-脱氧尿苷为246.2,菊粉为5 200,细胞色素C 为12 300,IFN-α 为19 000)在绵羊淋巴液中的累积回收率与相对分子质量之间呈现正相关性。提示,相对分子质量小于1 000 的药物,其大部分被吸收后进入血液循环,此时淋巴转运在药物吸收过程中的作用暂可忽略不计。相对分子质量为19 000时,约60% 的药物被吸收进入淋巴系统。这也意味着淋巴转运在常见的蛋白多肽药物(相对分子质量为1 500 ~ 70 000)和核酸类药物(相对分子质量为6 000 ~18 000)皮下给药吸收过程中起重要作用。推测对于相对分子质量一般为150 000 的mAb,皮下给药时几乎都是经过淋巴系统摄取。

正常生理情况下,淋巴流量和流动速度均不大。人在禁食安静状态下,每分钟约产生1.0 ~ 1.5 mL 淋巴液。这使得皮下注射给药需要很长一段时间才能被吸收,如mAb 通常需6 ~ 8 d 达到峰浓度。故推测淋巴转运的贡献率会对药物的达峰时间产生影响,这也是生物大分子药物皮下注射给药后达峰时间存在差异性的原因。同时有研究指出,由于在皮下给药部位以及转运至淋巴系统的过程中存在降解,故生物大分子药物皮下注射给药后吸收越快,其生物利用度可能越高。

2 生物大分子药物的体分布和消除

2.1 蛋白和多肽药物

蛋白和多肽药物因相对分子质量大、亲水性强,导致其在血管外室分布较低,静脉注射给药后大多符合二房室模型特征。和小分子药物不同,蛋白和多肽药物存在受体介导的靶器官特异性摄取,会影响其在体的分布。蛋白和多肽药物在体不会经历传统小分子化合物的药物代反应,其主要是在蛋白水解酶的作用下发生水解反应被降解,产生的氨基酸进入源性的氨基酸库,被重新运用。

2.2 单克隆抗体药物

通过分子生物学手段可得到由单一B 细胞克隆产生的高度均一抗体,称为mAb。20 世纪90 年代末,自首个嵌合mAb 获批后,治疗性mAb 在自身免疫性疾病和肿瘤治疗方面获得了突飞猛进的发展。mAb药物的发展先后经历了鼠源mAb,嵌合mAb,人源化mAb 和完全人源化mAb 4 个阶段。目前已获批的mAb 药物均属于人免疫球蛋白IgG 家族,其与源性人免疫球蛋白IgG 有相似的结构和相近的相对分子质量(150 000)。

2.2.1 分布

mAb 极大的相对分子质量和亲水性使其体分布呈现2 个特征。一是mAb 在体分布多呈现二房室模型,中央室表观分布容积(<15.7 L)均比较低,mAb 药物主要分布于血浆,其次是间质液和淋巴液。虽然血浆和间质液之间存在对流运动,但正常组织中血浆蛋白和mAb 药物的净流动是从血管中流出并进

入间质液。一旦mAb 药物进入间质液,就可以与细胞膜上的靶标结合,通过胞吞进入细胞。同时,由于淋巴管的直径远大于血管上皮细胞间隙,不与间质中靶标结合的药物可通过淋巴系统再循环至静脉系统。二是给药后mAb 药物在不同组织的分布出现差异性。主要的原因有3 个方面:1)不同组织毛细血管的孔径和血液灌注存在差异性。如脑组织是药物最难分布的器官,mAb 药物在肾脏分布最多,其次是肝脏、脾脏,脑中分布最少。2)mAb 存在自身靶向性,不同组织靶点的表达水平会影响其在体的组织分布。3)mAb 药物相对分子质量的大小、携带的电荷量等对通过毛细血管时的孔径压力造成影响。

2.2.2 消除

mAb 药物在体的清除率(0.066 ~ 1.33 L· d-1)很低,半衰期为数小时或数天,差异较大。mAb 药物具体的消除机制尚不清楚,目前讨论的消除途径主要存在3种:1)传统的蛋白酶水解。mAb 药物因相对分子质量较大不会在肾脏直接滤过,可在蛋白酶的作用下降解为肽段,被机体重新利用。这种水解是非特异性的,在mAb 药物的消除中贡献率也比较低。2)溶酶体水解。mAb 药物可以与细胞表面膜结合型抗原结合或与细胞表面Fcγ 受体结合后吞至细胞,也可以非特异性吞饮的方式进入细胞,然后被细胞的溶酶体降解成肽段和氨基酸。3)免疫系统清除。机体除了存在膜结合型抗原外,还存在可溶性抗原。可溶性抗原可以与单抗结合形成免疫复合物,继而被免疫系统清除。同时mAb 药物可能在体引起免疫反应而产生抗药物抗体,mAb 药物与之结合后随即被免疫系统清除。

2.3 ADC药物

ADC 是一类抗体与小分子药物通过连接物相连接的新型药物。该类药物可以在保持mAb 高度靶向性的同时,引入小分子药物的强细胞毒性。然而实际研发过程中困难重重,目前仅有2 种ADC 药物获批用于临床,分别是用于人表皮生长因子受体2(HER2)阳性转移性乳腺癌的曲妥珠单抗(Kadcyla)和治疗晚期霍奇金淋巴瘤的本妥昔单抗(Adcetris),其抗体的药代动力学特征见表2 。

一个理想的ADC 药物应具有的特征有:mAb 药物应选择性高、亲和力强、人源化、免疫原性低、清除率较慢;连接物应在循环中保持稳定,可在肿瘤细胞部释放活性药物,具有合适的结合位点;小分子药物应具有较强的细胞毒性,在生理pH 条件下保持稳定,具有合适的药物代和转运行为,具有较好的DAR;抗原应具有肿瘤特异性,表达在细胞表面,可与抗体形成复合物并将其胞吞进入细胞。与mAb 药物相比,ADC药物具有相似的药动学特征:清除率低、半衰期长、组织分布有限。但也存在不同点:1)ADC 药物通常是不同偶联方式的化合物组成的相对分子质量不同的混合物,这给测定带来了难度。2)ADC 药物由抗体、连接物和小分子药物3 部分组成。这3 个部分在体的分布、消除等需要分别进行研究,也就需要建立准确测定这3 种不同的组分及可能代物的分析方法。3)ADC 药物在体常通过去偶联作用分别形成mAb 药物和小分子物质,二者分别进一步的水解或代;也可能直接降解或分解代为含片段的小分子药物,发生和传统小分子化合物相似的代和转运等体处置行为。由于mAb 药物不发生CYP450酶系介导的代以及转运体介导的转运,也就不存在和小分子药物发生药物相互作用的可能,而ADC 药物则有可能发生药物相互作用。4)对于ADC 药物而言,在DAR 小于4 时,共轭和未共轭抗体之间的组织分布无显着差异;然而当DAR 大于4 时,疏水性增加,共轭会加速血浆清除,并且在肝脏中有蓄积的趋势。5)理想状态下,连接物应在肿瘤细胞释放小分子化合物。但ADC 药物可以通过胞饮作用进入正常细胞,导致非靶细胞产生不需要的药物释放,可能导致毒性。

2.4 核酸药物

寡核苷酸是一类20 个左右碱基的短链核苷酸的总称(包括脱氧核糖核酸DNA 或核糖核酸RNA 的核苷酸)。寡核苷酸是生物医学和生命科学研究中调节基因表达的基本工具,现在已被开发为基因靶向治疗药物,用于治疗病毒感染、肿瘤和遗传病。寡核苷酸药物主要包括反义寡核苷酸、小干扰RNA(small interferingRNA,siRNA)、核酸适配体、核酸疫苗等。

2.4.1 分布

静脉注射给药后寡核苷酸快速分布到组织,游离的寡核苷酸主要是被肝脏和肾脏摄取,然后缓慢地消除(可能数周),在体通常呈现多房室模型特征,缓慢消除阶段的AUC 通常约占总AUC 的20% 。临床前研究数据显示,寡核苷酸的体过程常表现出非线性药动学的特征。由于静脉注射给药后寡核苷酸快速分布到组织,血浆暴露量远低于组织,使得血浆中的非线性特点不太明显,而个别组织中的非线性特征更为明显。例如经三氨基N-乙酰基半乳糖胺修饰的反义寡核苷酸(ISIS 691257)在猴体的药代动力学研究表明,皮下注射给药后,ISIS 691257 迅速吸收达峰后浓度快速衰减并进入缓慢的消除阶段(消除半衰期约4 周),在1 ~ 40 mg·kg-1 剂量围血浆和肝脏的处置过程呈现出非线性特征。

寡核苷酸如反义核苷酸和siRNA 在肝脏和肾脏分布浓度均较高,但在其他组织如心脏、胰岛、中枢神经系统的分布有限甚至无分布。有研究人员将小分

子甲状腺激素T3 和反义核苷酸结合,促进了T3 在肝脏和脂肪组织的摄取,这既保持了寡核苷酸积极的代作用,同时也最大限度地减少了对脑、心脏和肌肉的副作用。另一方面,寡核苷酸的组织分布具有异质性。在肝脏中,与肝细胞和非实质肝细胞相比,胆管上皮细胞中反义核苷酸的摄取量较低。寡核苷酸高剂量时,肝细胞中其总浓度与非实质细胞中的浓度相似,但低剂量时非实质细胞中的总浓度通常更高。在肾脏中,寡核苷酸主要分布到皮质,而肾小球和髓质小管的摄取量较低。

天然的寡核苷酸血浆蛋白结合率一般较低,主要经全身代或肾脏排泄。经硫代修饰的反义核苷酸与血浆蛋白广泛结合(一般血浆蛋白结合率高于85%),其中与白蛋白的结合占主要部分,其次是与α-巨球蛋白,与α1- 酸性糖蛋白的结合可忽略不计。一项关于硫代磷酸寡核苷酸(ISIS2302)血浆蛋白结合率的研究表明,ISIS2302 在不同种属小鼠、大鼠、猴、人体中表现出了极高的血浆蛋白结合率(97%),其中小鼠的血浆蛋白结合程度相对其他种属较低。

2.4.2 消除

寡核苷酸的体消除过程比较简单,主要由核酸外切酶和切酶水解成片段化的寡聚体和单核苷酸。虽然核酸酶在体无处不在,但在不同组织其表达可能有差别。如一个命名为HBV263 的双链siRNA 体外代研究显示,其在血清和肝微粒体中存在不同的代模式:在大鼠和人血清中,双链的反义链优先降解,而在大鼠和人肝微粒体中,双链的有义链稳定性较差。提示,血清和肝微粒体可能存在不同类型的核酸酶,且其底物特异性可能不同。

未经修饰的寡核苷酸半衰期很短,只有几秒或几分钟,但经修饰后随着核酸酶抗性的增加及血浆蛋白结合率的增加,其半衰期可增至数周或数月。组织中寡核苷酸的血药浓度是血浆中的上百倍甚至上千倍。故建议开展临床代研究时同时搜集血浆和尿液样品进行分析,血浆中的代产物多为母体以及从末端消除一个或几个核苷酸形成的代产物,尿液中的代产物多为较小的可以通过肾脏有效过滤的寡核苷酸片段。

2.4.3 其他

2.4.

3.1 共轭寡核苷酸

和ADC 药物相似,现已开发出共轭寡核苷酸药物以改善细胞摄取并增加寡核苷酸活性。共轭寡核苷酸药物由3 部分组成,即摄取增强部分、部分和寡核苷酸。增强剂一般是亲脂性天然源性化合物,例如胆固醇和脂肪酸,几乎无安全问题。Inclisiran 是一种经过修饰的新型siRNA 共轭结合物,用于降低低密度脂蛋白胆固醇(LDL-C)。一项Ⅰ期临床研究表明,单次或多次注射inclisiran 后,LDL-C 水平可显著降低6 个月。

2.4.

3.2 生物分析方法

传统的杂交技术不能实现原药和代产物的同时测定,因为代物也可与序列特异性分析探针杂交。液相色谱-串联质谱联用仪(LC-MS/MS)技术能够分离组分并提供每种化合物分子质量的数据。但LC-MS/MS 存在几个问题:一是寡聚核苷酸富含阴离子,易与蛋白质强烈结合,常规的样品处理方法提取回收率过低;二是基于寡核苷酸理化性质的特殊性,流动相一般比较复杂;三是寡核苷酸和代物的浓度通常在组织中比在血浆中高得多。由于分析灵敏度不足,消除阶段的血浆浓度-时间曲线可能不能表征寡核苷酸药物在体的真实过程。这些问题都需要在寡核苷酸药代动力学研究过程中引起注意。

3结语

近年来生物大分子药物得到迅猛发展,尤其是结构上的保守性使其在动物体的研究可以很好地为人体研究提供参考,从而大缩短了研发周期。但与传统

小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体降解等特点,使其在生物体的处置过程也不同于小分子药物:皮下给药后淋巴转运在生物大分子吸收过程中发挥了重要作用;体主要由蛋白酶和核酸酶介导发生降解,产生的多肽或核酸片段重新被吸收利用,极少部分经肾排泄;常出现非线性药代动力学特征等。同时不同类别的生物大分子药物作用机制各有差异而药代动力学行为也显示出了不同的特点,这对生物大分子药物人体药代动力学预测,生物大分子创新药物药代动力学研究和生物类似药物的药动学评价提出了更多的挑战。

生物大分子研发趋势

近期,美国FDA 颁布了“ 生物类似药行动计划”,以加速其研发和市场化。这个行动计划包括成立专门的机构(Office of Therapeutic BiologicsandBiosimilars),提供专门的审评模板以及为生物类似药开发机构提供详细的指导,例如如何判断相似性的统计学工具等。

该行动计划提出的背景是美国政府的医疗控费,其目的是加速生物类似药/ 可替换产品的开发以及限制原研厂商对生物类似药的阻碍。美国的生物类似药开发本来就落后于欧盟。

据FDA 的官员透露,美国获批上市的11 个生物类似药只有3 个真正得以销售,这11 个产品都销售的话,2017 年就可以节省45 亿美元医疗费用。和美国相比,欧盟自2006 年起,一共批准了37 个生物类似药,但是市场进入并没有预期快。2006 年批准的生长激素,到现在为止,也只是占据了不到30% 的市场,而2013 年获批的类克(Remicade),降价2/3,才在北欧四国获得推广。在中国,生物类似药指南在2015 年颁布,目前还没有生物类似药上市。

相比于小分子化药仿制药的适应证外延和可替换性而言,生物大分子药物由于其结构复杂性,生物类似药的开发对于开发者和监管机构都是相当大的困难和挑战。此外,大分子药物由于生产工艺和质控复杂、前期厂房投入大、临床费用高等原因,销售价格不会像化药仿制药那么低,在市场推广方面需要商业模式的创新。在市场推广时,难免会遭遇原研药和原研药改良的阻击,Herceptin 和Rituxan 的类似药很快会面临罗氏产品降价和新获批的皮下给药剂型竞争。

生物类似药开发不容易,改良创新生物药更难,原创生物药成功机会更是寥寥。国的制药公司和新兴的生物技术公司在立项之时,有必要进行综合的判断和评估。在生物类似药方面,前几年已经明显出现了几个热门单抗品种的扎堆开发现象。但是有一些蛋白类药物和后续的单抗品种只有很少的公司开发或者没有人开发。

生物类似药的开发也需要前瞻性,需要提前收集不同批次、不同产地的原研药进行结构功能的研究,对工艺流程和成本有充分的理解,也需要对市场进行调查和分析,甚至需要进行全球的布局。改良创新生物药,对于蛋白质药物而言,是指提高活性、半衰期和稳定性等的新一代药物。对于抗体类药物和CAR-T 等,其实是一个伪命题。这类药物,除了做临床的头对头研究,很难说是更好还是更坏。

再谈一下生物大分子新药。首先生物大分子涵盖了蛋白、抗体、疫苗、细胞治疗、核酸药物、基因治疗等等。由于单抗热和CAR-T 热,业界往往会误解生物药物就这么两类。这个误解导致药企扎堆研究针对程序性死亡蛋白-1(PD-1)及其配体(PD-L1)、CD47 等靶点的抗体,以及重复投入研究针对CD19 和B 细胞成熟抗原(BCMA)的CAR-T。

在验证的新靶点匮乏的情况下,大分子创新药可以从这几个方面考虑:

1)交叉学科的新技术开发,比如人工智能和材料科学;

2)扩大大分子药物的应用空间,比如打破血-脑脊液屏障;

3)蛋白质深度工程化,增加成药性;

4)蛋白质和基因治疗、基因编辑的结合;

5)新组合和多功能大分子药物。

如此种种,受限于个人经验,不一而足。新药开发的将来一定是技术不分新旧,分子不分大小,以解决满足医疗需求为主,以解决可及性为重,以全球竞争力为目标。

在我国,生物类似药的成功与否还取决于3 个关键数据:一是临床开发的成本,二是最终定价相比于原研药的折扣有多少,三是生产成本。当然由于生物药的复杂性,质量控制至关重要。此外,作者提出小企业着重研发改良型新药,而大中型企业在生物类似药方面更为专注。做出差异化、有创新、满足患者需求的专利新药,参与全球竞争,是研发型生物技术公司的出路;而生物类似药最终是生产规模、成本控制、品牌和销售模式的竞争,这一领域大型药企更有竞争力。

最后值得一提的是,国和印度的生物类似药公司通过和Hospira/Pfizer、Biogen 等公司合作,进入国际主流,这个经验值得借鉴;而在新药开发方面,日本药企的成功经验值得学习。

大分子药物的前景

大分子药物的前景 目前,世界上所开展的所有最尖端、最先进的重大疾病治疗方法,如艾滋病、肿瘤等均与生物大分子药物有关,欧、美、日等国家均认同生物大分子药物将是 21世纪药物研究开发中最有前景的领域之一。在日前举行的以“生物大分子药物 高效化的基础研究”为主题的第282次香山科学会议上,与会学者就如何通过多学科交叉合作,实现生物大分子药物的高效化等基础科学问题进行了研讨。 服务重大疾病防治 会议执行主席、天津大学化工学院长江学者讲座教授杨志民作了题为《生物大分子药物高效化的意义与研究展望》的评述报告。杨志民说,生物大分子药物包括多肽、蛋白质、抗体等,目前主要用于治疗肿瘤、艾滋病、心脑血管病等重大疾病。生物大分子药物的主要优点是,对反应物的选择性及作用具有其他药物无法比拟的高效性;大部分生物大分子药物,如酶类或基因药物等均具有可反复作用的药物活性;大部分生物大分子药物易于用生化方法大量生产;生物大分子药物一般均具有高水溶性,因此易于制备成各型液态药剂。 中国工程院院士、天津医科大学教授郝希山介绍说,近年来,随着对肿瘤研究的不断深入,肿瘤的生物治疗及靶向治疗正日渐成为一个活跃的研究领域,生物大分子药物作为最有发展前途的肿瘤治疗手段之一,已在肿瘤治疗中得到广泛应用。(潘锋) 我国高度重视对生物大分子药物的研究,在《国家中长期科学和技术发展规划纲要(2006,2020年)》中已将“蛋白质药物”列入第四项“重大科学研究计划”中;将“释药系统创制关键技术”列入重点领域中的第八项“人口与健康”的发展思路中,并将生物大分子药物防治的心脑血管病、肿瘤等疾病列入“重大非传染疾病的防治”中。

生物大分子药物讲课讲稿

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学 生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、仅供学习与交流,如有侵权请联系网站删除谢谢2

易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择 由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗 仅供学习与交流,如有侵权请联系网站删除谢谢3

最新药物分析与检验试卷

药检 一、名词解释 1.药品 指用于预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应证、用法和用量的物质,是一种关系人民生命健康的特殊商品。包括药材、中药饮片、中成药、化学原料药、抗生素、生化药品及其制剂、放射性药品、血清制品和诊断药品等。 2.药品质量检测 即药物分析,主要是运用化学、物理化学或生物化学的方法和技术研究化学结构已经明确的合成药物或天然药物及其制剂的质量控制方法,同时也研究中药制剂和生化药物及其制剂的质量控制方法。 3.生物药物(4分) 生物药物是指运用生物学、医学、生物化学等研究成果,从生物体、生物组织、细胞、体液等,综合利用物理学、化学、生物化学、生物技术、药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。广义的生物药物包括:(1)从动植物和微生物中直接制取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4.生物制品 是以微生物、细胞、动物或人源组织和体液等为原料,应用传统技术或现代生物技术制成,用于人类疾病的预防、治疗和诊断。人用生物制品包括:细菌类疫苗(含类毒素)、病毒类疫苗、抗毒素及抗血清、血液制品、细胞因子、生长因子、酶、体内及体外诊断制品,以及其他生物活性制剂,如毒素、抗原、变态反应原、单克隆抗体、抗原抗体复合物、免疫调节剂及微生态制剂等。 5.国家生物标准品 系指用国际生物标准品标定的,或由我国自行研制的(尚无国际生物标准品者)用于定量测定某一制品效价或毒性的标准物质,其生物学活性以国际单位(IU)或以单位(U)表示。

6.国家生物参考品 系指用国际生物参考品标定的,或由我国自行研制的(尚无国际生物参考品者)用于微生物(或其产物)的定性鉴定或疾病诊断的生物试剂、生物材料或特异性抗血清;或指用于定量检测某些制品的生物效价参考物质,如用于麻疹活疫苗滴度或类毒素絮状单位测定的参考品,其效价以特定活性单位表示,不以国际单位(IU)表示。 7.生物检定法 生物检定属生物法分析,是利用药物对生物体(整体动物、离体组织、微生物等)的作用以测定其效价或生物活性的一种方法。它以药物的药理作为基础,统计学为工具,)选用特定的实验设计,在一定条件下比较供试品和相当的标准品所产生的特定反应,通过等反应剂量间比例的计算,从而测得供试品中活性成分的效价。 8.动物保护力试验 是将疫苗或类毒素免疫动物后,再用同种的活菌、活毒或毒素攻击,从而判定制品的保护水平。 9.恒重 除另有规定外,系指供试品连续两次干燥或炽灼后的重量差异在0.3mg以下的重量;干燥至恒重的第二次及以后各次称重均在规定条件下继续干燥1小时后进行;炽灼至恒重的第二次称重应在继续炽灼30分钟后进行。 10.空白试验 系指在不加供试品或以等量溶剂替代供试液的情况下,按同法操作所得的结果;含量测定中的“并将滴定的结果用空白试验校正”,系指按供试品所耗滴定液的量(ml)与空白试验中所耗滴定液量(ml)之差进行计算。 11. 药品质量 药品的物理、化学、生物药剂学、安全性、有效性、稳定性、均一性等指标符合规定标准的程度。 12.药品质量标准

生物大分子相互作用分析仪的 可应用领域

BioNavis生物大分子相互作用分析仪MP-SPR最新应用领域 传感器(MP-SPR) 生物传感器、气体传感器、食品安全、环境监测、免疫响应、实验开发 ◆应用BioNavis生物大分子相互作用分析仪MP-SPR技术测量气体导致的表面变化 BioNavis生物大分子相互作用分析仪-MP-SPR仪器用于表征由不同气体导致的聚合物薄膜变化。不同的湿度显示了与聚合物相互作用的浓度依赖性,并且乙醇蒸气看起来渗入了聚合物层。 ◆应用BioNavis生物大分子相互作用分析仪MP-SPR技术测定生物化功能层的结合能力: 临床诊断正在从中心实验室移近病人,进入医生的办公室,药房,千家万户。这一类临床检测设备(POC)的要求与中心实验室的要求大大地不同。POC设备应该为临床相关性分析物的快速分析提供低成本和易操作的工具。 许多纸制电子器件为制作便宜的、可丢弃的和可回收的应用电子平台打开了机会,可用于生物传感器或者医学诊断领域。 C-活性蛋白(CRP)是一种身体中常见的炎症标记物。监测CRP的水平可以用于跟踪疾病的过程或者治疗效果。

当发展一类新的生物传感器时,通常最主要的是评估此生物传感技术相对于已经建立的方法的性能。生物大分子相互作用分析仪-表面等离子共振技术SPR已经用于生物传感器领域的研究超过了20年的时间,并且是一个优秀的对照办法。 选择增强型SPR ◆选择增强型SPR-一种新的标记方法用于增强生物传感器性能 增强小分子模型系统的灵敏度和特异性。选择增强型SPR(SAMP-SPR)的使用大大增强了应用生物大分子相互作用分析仪SPR技术对小分子量复合物的分析。 改进包括: ·灵敏度增强:在信噪比上一般增强100倍或更多 ·特异性增强:只检测染料标签,将非特异性干扰降到最低 ◆选择增强型SPR(SAMP-SPR)-一种新颖的标记方法用于增强光学生物传感器性能 小分子模型系统的竞争性分析。使用生物大分子相互作用分析仪SAMP-SPR采用竞争分析的方式分析小分子,在没有大分子标记的情况下将SPR的灵敏度提升到以往不可企及的水平。竞争性分析小的染料标签有助于: ·测定平衡常数和亲和力排名 ·进行竞争动态分析

应用红外光谱研究生物大分子的结构

应用红外光谱研究生物大分子的结构 谢孟峡刘媛 北京师范大学分析测试中心,北京100875,xiemx@https://www.360docs.net/doc/8811160294.html, 一、蛋白质二级结构的测定 蛋白质的空间结构主要有四级,其结构层次示意图见图1。稳定蛋白质三维结构的主要作用力有五种,分别是盐键、氢键、疏水作用、范德华力和二硫键。这些都是共价键相互作用,其中对于二级结构,最重要的作用力是蛋白质分子中的氢键。 图1 蛋白质结构层次示意图 其中:Q为四级结构,T/α为由结构域组成的三级结构或亚基,D/T为结构域或三级结构, sS为超二级结构,S为二级结构,A为组成一级结构的氨基酸 在所有已测定的蛋白质中,都有广泛的二级结构存在。蛋白质的二级结构形式主要包括α-螺旋、β-折叠、β-转角和无规卷曲四种。这些二级结构中将螺旋看成蛋白质复杂构像的基础,

β-折叠是蛋白质中又一种普遍存在的规则构像单元。无论是α-螺旋还是β-折叠都存在着许多氢键,致使规则的二级结构都具有相当的刚性,如果一段肽链中没有氢键或其他相互作用,那么各个残基之间就有更大的自由度,转角就是典型的介于此两种情况之间的一种二级结构,是一种部分规则的构像(见图2)。此外还有一些肽段相对于前面的三种二级结构是无规则,它们有更大的任意性,可是这些肽段的构像又不是完全任意的,因为每种蛋白质肽链中存在的这一类型空间构像几乎是相同的,所以蛋白质中无规卷曲也是具有其特定构像的。 α-螺旋 平行和反平行β-折叠

β-转角 图2、蛋白质典型二级结构示意图 蛋白质二级结构特征与氢键的形成方式紧密相关,无论α-螺旋、β-折叠、β-转角或其它构象,都有其特定的氢键结构,而这种氢键结构的差异能够在对于氢键敏感的红外光谱中得到反映,主要表现为谱带峰位及半峰宽的变化。这使我们有可能利用峰位不同的谱带来识别不同的二级结构及其组成情况。 图3 人血清白蛋白(HSA)在重水中的红外吸收谱

生物药物分析知识点总结资料

生物药物分析知识点 总结

题库一 1、什么是药物? 药物是指用于预防、治疗、诊断人的疾病,有目的地调节人的生理功能并规定有适应证和用法、用量的物质。 2、药物的学科包括哪些? 药物分析(pharmacenticalanalysis)、药理学(pharmacology)、药剂学(pharmaceutics)、药物化学(pharmacentical chemistry) 3、什么是生物药物? 生物药物是利用生物体,生物组织或组成生物体的各种成分,综合应用多门学科的原理和方法,特别是采用现代生物技术,进行加工、制造而形成的一大类用于预防、治疗和诊断的药物。广义的生物药物包括:(1)从动植物和微生物中直接提取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4、生物药物的性质(Properties of biological) (1)结构相近;(2)药理有效;(3)医疗效果好;(4)浓度低,杂质高;(5)大分子稳定;(6)有一定的敏感性(对热、重金属、酸碱和ph变化等敏感) 5、药典的定义?药典的简称、版本、三部和内容? (1)定义:记载着各种药品标准和规格的国家法典,是国家管理药品生产与质量的依据,一般由一个国家的卫生行政部门主持编写、实施颁布。 (2)简称:Ch.P (3)版本:1953、1963、1977、1985、1990、1995、2000、2005、2010 (4)三部:中药、化学药、生物制品。 (5)内容:凡例,正文,附录,索引。 6、什么是ADME?各代表什么单词? ADME:药代动力学;A:吸收(absorption);D:分布(distribution);M:代谢(metabolism);E:排泄(excretion) 题库二 1、标准物质的定义 标准物质是一种或多种确定了高稳定度的物理、化学和计量学特性,并经正式批准,可作为标准使用,用来校准测量器具、评价分析方法或给材料赋值的物质或材料。包括化学成分分析标准物质、物理性质与物理化学特性测量标准物质,工程技术特性测量标准物质。 2、精密度控制图及准确度控制图的上下警告限及 上下控制限是怎样定义的? (1)精密控制图,即均值控制图。以测定结果的平均值X为控制图的中心线,并计算出测量值的标准偏差S,以X ±2S作为上下警告限,用虚线表示;X±3S作为上下控制限绘成。(上警告限:UWL,下警告限:LWL,上控制限:UCL,下控制限:LCL) (2)准确控制图,也称回收率控制图,向不同浓度的样品中加入不同的已知量的标准物,积累测得的回收率数据,计算百

分子生物学分析

2.6分子生物学分析 目前较常采用的微生物学分析方法有两种,一种是使用传统的微生物培养技术(culture)将微生物富集、分离,然后通过一般的生物化学性状或表现型来分析的间接途径。然而使用传统的微生物培养技术存在许多困难,尤其是环境中大多数微生物生长缓慢,例如本论文研究中针对的anammox菌的培养富集时间均在2年以上,同时对培养条件要求极为苛刻,客观上阻碍了采用这种方法对其的研究。第二种途径依靠聚合酶链式反应(Polymerase Chain Reaction,PCR)技术及应用进化和功能基因探针直接从环境样品中检测和分析目标微生物,不需富集培养。分子生物技术有简洁、快速、精确等特点,广泛应用于微生物生态学研究中。尤其是目标微生物主要功能基因的DNA序列数据库和PCR技术结合在一起,使许多分子生态学手段可以直接应用于环境样品的研究中,,推动了环境中微生物生态学研究。本论文研究中采用了第二种途径中的定量PCR技术手段。下面将根据实验中的具体操作进行叙述。 2.6.1DAN提取 本文研究中主要采用的是试剂盒提取方法。DAN提取盒使用美国MP公司的土壤DNA提取试剂盒(FastDNA SPIN Kit for Soil,MP Biomedicals, Santa Ana, USA)。提取方法依据说明书进行微小变动,即向污泥中先加入Sodium Phosphate Buffer(磷酸钠缓冲液),再将其移至Lysing Matrix E管中,具体操作方法如下:(1)向 1.5ml取回污泥离心(10000rpm×10分钟)的湿污泥加入978 μl Sodium Phosphate Buffer(磷酸钠缓冲液),然后将其移到Lysing Matrix E管中(尽可能将其全部加入),然后加入122 μl MT Buffer(MT缓冲液)。 注:因为FastPrep?仪器的剧烈运动,在Lysing Matrix E管内会形成巨大的压力,样品和基质的总体积不能超过管体积的7/8;留一些空间也会提高混匀效果。 (2)在FastPrep?中处理上述离心管,速度6.0,40秒。 (3)Lysing Matrix E管离心14000g×15分钟。 (4)将上清液转移到一个新的2ml离心管(自备)中,加入250μl PPS,并用手上下颠倒10次进行混合。 (5)离心14000g×10分钟,至形成白色状沉淀物,将上清液转移到一个新的10ml离心管(自备),并加入1ml Binding Matrix Suspension(在用之前重悬Binding Matrix Suspension,一定要摇匀到瓶底看不见沉淀为止,加5个摇一次以

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody ,mAb )和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug ConjUgate, ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等, 与传统小分子药物(相对分子质量为200 ~ 700)相比, 其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗透性。但蛋白酶抑制剂容易造成体内蛋白酶的缺乏,而吸收促进剂容易损坏生物膜造成局部炎症。此外,载药系统如纳米、微球、脂质体以及衍生化或化学修饰也是研究如何实现生物大分子药物口服用药的主要方法。环孢素是一种预防同种异体器官或组织移植发生排斥反应的药物,特殊的环肽结构使得其口服后具有较好的生物利用度。一项meta 分析数据表明,山地明(环孢素的普通制剂)是新山地明(环孢素微乳

生物药物分析知识点总结

题库一 1、什么是药物? 药物是指用于预防、治疗、诊断人的疾病,有目的地调节人的生理功能并规定有适应证和用法、用量的物质。 2、药物的学科包括哪些? 药物分析(pharmacenticalanalysis)、药理学(pharmacology)、药剂学(pharmaceutics)、药物化学(pharmacentical chemistry) 3、什么是生物药物? 生物药物是利用生物体,生物组织或组成生物体的各种成分,综合应用多门学科的原理和方法,特别是采用现代生物技术,进行加工、制造而形成的一大类用于预防、治疗和诊断的药物。广义的生物药物包括:(1)从动植物和微生物中直接提取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4、生物药物的性质(Properties of biological) (1)结构相近;(2)药理有效;(3)医疗效果好;(4)浓度低,杂质高;(5)大分子稳定;(6)有一定的敏感性(对热、重金属、酸碱和ph变化等敏感) 5、药典的定义?药典的简称、版本、三部和内容? (1)定义:记载着各种药品标准和规格的国家法典,是国家管理药品生产与质量的依据,一般由一个国家的卫生行政部门主持编写、实施颁布。 (2)简称:Ch.P (3)版本:1953、1963、1977、1985、1990、1995、2000、2005、2010 (4)三部:中药、化学药、生物制品。 (5)内容:凡例,正文,附录,索引。 6、什么是ADME?各代表什么单词? ADME:药代动力学;A:吸收(absorption);D:分布(distribution);M:代谢(metabolism);E:排泄(excretion) 题库二 1、标准物质的定义 标准物质是一种或多种确定了高稳定度的物理、化学和计量学特性,并经正式批准,可作为标准使用,用来校准测量器具、评价分析方法或给材料赋值的物质或材料。包括化学成分分析标准物质、物理性质与物理化学特性测量标准物质,工程技术特性测量标准物质。 2、精密度控制图及准确度控制图的上下警告限及 上下控制限是怎样定义的? (1)精密控制图,即均值控制图。以测定结果的平均值X为控制图的中心线,并计算出测量值的标准偏差S,以X ±2S作为上下警告限,用虚线表示;X±3S作为上下控制限绘成。(上警告限:UWL,下警告限:LWL,上控制限:UCL,下控制限:LCL) (2)准确控制图,也称回收率控制图,向不同浓度的样品中加入不同的已知量的标准物,积累测得的回收率数据,计算百分平均回收率品p及其标准偏差sp,以p±2sp为上下警告限,p±3sp为上下控制限。 3、计量、认证、标准化及质量管理的英文 计量:measurement认证:accreditation 标准化:standardization 质量管理:Quality Management QM 4、药物分析论文的发表包括那几个项目? 题目、作者姓名和所在单位、摘要、关键词、引言或前言、材料与方法、结果、讨论、小结或结论、参考文献 5、分析方法验证的内容包括哪十项?

2020年(生物科技行业)生物大分子的结构与功能

(生物科技行业)生物大分子的结构与功能

第壹篇生物大分子的结构和功能 第壹章氨基酸和蛋白质 壹、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时能够只记第壹个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、俩性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能和酸或碱类物质结合成盐,故它是壹种俩性电解质。在某壹PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数和蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基和茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小和氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 俩分子氨基酸可借壹分子所含的氨基和另壹分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有仍原性,可作为体内重要的仍原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的壹级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质仍包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

生物大分子样品制备总结

生物样品制备 SHANG YING 蛋白质、酶和核酸这三大类物质都是生物大分子,它们都具有十分重要的生理功能。酶是生物催化剂,核酸是遗传信息的携带者,蛋白质是生命现象的基础。因此对生物大分子的结构与功能的研究,具有十分重要的理论和实践意义。而这研究的首要条件是制备高纯度的生物大分子,否则对其结构与功能的研究就无从谈起。 1.制备方法的分类: 依理化性质,分离、纯化生物大分子的方法可分四个类型: (1)按分子大小和形态:采用高速离心、过滤、分子筛、透析等方法。 (2)按溶解度:采用盐析、溶剂抽提、分配层析、逆流分配、结晶等方法。 (3)按电荷差异:采用电泳、电渗析、等电点沉淀、离子交换层析、吸附层析等方法。 (4)按生物功能专一性:采用亲和层析法。 2.制备的总体思路: 一般可分为六个阶段: (1)材料选择与预处理:动物、植物和微生物都是制备生物大分子的材料,选什么材料主要依靠实验的目的而定,选材料时应注意以下几个问题: ①使用的目的:从科学实验的特殊需要出发,选材时需求能符合实验预定目标即可。 ②材料的生理状态差异:选材时要注意植物的季节性,微生物的生长期和动物的生理状态。 如:微生物生长的对数期,酶与核酸的含量较高。 材料选定后,通常要进行预处理,如动物组织要剔除结缔组织,脂肪组织等非活性部位,植物种子先行去壳、除脂、微生物需将菌体和发酵液分离开,暂时不用材料尚需冰冻保存。 (2)细胞的破碎及细胞器的分离 ①细胞的破碎:除了提取液和细胞外某些多肽激素、蛋白质和酶不需破碎细胞膜,对于细胞内和多细咆生物组织中各种生物大分子的分离提纯都需要事先将细胞和组织破碎,使生物大分子充分释放到溶液中,不同生物体,或同一生物体的不同组织,其细胞破碎难易不一致,因此使用方法也不完全相同,通常两种方法共同使用。 A.高速组织捣碎机玻璃匀浆器研磨机械切力的作用 物理方法:反复冻融法冷热交替法超声波处理法加压破碎法 B.化学及生物化学法自溶法溶菌酶处理法表面活性剂处理法改变细胞膜透性法但是,不管采用哪种方法,都需要在一定稀盐溶液或缓冲溶液中进行,且需加某些保护剂,以防止生物大分子的变性及降解。 ②细胞器的分离:制备某种生物大分子时,往往需要采用细胞中某一部分为材料;或者为了纯化某一特定细胞器上的生物大分子,通常破碎细胞后,先分离各组分,以防干扰,这对制备—些高

生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究 生物大分子药物(包括多肽、蛋白质、抗体、聚糖与核酸等)多用于治疗肿瘤、艾滋病、心脑血管病、肝炎等重大疾病,被认是为21世纪药物研究开发中最有前景的领域之一。欲使中国跻身于国际医药开发大国之列,从事生物大分子药物高效化的基础研究己明显成为在竞争中必须抢攻的战略制高点。 日前在北京香山饭店召开了以“生物大分子药物高效化的基础研究”为主题的香山科学会议第282次学术讨论会。天津大学王静康教授、中国医学科学院医药生物技术研究所甄永苏研究员、美国密歇根大学、天津大学杨志民教授以及四川大学张志荣教授担任本次会议执行主席,来自全国近30个单位的40余位专家学者参会。会议中心议题为生物大分子药物在重大疾病方面的应用前景与展望,生物大分子药物高效传送系统,生物大分子药物形态学及其稳定性基础研究等。 杨志民教授作了“生物大分子药物高效化的意义与研究展望”的主题评述报告。他指出,生物大分子药物已被国际公认为21世纪药物研究开发中最有前景的领域之一,在重大疾病的治疗中已经取得重要的进展。但是,目前在生物大分子药物的施用方面仍存在亟待解决的难题与障碍:如难以穿透细胞膜、强免疫原性、难以有效地穿透实体瘤、形态学复杂(存在多晶型、多构象和多尺度问题)、分离纯化困难、稳定性低等问题。因此破解现存问题,实现“生物大分子药物高效化”是当前国际科技界竞相研究的前沿,在从事生物大分子高效化的过程中,除了致力于传送系统的研究、设计与构建外,药物本身的分子结构导致的特殊性质也不容忽视,如目前在使用的依靠高分子聚合物载体(像PLGA,PLA等)来传送生物大分子药物(如蛋白质疫苗、激素等)的系统中,因为其中所包含的药物形成聚合体而丧失药物活性或是无法从载体中完全释放出来的例子层出不穷。另外有关生物大分子药物在纯化与分离过程中因界面/表面与溶剂或分离物质相互作用而引起的结构和活性的缺损以及免疫原性增强方面的报告也屡见不鲜。因此在生物大分子药物高效化研究的过程中,特别是蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化以及在分离纯化过程中的高效复性也均是需要重点研究的科学问题。 克服存在的问题,实现生物大分子药物高效化是当前研究的发展趋向。而设计与构建高效化的生物大分子药物传送系统无疑是解决问题的关键所在。 生物大分子药物在重大疾病方面的应用前景与展望 生物大分子药物目前主要用于治疗癌症、艾滋病、冠心病、糖尿病和一罕见的遗传疾病等,天津医科大学郝希山教授在“恶性肿瘤流行趋势分析及生物大分子药物的应用”的报告中,指出临床治疗癌症的方法主要是手术切除、放疗和化疗,而近十年来,肿瘤的生物治疗及靶向治疗已经成为目前最有前景和最活跃的领域。生物大分子药物作为其中最有发展前途的生物治疗和靶向治疗的手段之一,已经在肿瘤治疗中得到了广泛认可。他强调:生物大分子药物因为其反应性明确及作用的高效率,在肿瘤治疗领域具有较强的优势,显示出强大的应用前景。寻找新的治疗靶点,对生物大分子药物的改造与修饰,以及高效化药物传送系统的创建是亟待解决的问题。 天津药物研究院刘昌孝研究员在“生物大分子药物的生物医学评价”的报告中,强调

生物大分子仪器分析方法

仪器分析法的特点: (1)、仪器分析法一般都有较强的检测能力。 方法的绝对检出限可达: 微克数量级(10_6g) 纳克数量级(10_9g) 皮克数量级(10_12g) 飞克数量级(10_15g) 方法的相对检出限可达: 微克数量级每毫升(μg?ml-1) 纳克每毫升(ng?ml-1 ) 皮克每毫升(pg?ml-1 ) 适于痕量组分(<0.1%)的测定 化学分析法只适于常量组分(>1%)及微量组分(0.01% ~ 1%)的分析 2)、仪器分析的取样量一般较少。 固体:从几mg ~几μg 液体:从几μl ~几nl 可用于微量分析(0.1~10mg 或0.01~1ml )、超微量分析(<0.1mg 或<0.01ml) 化学分析方法取样量较大,可用于常量分析(>0.1g 或10ml)和半微量分析(0.01g~0.1g 或1~10ml) (3)、仪器分析法具有很高的分析效率。 如:流动注射AAS 120个样品/h,光电直读光谱仪20个元素/min 化学分析法分析效率较低一般为数min ~数h,只能分析1~2个样品。 4)、仪器分析具有更广泛的用途,不但可用于成分分析,而且也可用于价态分析、状态分析、结构分析、无损分析、表面分析 化学分析只能用于离线的成分分析。 (5)、仪器分析法的准确度一般不如化学分析法。 化学分析法的相对误差<0.2%; 仪器分析法的相对误差一般为1%~5%,甚至达到10%。 (6)、仪器分析的仪器一般比较复杂;而化学分析所用设备比较简单。

仪器分析的主要性能指标: 精密度 准确度 灵敏度 检出限 标准曲线及其线性范围 定量校准 精密度:是指在规定的条件下同一样品平行分析结果相互之间的接近程度。精密度一般用标准差和相对标准差(CV)表示。 精密度有不同的表现方式,即重现性、重复性、中间精密度。 重现性:是指在不同实验室,不同检测人员测定结果的精密度。中间精密度:是指在同一实验室中,不同时间由不同检测人员在不同检测设备上测定结果的精密度。重复性:是指在相同条件下,由一个分析人员重复测定所得结果计算出的精密度。 准确度:是指用该方法平行测定所得的均数与样品真实值或参考值的吻合程度,一般用百分回收率表示。准确度是分析过程中系统误差和随机误差的综合反映,它决定着分析结果的可靠程度,方法有较好的精密度且消除了系统误差后,才有好的准确度。 灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度,用S表示。 选择性:表示共存组分对待测组分分析的影响程度。共存组分影响愈小,方法对分析组分的选择性愈高。 检出限:某一方法在给定的条件下能够检出被测物质的最小质量或最小浓度,称为这种方法对该物质的检出限。以浓度表示的叫相对检出限,以质量表示的叫绝对检出限。 方法的灵敏度越高,精密度越好,检出限就越低。检出限是方法的灵敏度和精密度的综合指标,它是评价仪器性能及分析方法的主要技术指标。 线性范围:是指在能够达到规定的精密度、准确度和线性的条件下,测试方法适用的最高到最低限待测物质浓度或量的区间。

生物药物分析方法研究与进展

生物药物分析方法研究与进展 生物药物是指运用物理学、化学、生物化学、生物技术和药学等学科的原理和方法从生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品,包括生物技术药物和原生物制药。随着基因工程技术的迅速发展,基于重组DNA技术、细胞和发酵技术基础上的生物技术药物制造业已经取得了巨大进步,并正在成为当今药物领域发展的前沿1。 以美、日、欧为代表的生物技术领先国家在生物药物生产与销售上取得较大的发展2。以美国为例,生物技术药物1999-2008年10年间平均年增长率8.3%,其中2006、2007年分别净利91亿和36亿美元,2008年收入达880.5亿美元,比上期增长11.5%,2008年生物技术药物占全部医药收入的20.6%。我国生物制药也与世界生物技术同步发展,近10年来生物制药生产与销售每年平均增长达29.7%。 基因工程技术目前是实现生物药物制备的主要途径,它通过对核酸分子的插入、拼接与重组而使遗传物质重新组合,采用病毒、细菌、质粒或其它载体将目的基因转移到新的宿主细胞系统,并实现目的基因在新的宿主细胞系统内的复制和表达。采用基因工程技术生产的生物药物包括有重组蛋白质类药物、多肽类、单克隆抗体、疫苗和治疗基因等,除疫苗和治疗基因外,其余生物药物均属于生物大分子药物,也是目前分析化学研究的主要领域之一,因此本章主要介绍蛋白质类药物、多肽类药物及单克隆抗体类药物等生物大分子相关的分析方法及其发展前景。 与化学药物相比,蛋白质多肽类等药物具有分子量大、结构复杂、稳定性差(如蛋白质容易发生水解、氧化、沉淀、变性等)等特点,使得这类生物药物分子的分析面临着诸多挑战。分析方法的发展可以为这类药物的分析解决三个方面的问题。一是蛋白质及多肽类药物的药代动力学的研究必须有相应的分析方法。由于这类药物在体内存在大量结构相似的内源性物质,给体内药物分析的灵敏度、特异性与准确性带来了很大挑战;二是在体外药物分析方面,建立标准化的方法与设立可靠的标准品是实现药物质量控制的关键;三是 1

生物药物分析思考题

思考题 *生物药物的特点? 答:1都为生物大分子,2.组成,结构复杂,具有严格的空间构象,以维持其生理功能 3 近与人体的正常生理物质4 安全毒性小5 更高的生化机制合理性,和特定的治疗有效性 特点:1相对分子质量需测定性2 生物活性检查3 安全性检查 4 效价测定 5 生化发结构测定 *生物制品的质量检定包括哪些方面? 答:1理化测定 2.安全检定3效力检定 理化检定:外观,真空度和溶解时间,蛋白质,防腐剂,纯度,其他 安全检定:一般安全性检查杀菌,灭活,脱毒外源性污染过敏性检查效力检定:动物保护力活疫苗抗毒素和类毒素血清学实验 *生物药物常用的定量方法有哪些? 答: 1 酶法 2 电泳法 3 理化测定 4 生物检定法 *什么是电泳?如何对其分类,分别有哪些? 答:电泳是指带电粒子在电场力的作用下与自身所带相反的电荷方向移动 分类:按支持物可分为:纸电泳,醋酸纤维素薄膜电泳,淀粉凝胶电泳琼脂糖凝胶电泳,聚丙烯酰胺凝胶电泳 按凝胶形状可分为:水平平板电泳,圆盘柱状电泳,垂直平板电泳 *影响电泳迁移率的因素包括? 答:1,带电粒子的性质,电子带静电荷越多,越接近球形,电泳速度快 2,电场强度,越强速度越快 3 溶液的ph值,对于蛋白质来说,当ph接近等电点,速度越快,4离子强度,离子强度越小,速度越快5电渗作用,阻碍 *血清蛋白常用什么电泳技术分离?核酸常用什么电泳技术分离? 答:醋酸纤维素薄膜电泳和琼脂糖电泳 *为什么聚丙烯酰胺凝胶电泳是应用最广泛的凝胶电泳技术? 答:1 page解离基因量很少,电渗流少,吸附量低,容易制备,2 机械性较好,孔隙可以调节凝胶比重实现可调,具有可拉性分析筛效应3,一定范围对热稳定,无色透明,容易观察,4Acr较纯,可精制,污染小 5 page在280nm 没有吸收利于pro的检测。 *SDS-PAGE电泳用于测定?其中SDS的作用是什么? 答:sds主要是用来测定蛋白质的分子量,其中sds作用有两个:1,消除不同蛋白表面表面电荷效应,2引起蛋白构象改变,消除蛋白质的结构效应 *核酸在琼脂糖凝胶中的电泳迁移率取决于哪三个因素? 答:凝胶浓度,核酸的大小,核酸的形状 *DNA分子在琼脂糖凝胶中泳动时,有什么效应与什么效应? 答:分子筛效应和电荷效应 *聚丙烯酰胺凝胶电泳包括连续系统和不连续电泳,其定义和区别分别是什么? 答: 1.连续系统:缓冲液的离子成分、PH、凝胶浓度、电位梯度都相同,带电颗粒电泳时仅具有电荷效应、分子筛效应。 2.不连续系统:缓冲液离子成分、pH、凝胶浓度、电位梯度不连续,带电颗粒电泳时具有浓缩效应、电荷效应、分子筛效应。

Biacore 生物大分子相互作用分析仪介绍

Biacore 生物大分子相互作用分析仪 BIA是英语"Biomolecular Interaction Analysis"的缩写,Biacore提供了实时观察生物分子间相互作用的技术。通过它您能观察两种分子结合的特异性,能知道两种分子的结合有多强,还能了解生物分子的结合过程共有多少个协同者和参与者。Biacore可以让您得到用其他技术方法难以得到的结果,因为它可以实时反映分子结合过程中每一秒变化的情况。无需借助标记物进行分析使Biacore 广泛应用于各类生物体系的测定,从各类小分子化合物、多肽、蛋白质、寡核苷酸和寡聚糖直至类脂、噬菌体、病毒和细胞。Biacore 是一个通用的仪器,因为您可以任意偶连如上所述任一种生物分子到传感片表面。因此要将Biacore应用在哪个领域,由您决定! Biacore 拥有20余年表面等离子共振(SPR)生物传感器的研发经验,是生物分子相互作用领域的技术引 领者和标准制定者。Biacore系统提供独到的洞察力来揭示蛋白质以及其他生物分子之间的相互作用,能够帮 助科学家们更深入的理解生物分子的功能、更好的作出决策和提高生产力。 Biacore是基于表面等离子共振(SPR)技术来实时跟踪生物分子间的相互作用,而不用任何标记物。实验时先将一种生物分子固定在传感器芯片表面,将与之相互作用的分子溶于溶液流过芯片表面。检测器能跟踪检测溶液中的分子与芯片表面的分子结合、解离整个过程的变化。 Biacore系统可以为很多领域提供有价值的信息包括:动力学、亲和力、特异性、热力学和浓度等,同时它所 能够研究的分子范围也十分广泛-大至细胞与病毒,小至100道尔顿以下的有机化合物。Biacore系统性能强大 的硬件、种类丰富的耗材和操控智能的软件适合各个领域对于各种高质量数据的需求:无论是基础研究,还 是药物开发,甚至是生产过程中的质量控制。您可以从Biacore官方网站(https://www.360docs.net/doc/8811160294.html,)上查询到更多的 信息。 GE Biacore现有5个型号:Biacore 4000, Biacore 3000,Biacore T200, Biacore X100 及主要面对食品或维生素客户的Biacore Q 今天对生命科学奥秘的探索,已经不仅仅停留在是什么,而是要探询为什么。旨在揭示生命现象背后的机理研究,必然要理清生物分子间复杂的关系。只有Biacore能实时反映生物分子相互作用的整个过程,而不同于其他只能提供生物分子作用后的结果的方法,为您开辟一个崭新的研究角度。

药物分析与检验试卷

药物分析与检验试卷

药检 一、名词解释 1.药品 指用于预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应证、用法和用量的物质,是一种关系人民生命健康的特殊商品。包括药材、中药饮片、中成药、化学原料药、抗生素、生化药品及其制剂、放射性药品、血清制品和诊断药品等。 2.药品质量检测 即药物分析,主要是运用化学、物理化学或生物化学的方法和技术研究化学结构已经明确的合成药物或天然药物及其制剂的质量控制方法,同时也研究中药制剂和生化药物及其制剂的质量控制方法。 3.生物药物(4分) 生物药物是指运用生物学、医学、生物化学等研究成果,从生物体、生物组织、细胞、体液等,综合利用物理学、化学、生物化学、生物技术、药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。广义的生物药物包括:(1)从动植物和微生物中直接制取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4.生物制品 是以微生物、细胞、动物或人源组织和体液等为原料,应用传统技术或现代生物技术制成,用于人类疾病的预防、治疗和诊断。人用生物制品包括:细菌类疫苗(含类毒素)、病毒类疫苗、抗毒素及抗血清、血液制品、细胞因子、生长因子、酶、体内及体外诊断制品,以及其他生物活性制剂,如毒素、抗原、变态反应原、单克隆抗体、抗原抗体复合物、免疫调节剂及微生态制剂等。5.国家生物标准品 系指用国际生物标准品标定的,或由我国自行研制的(尚无国际生物标准品者)用于定量测定某一制品效价或毒性的标准物质,其生物学活性以国际单位(IU)或以单位(U)表示。

是国家对药品质量及检验方法所作的技术规定,是药品生产、经营、使用、检验和监督管理部门共同遵循的法定依据。 13.药物杂质 是指药物中存在的①无治疗作用②影响药物的稳定性和疗效③甚至对人体健康有害的微量物质。 14.杂质限量 在不影响药物疗效、稳定性及不发生毒性的前提下,药物中所含杂质的最大允许量。通常用百分之几或百万分之几(ppm)来表示。 15.质反应 药物作用于生物体后某一反应或其程度,只有出现与不出现两种情况,故不能用量来表示个体的反应程度,只能用一组动物中出现正(或负)反应的百分率 来表示,这类反应称质反应;(2分) 16.量反应 药物对生物体所引起的反应随着药物剂量的增加产生的量变可以测量者,称为量反应。(2分) 二、填空题 1.生物药物按其来源和生产方法可大致分为生化药物、生物合成药物 和生物制品三类。 3.酶分析法包括酶法分析和酶活力测定两种类型。 4.在通常的酶活力测定时总要先制备酶反应进程曲线和酶浓度曲线两条曲线。 5.溶液的浑浊程度分为澄清、轻微浑浊、微浑浊、浑浊、重度浑浊五级。6.输液泵、进样器、色谱柱、检测器和数据处理装置是HPLC的基本部件。 7.溶液的色调分为黄绿色、黄色、橙黄色、橙红色、棕红色五种。 8.生物检定的常用方法包括质反应的直接测定法、量反应的平行线测定法和质反应的平行线测定法。 9.一般毒性试验包括急性毒性试验和长期毒性试验。

相关文档
最新文档