上海轨道交通AC11型电动列车牵引和制动控制技术浅析

上海轨道交通AC11型电动列车牵引和制动控制技术浅析
上海轨道交通AC11型电动列车牵引和制动控制技术浅析

高速列车制动技术综述_彭辉水

高速列车制动技术综述 (1、株洲南车时代电气股份有限公司技术中心,高级工程师,彭辉水,湖南株洲,412001) (2、株洲南车时代电气股份有限公司技术中心,高级工程师,倪大成,湖南株洲,412001) 摘要:本文首先阐述了制动系统与高速列车安全性的关系,然后综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况。同时介绍了高速列车制动力的控制模式,并就各种模式的优缺点进行对比,然后概述了高速列车的防滑再粘着控制技术并给出了其应用实例,最后论述了高速列车制动技术的发展趋势。 关键词:高速列车 制动 控制模式 防滑行再粘着控制 中图分类号:U260.35 文献标志码:A Braking Technology of the High-speed Trains Peng Hui-shui, Ni Da-cheng (Technology Center , Zhuzhou CSR Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China) Abstract: This paper firstly presents the strong relationship between the braking system and the security of the high-speed trains, supplies the comparative analysis about the brake modes and the corresponding Braking performance, and reviews their applications in the high-speed trains. Then introduces the control mode of braking force in the high-speed trains and gives out the comparative analysis about their pros and cons. This paper reviews the technologies of Anti-skid re-adhesion control and supplies their application cases. Finally prospects the development trend of the braking technology of the high-speed trains. Keywords: High-speed Trains; Braking; Control Mode; Anti-skid Readhesion Control 高速铁路是新兴产业、战略性产业、带动性产业,是世界轨道交通发展的潮流。我国高速铁路异军突起,迅猛发展,打破了世界高速铁路技术的相对垄断格局,截止2011年1月底,我国高速铁路总里程达8358公里;规划到2012年底,总里程达到13000公里。高速铁路快速发展国人翘首以盼,但其安全性也备受瞩目!高速列车制动技术对于列车安全运行至关重要,在意外情况下,高速列车紧急制动距离越短,高速列车才能越安全,旅客安全系数越高,本文将对当前高速列车制动技术领域的关键技术及其进展进行综合论述。 作者简介:1、彭辉水,男,1979年生,2001年毕业于北方交通大学电气学院,高级工程师.现主要从事机车粘着控制理论研究及应用与高速列车牵引制动系统研究。2、倪大成,男,197年生,2001年毕业于湖南大学电气学院,高级工程师.现主要从事机车整流逆变控制理论研究及应用与高速列车牵引制动系统研究。

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

列车运行图课程设计报告

单线区段列车运行图分析实验报告 姓名黎文皓 学号 1104121013 专业班级运输1203 指导教师邓连波 中南大学交通运输工程学院 2015年 6月

一、通过能力计算 由表可得,T 周调整后最大为36min 。 区间现有通过能力为: a)当不考虑固定作业时间和有效度系数时 n =144036 =40(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=40?1.2×5?(1.6?1)×2 =32.8≈33(对) b)当考虑固定时间而不考虑有效度系数时 n =1440?9036 =37.5≈38(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=38?1.2×5?(1.6?1)×2 =30.8≈31(对)

c)当同时考虑固定作业占用时间和有效度系数时 n =(1440?T 固)×d 有效 T 周 =(1440?90)×0.8936 =33.375≈33(对) n 货 非=n ?ε客n 客?(ε摘挂?1)n 摘挂=33?1.2×5?(1.6?1)×2 =25.8≈26(对) 二、列车运行图技术指标统计及分析 1、数量指标 (1)按列车性质分类的旅客列车及货物列车对数 (2)旅客列车及货物列车走行公里 a) A-B 区段长度为:13+14+12+10+12+13+15+14=103km b) 旅客列车走行公里:103×10=1030km c) 货物列车走行公里:103×26=2678km (包括摘挂) (3)由各始发站发出的各种旅客列车数和货物列车对数 A 和B 发出的各种旅客列车数和货物列车数分别为5对、13对。 (4)机车台数 本设计中共用机车台数7台

高速列车制动方式分类

高速列车制动方式分类 从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。 (1)根据列车动能转移方式的不同,列车制动可分为如下几种方式: ①盘形制动。 ②电阻制动。 ③再生制动。 ④磁轨制动。 ⑤轨道涡流制动。 ⑥旋转涡流制动。 ⑦风阻制动。 上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。其优点是制动力与列车速度无关。无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。可以说摩擦制动始终是高速列车最基本的制动方式。摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。 (2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避

免的“滑行”状态;第三种是实际运用中的黏着状态。在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。 由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。而传统的空气制动装置要受制动热容量和机械制动部件磨耗寿命的限制,以及摩擦材料性能对黏着利用的局限性,因此,高速列车要采用能提供强大制动能力并更好利用黏着的复合制动系统。虽然考虑到乘座舒适度,但是制动距离随列车速度的提高而适当延长是不可避免的。高速列车制动的总目标是控制制动距离,因此制动距离不会随车速的提高而增长太多。复合制动系统通常由制动控制系统、动力制动、摩擦制动(如盘形制动和踏面制动等)系统、微机控制的防滑器和非黏着制动装置等组成。复合制动力的产生分别来自电气(动力制动)、机械(盘形制动或踏面制动)和非黏着力(磁轨制动或涡流制动)。高速列车的复合制动模式包括不同车辆在不同制动作用工况和各种速度下的制动能量分配关系,应根据列车的动力方式和编组条件进行设计并通过微机进行控制。

列车制动系统

自动式空气制动系统的组成及其作用 自动式空气制动系统如下图所示: 各部分作用如下: 1.空气压缩机(1)、总风缸(2):原动力系统。空气压缩机:制 造压缩空气;总风缸: 储存压缩空气,供全列车系统使用。 2.给风阀(4):将总风缸的压缩空气调至规定压力,经自动制动阀 (5)充入制动管。 3.自动制动阀(5):操纵部件。通过它向制动管充入压缩空气/将 制动管压缩空气排向大气。 4.制动管(14):贯通全列车的压缩空气导管。向列车中各车辆的制

动装置输送压缩空气。通过自动制动阀(5)控制管内压缩空气压力变化实现操纵各列车制动机。 5.三通阀(8):车辆空气制动装置的主要部件,控制制动机产生不 同作用。和制动管联通,由制动管压力的变化产生作用位置。制动机缓解:制动管连通副风缸,制动缸连通大气。向副风缸充入压缩空气,把制动缸内压缩空气排向大气。制动机制动:制动管通大气,副风缸通制动缸。副风缸内压缩空气充入制动缸,产生制动作用。 6.副风缸(11):缓解储存的压缩空气,为制动时制动缸的动力源。 7.制动缸(10):制动时,把从副风缸送来的压缩空气转变为机械推 力。 8.基础制动装置(17):制动时,将制动缸推力放大若干倍传递到闸 瓦,使闸瓦夹紧车轮产生制动;缓解时,靠闸瓦自重使闸瓦离开车轮实现缓解。 9.闸瓦、车轮和钢轨:实现制动三大要素。制动时,闸瓦压紧转动 的车轮踏面后,闸瓦与车轮间的摩擦力借助钢轨,在与车轮接触点上产生与列车运行方向相反(与钢轨平行)的反作用力,即制动力。(黏着效应) 制动缸压力计算 1空气制动机的工作过程就是利用空气受压缩后体积与压力的自动变化来实现的。

列车牵引计算课程设计

课程设计 课程名称机车车辆方向课程设计题目名称 SS4列车牵引计算 学院 _ 专业 班级__ 学号_____ __ 学生姓名______ __ 指导教师___

目录 摘要 (2) 0 引言 (3) 1.设计任务 (4) 2.机车基本参数 (4) 2.1计算牵引质量 (4) 2.2校验并确定区间牵引质量 (6) 2.3列车换算制动率的计算 (6) 3 合力图 (7) 3.1 机车各种工况的曲线 (7) 3.2绘制合力曲线 (11) 4计算制动距离和运行时间 (15) 4.1计算列车制动的距离 (15) 4.2运行时间 (19) 结束语 (27) 参考文献 (27)

摘要 本次课程设计主要进行了列车的计算牵引质量,校验了区段牵引质量,以及制动率。利用matlab画出了机车各工况的单位合力曲线。对化简的线路纵断面进行了运行时间计算及制动距离的计算。手绘出了绘制列车运行速度线和列车运行时间线。 关键词:列车;牵引;制动;计算

0 引言 提高列车牵引质量和运行速度,保证铁路行车安全和尽量节约机车能耗,是扩大铁路运输能力提高铁路工作效益的重要内容。为此,必须讲究科学管理和经济操纵,提高运输管理和列车操纵水平;很好的研究列车的牵引质量,运行速度,制动距离及机车能耗等与哪些因素有关,怎样在保证行车安全和节能的条件下“多拉快跑”;同时,要让铁路运输管理工作人员及其后备军都有这方面的知识,即会分析也会计算。列车牵引计算正是这方面必须有的,故进行本次课程设计。

1.设计任务 SS 4型电力机车牵引70辆货车,均为滚动轴承(牵引质量5000t ),其中标记载重50t ,装有GK 型制动机的重车48辆,空车5辆;标记载重25t ,装有120型制动机的重车12辆;标记载重25t ,装有120型制动机空车5辆。车辆按高磷闸瓦计算,列车管受空气压力为500KPa 。制动初速度为104Km/h 。SS 4型电力机车电功率6400KW ,轴式为2×(Bo —Bo ),轴重23t 。机车单位阻力 20'000320.00190.025.2v v ++=ω(N/KN ) 1.1求解 (1)计算牵引质量,校验并确定区段牵引质量;计算列车换算制动率等。 (2)绘制合力表,绘制合力曲线。 (3)化简线路纵断面的运行时间及制动距离等。 (4)绘制列车运行速度线和列车运行时间线。 (5)便知点算程序计算,并计算及绘图,编程语言不限。 2.机车基本参数 额度工作电压 单相交流50Hz 25kV ;传动方式 交—直流电传动;轴 式 2×(Bo —Bo );机 车 重 量 2×92 t ;轴 重 23t ;持 续 功 率 2×3200kW;最高运行速度 100 km/h ;持 续 速 度 51.5 km/h ;起动牵引力 628kN ;持 续 牵 引 力 450kN ;电制动方式 加馈电阻制动 电制动功率 5300kW ;电制动力 382kN (10~50km/h ); 传动方式 双边斜齿减速传动;传 动 比 88/21;

电力机车的制动方式及其原理

电力机车的制动方式及其原理 1、制动技术概念 列车制动就是人为地制止列车的运动,包括使它减速、不加速或停止运行。对已制动的列车或机车解除或减弱其制动作用,则称为“缓解”。为施行制动和缓解而安装在机车、车辆、列车上的一整套设备,总称为“制动装置”。“制动”和“制动装置”俗称为“闸”。施行制动常简称为“上闸”或“下闸”,施行缓解则简称为“松闸”。“列车制动装置”包括机车制动装置和车辆制动装置。不同的是,机车除了具有像车辆一样使它自己制动和缓解的设备外,还具有操纵全列车制动作用的设备。 2、机车制动方式 1)闸瓦制动:铁路机车车辆采用的制动方式最普遍的是闸瓦制动。用铸铁或其他材料制成的瓦状制动块,在制动时抱紧车轮踏面,通过摩擦使车轮停止转动。在这一过程中,制动装置要将巨大的动能转变为热能消散于大气之中。而这种制动效果的好坏,却主要取决于摩擦热能的消散能力。使用这种制动方式时,闸瓦摩擦面积小,大部分热负荷由车轮来承担。列车速度越高,制动时车轮的热负荷也越大。如用铸铁闸瓦,温度可使闸瓦熔化;即使采用较先进的合成闸瓦,温度也会高达400~450℃。当车轮踏面温度增高到一定程度时,就会使踏面磨耗、裂纹或剥离,既影响使用寿命也影响行车安全。可见,传统的踏面闸瓦制动适应不了高速列车的需要,需要一种新型的制动装置以满足要求。 2)盘形制动:它是在车轴上或在车轮辐板侧面安装制动盘,用制动夹钳使以合成材料或者粉末冶金制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,使列车停止前进。由于作用力不在车轮踏面上,盘形制动可以大大减轻车轮踏面的热负荷和机械磨耗。另外制动平稳,噪声小。盘形制动的摩擦面积大,而且可以根据需要安装若干套,制动效果明显高于踏面制动,尤其适用于时速120公里以上的列车,这正是各国普遍采用盘形制动的原因所在。但不足的是车轮踏面没有闸瓦的磨刮,将使轮轨粘着恶化;制动盘使簧下重量及冲击振动增大,运行中消耗牵引功率。踏面制动和盘形制动都要通过轮轨之间的粘着来实现,因此都属于粘着制动。 3)再生制动:是将牵引电动机变为发电机,将电能反馈回电网使用,从而产生制动作用。用于电网供电的电力机车和电动车组。 4)电阻制动:用于电力机车、电动车组和电传动内燃机车。在制动时将原来驱动轮对的牵引电动机改变为发电机发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻器发生的热量消于大气,从而产生制动作用。 5)线性涡流制动:是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。制动时电磁铁不与钢轨接触。利用电磁铁与钢轨相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,把列车动能转化为热能,消散于大气。线性涡流制动既不受粘着限制,也没有磨耗问题。 6)盘形涡流制动:是在车轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力并发热消散于大气,从而起制动作用。盘形涡流制动要通过轮轨粘着才能产生制动力,因此也要受粘着限制。

动车组制动技术综述

动车组制动技术综述 列车制动的一般概念是指对行进中的列车施行减速或使在规定的距离内停车。制动的重要性不仅在于它直接关系到运输安全,还在于它是进一步提高列车运行速度的决定因素。列车速度越高,对制动的要求也就越高。因而,动车组的制动技术成为其高速运行的关键技术之一。 一、动车组制动方式分类 1.按动能消耗方式分: (1)摩擦制动:闸瓦制动、盘形制动、磁轨制动等; (2)动力制动:电阻制动、再生制动、轨道涡流制动、旋转涡流制动等。 2.按制动形成方式分: (1)粘着制动:闸瓦制动、盘形制动、电阻制动、再生制动、旋转涡流制动等; (2)非粘着制动:磁轨制动、轨道涡流制动等; 3.按动力的操作控制方式分:空气制动、电空制动、电磁制动。 二、高速动车组制动系统的基本要求 1.制动能力的要求 制动能力表现为停车制动时对制动距离的控制。在同样的制动装置、操纵方式和线路条件下,其制动距离基本上与列车制动初速度的平方成正比关系,所以随着列车速度的提高,必须相应地改进其制动装置和制动控制方式才能满足缩短制动距离的要求。 通过国外主要国家高速列车制动能力比较得知:国外300km/h高速列车的紧急制动距离均在3000~4000m之间。根据制动粘着利用和热负荷等理论计算的结果,我国动车组在初速300km/h条件下的复合紧急制动距离可保证在3700m

以内。 2.舒适性的要求 从列车动力学的观点出发,旅客的乘坐舒适性包括横向、垂向和纵向三方面的指标,高速动车组纵向运动的特点除起动加速度较快以外,主要是制动作用的时间和减速度远大于普通旅客列车,因此必需有相应措施来控制旅客纵向舒适性的指标,包括对制动平均减速度、最大减速度和纵向冲动的要求,均应高于普通旅客列车。 为满足纵向舒适性的高要求,动车组制动系统必须采用下述关键技术:(1)采用微机控制的电气指令制动系统以实现制动过程的优化控制,并在提高平均减速度的同时尽量减少减速度的变化率; (2)对复合制动的模式进行合理设计,使不同型式的制动力达到较佳的组合作用; (3)减少同编组列车中不同车辆制动力的差别,以缓和车辆之间的纵向动力作用; (4)采用摩擦性能良好的盘型制动装置和强有力的动力制动装置,以提供足够的制动力。 3.安全可靠性 制动系统作用的可靠性是列车行车安全的基本保证。特别是高速运行时制动系统失灵的后果将不堪设想。为此,动车组制动系统的安全可靠性设计涉及有下列四个方面: (1) 制动控制方式设计。动车组一般设有空气制动、微机控制的电空制动和计算机网络三种制动控制方式。在正常运行状况下由计算机网络控制并传递全列车各车辆的制动信息。当该控制系统发生故障时能自动转换为电空制动作用。

列车牵引与制动复习题及参考答案

中南大学网络教育课程考试复习题及参考答案 列车牵引与制动 一、填空题: 1.列车制动一般分为紧急制动和常用制动。 2.常用制动是把正常情況下为调节或控制列车速度,包括进站停车所施行的制动。 3.紧急制动是指紧急情况下为使列车尽快停止而施行的制动。 4.按传动机构的配置,基础制动装置可分为散开式和单元式两种。 5.只要轮轨间粘着不被破杯,制动力将随闸瓦压力的增加而增大。 6.轨道涡流制动既不受钢轨黏着限制,也没有磨耗问题。 7.摩擦制动作用产生的要素为闸瓦、车轮、钢轨。 8.摩擦制动方法包括闸瓦和盘形制动两种。 9.空重车调整装置目前主要是二级人工调整。 10.我国货车列车管定压一般为500 kPa,客车一般为600 kPa 11.制动机的灵敏度分为制动灵敏度和缓解灵敏度。 12.列车管减压速度达到紧急灵敏度指标时必须起紧急制动,而不能是常用制动。 13.常用制动的安定性是常用制动列车管减压速度的下限。 14.制动作用沿列车长度方向的传播速度称为制动波速。 15.制动波速高,说明列车前后部制动作用的时间差小,既可减轻纵向冲动,又能缩短制动距离。 16.ST型闸调安装方式有推杆式和杠杆式两种,分别安装在基础制动装置的上拉杆和链接拉杆上。 17.具有二压力机构阀的自动制动机,在制动管与制动缸之间安装了三通阀和副风缸。 18.具有三压力机构阀的自动制动机,分配阀的动作由制动管、定压风缸和制动缸三种压力来控制。 19.我国目前铁路客车电空制动机主要型式为104型和_F-8 型。 20.我国目前铁路货车空气制动机型式为120型、GK型和103型。 21.为使每个三通阀都能实现紧急局部减压,在阀的下部加了一个紧总部。 22.103及104型分配阀中间体上的三个空腔分别是局减室、容积室、紧急室。 23.103型分配阀构造上由主阀、中间体、紧急阀三部分组成。 24.103及104型分配阀结构原理是二压力机构间接作用式。 25.F8阀转换盖板切断通路时,可形成阶段缓解作用。 26.F8型分配阀在构造上由主阀、辅助阀、中间体等几部分组成。 27.120型空气控制阀的结构原理是二压力机构直接作用式。 28.120型控制阀半自动缓解阀由手柄部和活塞部两部分组成。 29.F-8阀转换盖板连通通路时,可实现制动机一次性缓解作用。 30.F8型分配阀的限压阀的作用是限制制动缸的最高压力 31.当F-8型制动机与二压力制动机混编时,应将转换盖板转到一次缓解位。 32.JZ-7型空气制动机自阀手柄的几个不同位置是:过充位、运转位、制动位、过量减压位、 手柄取出位、紧急制动位。 33.JZ-7型空气制动机单阀阀体上装有三个阀件,分别为单缓柱塞阀、定位柱塞阀和调整阀。 34.JZ-7型分配阀副阀膜板左侧通制动管,右侧通降压风缸。 35.JZ-7型空气制动机自阀手柄在紧急制动位时,自阀的放风阀直接排列车管压力空气。 36.电空制动机的特点是制动作用的操纵控制用电,但制动作用的原动力还是压力空气。 37.DK-1型电空制动机分配阀安全阀的作用是防止容积室内压力过高而使机车出现滑行现象。 38DK-1型电空制动机分配阀在充气缓解位制动管向工作风缸充风。 39.DK-1型电空制动机分配阀主阀部的作用是控制机车的充气、制动、保压及紧急制动状态的形成。 40.DK-1型电空制动机制动缸的排风通路由分配阀的均衡阀控制。 41.DK-1型电空制动机空气位操作时应将空气制动阀上的转换键置空气。 42.DK-1型电空制动机空气制动阀在正常情况下用来单独控制机车的制动或缓解。 43.DK-1型电空制动机空气制动阀缓解位时,定位凸轮未压缩中联锁。 44.DK-1型电空制动机总风遮断阀受中立电空阀的控制。

列车制动装置简介

现代轨道车辆列车制动装置简介

摘要:制动系统是列车的一个重要组成部分,它直接影响列车运行的安全性。本文重点介绍了各种制动装置的原理、结构及其在动车组上的应用情况。 关键词:制动装置电动制动电气制动再生制动动车组 引言:随着铁路现代化运输的发展,列车的运行速度和牵引重量不断提高,我们除了要加大牵引力外还务必要提高机车、车辆的制动性能。支撑着所有铁道车辆安全运行的基本要素就是制动装置,“安全制动停车”是铁道车辆必须具备的功能。制动装置的性能不仅是保障行车安全的必要手段,同时也是提高列车速度和铁路通过能力的重要因素。 一、制动的概论 人为地使列车减速,停车或防止停留的车辆移动所采取的措施,称为制动。在铁路机车、车辆上,产生制动的方法比较多,目前我国主要采用以压缩空气为动力,利用基础制动装置上的闸瓦紧压转动着的车轮踏面,使其相互间产生摩擦力,将机车、车辆动能转变为热能逸散,从而使列车减速或停车的方法。 二、制动装置的组成、分类及比较 (一)制动装置组成 制动装置一般可分为两大组成部分: (1)“制动机”——产生制动原动力并进行操纵和控制的部分。(2)“基础制动装置”——传送制动原动力并产生制动力的部分。(二)制动装置分类 1.按动能的转移方式分 (1)踏面制动 踏面制动,又称闸瓦制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着

的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。现在的货车采用的是单闸瓦的踏面摩擦制动,而普通客车采用的是双闸瓦的踏面摩擦制动。 (2)盘形制动 盘形制动是在车轴或轮辐板侧面安装的制动盘,一般为铸铁圆盘,制动时用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,将动车组动能转变成热能消散于大气。 (3)电阻制动 电阻制动是在制动时将原来驱动轮对的牵引电机转变为发电机,由轮对带动发电,并将电流通过专门设置的电阻器,采用通风散热将热量消散于大气,从而使动轮产生制动作用。电阻制动装置可以取消压缩空气供给源,实现车辆轻量化,简化制动系统 (4)再生制动 再生制动也是将牵引电机转变为发电机运行,不同的是,它是将电能反馈回电网,使本来由电能变成的动车组动能再生为电能,而不是变成热能消散掉。 2.按用途分 (l)常用制动 常用制动是正常条件下为调节、控制列车速度或进站停车施行的制动。特点是作用比较缓和,且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。

列车牵引复习重点

一、填空题: 1、机车牵引力就是指机车轮周牵引力 2、轮轨之间的最大静摩擦力称为机车粘着力(黏着系数) 3、机车牵引力(轮周牵引力)不得大于机车粘着牵引力,否则,车轮将发生空转。 4、机车牵引特性曲线是反映了机车的牵引力和速度之间的关系。在一定功率下,机车运行速度越低,机车牵引力越大。 5、内燃机车在多机牵引和补机推送时,其牵引力需修正。 1.列车运行阻力可分为基本阻力和附加阻力。 2、列车附加阻力可分为坡道附加阻力、曲线附加阻力和隧道空气附加阻力。 3、列车在6‰坡道上上坡运行时,则列车的单位坡道附加阻力为 6 N/KN 4、列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为 -2 N/KN 5、在计算列车的基本阻力时,当货车装载货物不足标记载重50%的车辆按空车计算;当达到标记载重50% 的车辆按重车计算。 1、列车基本阻力主要由以下五种阻力因素组成:(1)轴承摩擦阻力。(2)车轮与钢轨间的滚动摩擦阻力。(3)车轮与钢轨间的滑动摩擦阻力。(4)冲击和振动阻力。(5)空气阻力。 1、列车制动力是由制动装置引起的与列车运行方向相反的外力,它的大小可由司机控制,其作用是调节列车速度或使列车停车。 2、轮对的制动力不得大于轮轨间的粘着力,否则就会发生闸瓦和车轮“抱死” 滑行现象。 3、目前,我国机车、车辆上多数使用中磷铸铁闸瓦。 4、列车制动一般分为紧急制动和常用制动。 5、列车制动力是由列车中各制动轮对产生的制动力的总和。 2、闸瓦的摩擦系数大小与下列因素有关:(1)制动初速度(2)列车运行速度(3)闸瓦压力(4)闸瓦材质 3、从列车的单位合力曲线上,能解读出什么?答:列车的单位合力曲线图上可以清楚地读出:(1)列车在不同工况下和某速度时的单位合力的大小;(2)能分析出列车在该时的加速、减速或匀速的状态;(3)还能看到列车的均衡速度。 1、列车单位合力曲线是由牵引运行、惰行运行和制动运行三种曲线组成。 2、作用于列车上的合力的大小和方向,决定着列车的运动状态。在某种工况下,当合力大于零时,列车加速运行;当合力小于零时,列车减速运行;当合力等于零时,列车匀速运行。 3、加算坡道阻力与列车运行速度无关。 4、列车运行时间的长短取决于列车运行速度和作用在列车上单位合力的大小。 5、在某工况下,当列车所受单位合力为零时对应的运行速度,为列车的均衡速度。列车将匀速运行。 1、列车制动距离是自司机施行制动开始到列车完全停车为止,所运行的距离。 2、列车的制动距离是制动空走距离和制动有效距离之和。 3、我国普通列车紧急制动距离的限值为 800 米。 4、列车制动时间是制动空走时间和制动有效时间之和。

列车牵引与制动作业参考答案

《列车牵引与制动》作业参考答案 一、名词解释: 1.换算摩擦系数:不随闸瓦压力改变的假定的闸瓦摩擦系数。 2.黏着系数:黏着力与车轮钢轨间垂直载荷之比。 3.机车牵引性能曲线:表示机车轮周牵引力(纵轴)与运行速度(横轴)相互关系的曲线,通常由试验得到。 4.(制动机的)间接作用:列车管的风压和主活塞的动作直接控制的是作用室风压,然后再通过作用室 风压和第二活塞的动作控制机车(车辆)的制动缸。 5.(制动机的)三压力机构:三压力机构的主活塞的动作与否决定于三种压力的平衡与否,工作风缸压 力(定压弹簧)、制动管压力,制动缸压力。 二、问答题: 1.粘着系数的影响因素有哪些? 答:粘着系数的影响因素主要有两个:列车运行速度和车轮和钢轨的表面状况。 轮轨间表面状态包括:干湿情况、脏污程度、是否有锈、是否撒砂以及砂的数量和品质等等。 随着制动过程中列车速度的降低,粘着系数要增大。 2.制动的实质是什么? 答:制动的实质可以从能量和作用力两个不同的观点来看。 能量的观点:将列车的动能变成别的能量或转移走。 作用力的观点:制动装置产生与列车运行方向相反的力,是列车尽快减速或停车。 3.简述附加阻力的内容及其意义。 答:列车在线路上运行时受到的额外阻力,如坡道阻力、曲线阻力、隧道阻力等。附加阻力的种类随列车运行的线路平、纵断面情况而定。 4.简述引起曲线附加阻力的因素。 答:引起曲线附加阻力的因素主要是,机车、车辆在曲线上运行时,轮轨间的纵向和横向滑动、轮缘与钢轨内侧面的摩擦增加,同时由于侧向力的作用,上、下心盘之间以及轴承有关部分摩擦加剧。 由这些原因增加的阻力与曲线半径、列车运行速度、外轨超高、轨距加宽量、机车车辆的固定轴距和轴荷载等诸多因素有关 5.简述限制坡度大小对运营的影响。 答:对输送能力的影响:输送能力取决于通过能力和牵引质量。在机车类型一定时,牵引质量即由限制坡度值决定。限制坡度大,牵引质量小,输送能力低;限制坡度小,牵引质量大,输送能力高。 6.简述用均衡速度法计算行车时分的基本假定。 答:均衡速度法假定;列车在每一个坡段上运行时,不论坡段长短,也不论进入坡段时的初始速度高低,都按该坡道的均衡速度(或限制速度)做等速运行考虑。 7.计算列车走行时分的均衡速度法有哪些假定条件?采用此法计算行车时分,为什么还应另加列车起停 附加时分? 答:均衡速度法假定;列车在每一个坡段上运行时,不论坡段长短,也不论进入坡段时的初始速度高低,都按该坡道的均衡速度(或限制速度)做等速运行考虑。 均衡速度法的运行速度曲线与实际运行速度曲线相比,两者的走行十分是不同的。坡度变化不大时,均衡速度法中速度的超过部分与其不足部分大体上可以抵消。只是在车站起动及进站停车时相差较大。所以,用均衡速度法计算时,要加起停附加时分。

高速列车制动新技术及其发展

高速列车制动技术的最近研究进展 周大海0703010702 摘要:和普通列车相比.高速列车无论是对制动控制系统还是对具的制动方式,都提出了更高的技术要求。本文介绍了高 速列车对制动系统的特殊要求和其解决方法以及国内外 高速列车制动系统的技术现状. 关键词:高速列车制动方式复合制动系统制动基础制动1.高速列车对制动系统的特殊要求 随着列车运行速度的提高,机车车辆对制动系统的要求也越来越高。从能量的角度考虑.由于列车的动能与其运行速度的平方成正比,列车所具备的制动功率也至少应与其最高速度的平方成正比一从粘着利用与防滑的角度考虑.为了在规定的距离内停车.高速列车在制动时必须具有较大的减速度.对粘着的利用率也相应较高,而粘着利用率的提高必须有相应的高性能防滑装置来保障列车运行的安全;为了提高乘坐舒适度,对制动力的控制精度必须也有更高的要求。综合多方面的因素考虑,高速列车制动系统必需具备以下条件: (I)尽可能缩短制动距离以保障行车安全 ①减少列车空走时间

表1为几种制动控制方式的列车空走时间值。从表中可以看出.电气指令式电空制动机的列车空走时间最短 ②采用大功率的盘形制动机,并作为高速列车制动系统的主体 [1]铁系材料 铁系材料经几十年的发展,现已形成了铸铁、铸钢、铸铁一铸钢组合材料和锻钢材料等几个体系。目前使用在高速列车制动盘上的铁系金属材料则主要是铸铁一铸钢组合材料和锻钢材料。铸铁一铸钢组合制动盘是以铸铁作为摩擦材料而以铸钢作为补强材料。2种材料相互组合制成的制动圆盘,从整体上兼顾了铸铁稳定且较高的摩擦性能和铸钢较好的耐热龟裂性,在日本、法国和德国的高速列车上都使用过这种材料,锻钢具有良好的强度和韧性等力学性能,同时还具有较高的抗热龟裂性、良好的耐磨性和耐疲劳性,使用寿命长,目前已广泛应用于日本新干线列车上。法国TGV—A列车上使用的一种Cr-Mo-V低合金锻钢制动盘,在时速300 km停车时每个制动盘可散失约18 MJ的制动能量,显示出锻钢材料的良好制动效果。国内对锻钢材料也进行了大量研究。以中碳、低合金钢为盘体材料,经纯净化处理、优化锻造等制成的制动盘,具有良好的综合性能和优异的抗热疲劳性,并认为其可满足国内时速300 km高速列车的制动要求。从国内外高速列车制

火车的发展历程

火车的发展历程 梁政 我们进行远距离旅行,往往会乘坐火车,车上有座位、床铺、餐桌、洗手间等,简直就是一座流动的旅馆。坐在平稳的车厢里遥望车外的青山绿水、田园景色,令人心旷神怡。除此之外,火车还担负着运送工农业生产和国防建设物资的重任,真不愧为国民经济的大动脉!从火车的发明到现在已走过了207年,这个对推动世界工业化革命发挥了巨大作用的火车是怎样发生、发展、变化的呢?现在就让我们一起去回顾这一段闪烁着人类智慧的光辉历史吧。 火车和所有其他的发明一样,都是为了满足社会需要而问世的。18世纪初,随着社会生产力的发展,人们急需一种比马车装得多、跑得快的新型车辆。在这种情况下,英国人瓦特发明了蒸汽机。这种机器比马的力气可大多了,它一问世就引起了人们的关注。 在那时,一些具有改革创新激情的人萌发了将蒸汽机装在车上,以代替人力或者畜力来拖动车辆。这个设想首先在军事上得到了应用。那时,欧洲各国的军队为了满足作战需要,把大炮的口径和射程做得越来越大。这就导致了炮的重量不断增加,用人推马拉的办法很难保证大炮能及时跟随部队转战。法国一位名叫居尼奥的炮兵军官,针对这一问题研制成了用蒸汽机推动的“蒸汽车”来拉炮,从而开辟了以机器为动力的现代车辆发展的道路,也为火车的诞生打下了基础。

这种将蒸汽机装在车子上的机械车是怎样推动车辆行驶的呢?我们从它的外形上可以看到,蒸汽机有一个大锅炉,装在车架的前端。在锅炉下面烧着煤火,用来将锅炉里面的水加热成蒸汽。由锅炉上的一根管子将蒸汽引入车子前轮上方的汽缸里,蒸汽的力气很大,便推着汽缸里的活塞向前移动,而活塞通过连杆和曲轴与前轮连在一起,于是随着曲轴的转动,车轮就跟着转起来,这就是蒸汽机车行走的基本原理。 此后不久,这种冒着黑烟、喘着粗气的车子先后在英国和德国出现了。英国人于1804年制成了蒸汽机车。不过,它的模样和先前不大一样了:有的将锅炉移到车子的中间,并罩上罩子,两头还装上几排座位;有的把锅炉移到车后部,而在前面坐人的地方装了一个车厢,等等。这种蒸汽车已经颇有点近代车的气派了。但提醒大家注意的是,当时这种蒸汽机车是在公路上行驶的,因为那时世界上还没有铁路。 世界上第一台行驶于轨道上的蒸汽机车是“新城堡号”蒸汽机车。它是由英国一位出身贫寒、到处漂泊的发明家理查德〃特里维西克设计制造的。1804年2月29日,这台机车(自重5吨)首次在南威尔士的麦瑟尔提德维尔到阿巴台之间的轨道上作运行试验,车速为每小时8公里,只能牵引十几吨重,比马车好不了多少。但它却开辟了世界铁路史上第一台蒸汽机车的光辉行程。

城轨车辆制动方式介绍

城轨车辆制动方式 按照制动时列车动能的转移方式不同城轨车辆的制动主要可以分为摩擦制动和电制动。 一,摩擦制动 通过摩擦副的摩擦将列车的运动动能转变为热能,逸散于大气,从而产生制动作用。城轨车辆常用的摩擦制动方式主要有闸瓦制动,盘形制动和轨道电磁制动。 (一)闸瓦制动 闸瓦制动又称为踏面制动,它是最常见的一种制动方式。制动时闸瓦压紧车轮,车轮与闸瓦发生摩擦,将列车的运动动能通过车轮与闸瓦间的摩擦转变为热能,逸散于空气中。 在车轮与闸瓦这一对摩擦副中,由于车轮主要承担着车辆行走功能,因此其他材料不能随便改变。要改善闸瓦制动的性能,只能通过改变闸瓦材料的方法。目前城轨车俩中大多数采用合成闸瓦。但合成闸瓦的导热性较差,因此也有采用导热性能良好,且具有良好的摩擦性能的粉末冶金闸瓦。 在闸瓦制动中,当制动功率较大时,产生的热量来不及逸散到大气,而在闸瓦与车轮踏面上积聚,使他们的温度升高,摩擦力下降,严重时会导致闸瓦熔化和轮毂松弛等,因此,在闸瓦制动时,对制动功率有限制。 (二)盘形制动) 盘形制动有轴盘式和轮盘式之分,一般采用轴盘式,当轮对中间由于牵引电机等设备使制动盘安装发生困难时,可采用轮盘式。制动时,制动缸通过制动夹钳使闸片夹紧制动盘,使闸片与制动盘间产生摩擦,把列车的动能转变为热能,热能通过制动盘与闸片逸散于大气。 (三)轨道电磁制动 轨道电磁制动也叫磁轨制动。是一种传统的制动方式,这种制动方式是在转向架前后两轮之间安装包升降风缸,风缸顶端装有两个电磁铁,电磁铁包括电磁铁靴和摩擦板,电磁铁悬挂安装在距轨道面适当高度处,制动时电磁铁落下,并接通励磁电源使之产生电磁吸力,电磁铁吸附在钢轨上,列车的动能通过磨耗板与钢轨的摩擦转化为热能,逸散于大气。轨道电磁制动可得到较大的制动力,因此常被用作于紧急制动时的一种补充制动,这种制动不受轮轨间黏着系数的限制,能在保证旅客舒适性条件下有效地缩短制动距离。当磨耗板与轨道摩擦产生的热量多,对钢轨的磨损也很严重。但因为其制动距离短,而结构又简单可靠,所以这种装置在有轨电车和轻轨上使用较多。 二,电制动 从能量的观点来看,制动的本质就是将列车的动能转移成别的形式的能量。制动系统转移动能的能力成为制动功率。一般的在一定的安全制动距离下,列车的

相关文档
最新文档