实变函数第二章点集

实变函数习题解答(1)

第一章习题解答 1、证明 A (B C)=(A B) (A C) 证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此 A (B C) ? (A B) (A C) (1) 设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此 (A B) (A C) ? A (B C) (2) 由(1)、(2)得,A (B C)=(A B) (A C) 。 2、证明 ①A-B=A-(A B)=(A B)-B ②A (B-C)=(A B)-(A C) ③(A-B)-C=A-(B C) ④A-(B-C)=(A-B) (A C) ⑤(A-B) (C-D)=(A C)-(B D) (A-B)=A B A-(A B)=A C(A B)=A (CA CB) =(A CA) (A CB)=φ (A CB)=A-B (A B)-B=(A B) CB=(A CB) (B CB) =(A CB) φ=A-B ②(A B)-(A C)=(A B) C(A C) =(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]= A (B-C) ③(A-B)-C=(A CB) CC=A C(B C) =A-(B C) ④A-(B-C)=A C(B CC)=A (CB C) =(A CB) (A C)=(A-B) (A C) ⑤(A-B) (C-D)=(A CB) (C CD) =(A C) (CB CD)=(A C) C(B D) =(A C)-(B D)

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

实变函数集合标准答案

第一章 集合 一、內容小结 1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入 了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。 2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定 理。 3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。 二、学习要点 1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式 上一许多类似的公式,但也有许多本质。但是千万不要不加证明地把代数恒等式搬到集合运算中来。例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。条件为A,B 不交。 2. 可数集合是所有无限集中最小的无限集。若可数A 去掉可数B 后若还无限则C 必可数。 3. 存在不可数集。无最大基数集。 以下介绍学习中应掌握的方法 4. 肯定方面与否定方面。B X B X ?∈与, 5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。其 中用交并表示很重要。对第四章的学习特别重要。 6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯 坦定理)来进行相应的证明。 7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算 得到可数、第四节定理6. 8. 证明集合基数为C 中常用到已知的基数为C 的集合。∞E R n , 三、习题解答 1. 证明:)()()(C A B A C B A Y I Y I Y = 证明 则若设,).(A x C B A x ∈∈I Y B A x Y ∈,得).()(C A B A x Y I Y ∈ 若 则同样有设,C B x I ∈B A x Y ∈且C A x Y ∈,得 ).()(C A B A x Y I Y ∈因此 )()()(C A B A C B A Y I Y I Y ? 设)()(C A B A x Y I Y ∈则若,.A x ∈当然有)()(C A B A x Y I Y ∈,若,.A x ?由B A x Y ∈且C A x Y ∈,可知B x ∈若.且c x ∈.,所以,C B x I ∈同样有).(C B A x I Y ∈因此?)()(C A B A Y I Y )(C B A I Y , 所以)()()(C A B A C B A Y I Y I Y = 2. 证明

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数复习资料,带答案

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例

实变函数重点题集

3、下列说法不正确的是( B ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=? 2、设E 是[]0,1上有理点全体,则'E =[]0,1,o E =?,E =[]0,1. 3、设E 是n R 中点集,如果对任一点集T 都有***()()m T m T E m T CE =?+?,则称E 是L 可测的 4、)(x f 可测的充要条件是它可以表成一列简单函数的极限函数. 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使11|()()|n i i i f x f x -=??-????∑成一有界数集,则称()f x 为 [],a b 上的有界变差函数。 1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。错误 2、若0=mE ,则E 一定是可数集.错误例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集 3、若|()|f x 是可测函数,则()f x 必是可测函数。错误 二、2. 下列说法不正确的是(C ) (A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点 3. 下列断言(B )是正确的。 (A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( C )是错误的。 (A )零测集是可测集; (B )可数个零测集的并是零测集; (C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集; 1、设11[,2],1,2,n A n n n =-=,则=∞→n n A lim _________。 2、设P 为Cantor 集,则 =P ,mP =_____,o P =________。 3、设{}i S 是一列可测集,则11 ______i i i i m S mS ∞∞==??? ???∑ 4、鲁津定理:______________________________________________________ 5、设()F x 为[],a b 上的有限函数,如果_________则称()F x 为[],a b 上的绝对连续函数。 答案:()0,2 2,c ;0 ;? 3, ≤ 4,设()f x 是E 上..a e 有限的可测函数,则对任意0δ>,存在闭子集E E δ?,使得()f x 在E δ上是连续函数,且(\)m E E δδ<。

完整word版,实变函数练习及答案

实变函数练习及答案 一、选择题 1、以下集合,( )是不可数集合。 .A 所有系数为有理数的多项式集合; .B [0,1]中的无理数集合; .C 单调函数的不连续点所成集合; .D 以直线上互不相交的开区间为元素的集。 2、设E 是可测集,A 是不可测集,0mE =,则E A U 是( ) .A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。 3、下列说法正确的是( ) .A ()f x 在[,]a b L —可积?()f x 在[,]a b L —可积; .B ()f x 在[,]a b R —可积?()f x 在[,]a b R —可积; .C ()f x 在[,]a b L —可积?()f x 在[,]a b R —可积; .D ()f x 在(],a +∞R —广义可积?()f x 在[,]a b L —可积 4、设{}n E 是一列可测集,12......,n E E E ???则有( ) .A 1( )lim n n n n m E mE ∞→∞ =>U ; .B 1()lim n n n n m E mE ∞→∞==U ; .C 1 ()lim n n n n m E mE ∞→∞==I ; .D 以上都不对。 5、()()\\\A B C A B C =U 成立的充分必要条件是( ) .A A B ?; .B B A ?; .C A C ?; .D C A ?。 6、设E 是闭区间[]0,1中的无理点集,则( ) .A 1mE =; .B 0mE =; .C E 是不可测集; .D E 是闭集。 7、设mE <+∞, (){}n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}n f x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的( )

实变函数习题

第一章习题 2、(ii) ()1 1 1n n n n n n n A B A B ∞∞∞ ===-?- 证明:对于1 1 ,n n n n x A B ∞∞ ==?∈- 11 n n n n x A x B ∞∞ ==?∈? 且 001,1,n n n x A n x B ??≥∈?≥?且对于 0001,n n n x A B ??≥∈- ()1n n n x A B ∞ =?∈- 22、具体构造[]0,1与()0,1之间的一个完全的一一映射. 解:记()0,1中的有理数点集为Q ;()0,1中的无理数点集为M ()0,1Q M = ;[]{}0,10,1Q M = ,作映射 12132,,0,1,..........n n x M x x r r r r r r +?∈→→→→→ 所以[]()0,10,1与等价 29、求证:n R 中任一集合的导集是闭集. 证明:若()E ''=Φ,则E '为闭集,否则 要证明E '为闭集()E E '''?? ()x E x ''?∈?为E '的聚点(){}{}0,,V x x E εε'??>-≠Φ (){}{}1,x V x x E ε'??∈- ()(){}11,x V x x ε?∈- ()() ()110,,,2V x V x x E δδε??>?' ?∈使得 (){}{}11110,,V x x E δδ??>-≠Φ 10,δ??>()11,V x δ中含有E 的无穷多个点 ()1,V x δ?也中含有E 的无穷多个点 ()()1,,E V x E V x δε?

()x E E E '?∈''' ?? 从而E '为闭集 30、(i)设,A B 是任意的两个集合,若A B ?,则A B ''?. 证明:x A x '?∈?为A 的聚点 (){}{}0,,V x x A εε??>-≠Φ A B ? (){}{}0,,V x x B εε??>-≠Φ ?x 为B 的聚点 ?x B '∈ (ii)若A B A '??,求证:B 是闭集. 根据(i)式可知B A B ''??,则B 是闭集 32、n R 中任一集合的孤立点是至多可数的 证明:先来证明1 R 中的孤立点是至多可数的 记B 为1 R 中以有理数为端点的开区间全体所成的集合,(){},,m n n m B r r r r Q =∈ 则B 为可数集. 设A 为1R 中的孤立点全体,则对于任意的x A ∈,则存在x 的一个以有理数为端点的邻域 (),x x αβ,使得 (){},x x A x αβ= ` 对于每一个x A ∈,都做出这样的一个邻域,由于每个邻域中只含有一个A 中的点,故对于A 中不同的两个点对应的邻域(),x x αβ,() ,y y αβ也不同. 令(){},x x D x A α β= ∈ 则A 与D 等价,而D B ?,则D 是至多可数集,从而A 是至多可数集,因此有限个至多可数集的直积是至多可数集. 33、若A 不可数,则A '也不可数. 证明:假设A '是至多可数集,则设B 为A 的孤立点全体,则B 为至多可数集 因为()A B A A '= ,A A A ''? ,则A A ' 为至多可数集 则A 为至多可数集与已知矛盾. 第二章习题 2、求证:()(){}*inf :,m E m Q E Q Q =?是开集

实变函数试题库参考答案

《实变函数》试题库及参考答案(完整版) 选择题 1,下列对象不能构成集合的是:( ) A 、全体自然数 B 、0,1 之间的实数全体 C 、[0, 1]上的实函数全体 D 、全体大个子 2、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{全体小个子} D 、{x : x>1} 3、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体 胖子} 4、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体瘦子} 5、下列对象不能构成集合的是:( ) A 、{全体小孩子} B 、{全体整数} C 、{x :x>1} D 、{全体实 数} 6、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体大人} C 、{x :x>1} D 、{全体整 数} 7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I ∈?= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)

8、设}1111:{i x i x A i -≤≤+-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1] 9、设}110:{i x x A i +≤≤=, N i ∈, 则i i A ∞=?1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、 (0, +∞) 10、设}1211:{i x i x A i +<<-=, N i ∈, 则i i A ∞=?1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、 (1, 2) 11、设}2 3:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、 {0} 12、设}11:{i x i x A i <<-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0} 13、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈,则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1] 14、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1]

实变函数标准答案 第三版 第二章 点集

第二章 点集 1、证明:' 0P E ∈的充要条件是在任意含有0P 的领域(),P δ?(不一定以0P 为中心)中,恒有异于0P 的点1P 属于E (事实上,这样的1P 还有无穷多个);0o P E ∈ 的充要条件则是有含有0P 的领域(),P δ?(同样,不一定以0P 为中心)存在,使(),P E δ??. ()()()'00100010101001001'0010 000:min ,,,,..o P E d P P d P P P P E P E P E P E P E P E E δδδδδδδδ∈?=-????∈?∈?∈?∈∈∈?∈? 证明若,对任意含有P 的领域(P,),取则(P ,)(P,),而(P ,)中含有异于的点,所以(P ,)中存在异于P 的点若任意一个含有P 的领域(P,)中有异于P 的点,则任一 (P )也有异于P 的点,故 若,则存在(P ),使(P ()()()0100010=min ,,,. o d P P d P P E P E δδδδδδ?∈??=-????∈ )(P ,)即得证.若P (P,)E ,取,则有(P ,)(P,),从而 4、设3E 是函数 1 sin ,0,0,0 x y x x ?≠?=??=?当 当 的图形上的点所作成的集合,在2 R 内讨论' 333o E E 的E 与. (){}'33=0y 11. o E y E φ?-≤≤=解:E , 8.x -+a f ∞∞≥设()是(,)上的实值连续函数,则对于任意常数,E={x|f(x)>a}是一开集,而E={x|f(x)a}总是一闭集。 (){} ()()(){}(){}()(){}()()o ,?,0,,,, ,|()||()| |{|}|{|}. {, |}. ' ',o o o o o c o x E x f x a f x a f x x x x f x a x E x f x a x E E x f x a H x f x a x f x a H x f x a x H H f x a H x δδδ∈=>>>-<>?∈=><=≥=<=≥∈=≥?' 任取则由在处连续及极限的保号性知, 存在当时有即即为的内点,从而 证明为开:集; 类似可证为开集从而是闭集又要证是闭集,只需证任取则存在()()(){}()(){|}{| ,, ,}n o n o o H x f x x f x a f x a x x f x a x f x a ≥≥∈≥≥中的点列使得由在处连续及,可知所以从而是闭集. 9.证明:每个闭集必是可数个开集的交集;每个开集可以表示成可数个闭集的和集。

实变函数测试题与答案

实变函数试题 一,填空题 1. 设1 ,2n A n ?? =???? , 1,2 n =, 则lim n n A →∞ = . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为 3. 设E 是2R 中函数1cos ,00,0 x y x x ? ≠?=?? =?的图形上的点所组成的 集合,则E '= ,E ? = . 4. 若集合n E R ?满足E E '?, 则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间, 则(),αβ满足: , . 6. 设E 使闭区间[],a b 中的全体无理数集, 则 mE = . 7. 若()n mE f x →()0f x ??=??, 则说{}()n f x 在E 上 . 8. ) 9. 设n E R ?, 0n x R ∈,若 ,则称0x 是 E 的聚点. 10. 设{}()n f x 是E 上几乎处处有限的可测函数列, ()f x 是 E 上 几乎处处有限的可测函数, 若0σ?>, 有

, 则称{}()n f x 在E 上依测度收敛于()f x . 11. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 . 二, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <. 2. 设E 为点集, P E ?, 则P 是E 的外点. 3. 点集11,2, ,E n ? ? =??? ? 的闭集. 4. 任意多个闭集的并集是闭集. 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合. ' 三, 计算证明题 1. 证明:()() ()A B C A B A C --=- 2. 设M 是3 R 空间中以有理点(即坐标都是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集. 3. 设n E R ?,i E B ?且i B 为可测集, 1,2 i =.根据题意, 若 有 ()()*0,i m B E i -→ →∞, 证明E 是可测集. 4. 设P 是Cantor 集, ( )[]3 2ln 1,(),0,1x x P f x x x P ?+ ∈?=? ∈-??. 求1 0(L)()f x dx ?.

相关文档
最新文档