负压稀相气力输送系统

负压稀相气力输送系统
负压稀相气力输送系统

负压稀相气力输送系统工作原理和系统优势

负压气力输送系统主要由:气力输送风机、取料装置、管道、缓冲仓、除尘器、卸料装置、等构成。

负压稀相气力输送系统主要采用负压罗茨真空泵作为动力源,管道输送压力为低真空状态,管道风速约10-35米/秒,物料在管道内呈雾状。负压输送起点压力等于或接近大气压,终点压力在-10到-50Kpa之间,管道真空度沿气力输送管道逐渐增高。

工作原理

1、系统主要采用罗茨风机或真空泵作为气源设备,气源设备在系统的末端;

2、气力输送系统取料装置部件通常采用特殊结构的吸嘴;

3、风机运转后,抽风整个系统形成负压,由管道内外存在的压力差将物料吸入输料管,物料和一部分空气同时被吸嘴吸入,并被送到缓冲仓内;

4、在缓冲仓内,物料和空气分离,被分离出的物料从缓冲仓的底部通过锁气阀卸出;

5、未被分离出来的微细粉粒输送气流进入除尘器中净化,净化后的空气净除尘器,风机排入大气中。

系统优势

1、本负压系统具有气力输送量大、输送距离长、输送速度快等特点;

2、系统易于取料,适用于从低压、深处、较为狭窄的取料点取料,可用于要求取料不发尘的场合,可实现多处上料向一处集中供料。负压稀相气力输送系统适用性广,用于广泛,粉体、颗粒物均可顺利输送;

3、系统气源位于末端,润滑油或水分等不会混入输送的物料中,输送物料更清洁;

4、系统由于输料管道内为负压,因此系统管道产生磨损或存在间隙时,被输送物料也不会发生泄漏,此外,由于负压稀相气力输送系统内压力低于大气压,水分更易蒸发,所以对水分多的物料较其他方法更容易输送;

5、系统输送气体一般直接取自大气,气体的温度即为环境温度,因此负压气力输送系统适用于对温度敏感的热敏性物料

负压稀相气力输送系统散料输送效率高,由于物料在完全密闭的管道内输送,可避免输送物料受潮、污损和混入其他杂物等现象,物料输送质量高,可由多点的物料送往一处或由一处送往多处,并实现较远距离输送,此外,系统在物料输送过程中还可同时实现物料混合、粉碎、分级、干燥、冷却、除尘等多种工艺操作。

通风除尘与气力输送系统的设计说明

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机;

气力输送系统基本参数计算知识

系统基本参数计算 更新时间:2005年07月20日 系统基本参数计算 1.输灰管道当量长度Leg 输灰管道的总当量长度为 Leg=L+H+∑nLr (m)(5-19) 2.灰气比μ 根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比 μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20) Gh=ψγhνp (t/仓) (5-21) 式中Gh—仓泵装灰容量,t/仓。 灰气比的选择取决于管道的长度、灰的性质等因素。对于输送干灰的系统,μ值一般取7-20 kg/kg。当输送距离短时,取上限值;当输送距离长时,则取下限值。 3.输送系统所需的空气量 因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22) 质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23) 4.灰气混合物的温度 输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24) 式中Gm—系统出力,kg/min; ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算 th—灰的温度,℃; ca—空气的比热容,一般采用o.24kcal/(kg℃); ta—输送空气的温度,℃。 因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。根据经验,每100m的温降值一般为6—20℃。当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。 5.输送速度 仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:

气力输送系统介绍

气力输送系统介绍 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ◆气力输送是全封闭型管道输送系统 ◆布置灵活 ◆无二次污染 ◆高放节能 ◆便于物料输送和回收、无泄漏输送 ◆气力输送系统以强大的优势。将取代传统的各种机械输送。 ◆计算机控制,自动化程度高 气力输送形式: ◆气力输送系统按类型分:正压、负压、正负压组合系统 ◆正压气力输送系统:一般工作压力为0.1~0.5MPa ◆负压气力输送系统:一般工作压力为-0.04~0.08 MPa ◆按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表: 常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下:

浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 浓相气力输送系统示意图

负压气力输送系统

负压气力输送系统 负压气力输送系统指利用负压风机(真控泵)产生系统负压,将在受料器处与空气均匀混合的粉粒状物料通过管道

抽送至贮料装置的输送系统,主要用于燃煤电厂的灰处理系统,又称负压气力除灰系统,为国外引进技术,其系统设计技术已为国内除灰系统设计人员完全掌握。 负压气力输送系统投资较省,可以多点受料,要求灰斗下部的净空较小,适用于300MW及以下火电机组的除灰系统,且由于设备和管路在真空状态下只可能发生内泄漏,因而环境比较清洁。缺点是由于负压植有限,因而输送距离较短,一般输送的极限几何距离为200米,实际工程宜按≤150米设计;单个系统的最大出力一般为40吨/小时(粉煤灰)。 负压气力除灰系统通常由物料输送阀、进气止回阀、输送管道及阀门、灰气分离设备、贮灰库及辅助设备、负压风机和控制系统等组成。 物料输送阀又称E形阀,作为受料器是负压系统的关键设备之一,其作用是通过物料输送阀上的补气阀和灰量调节装置的工作,使灰斗内的灰与空气均匀混合,使灰气混合物具有良好的流动性而顺利进入输送管道,以保证输送通畅高效地进行。物料输送阀采用气动控制,其阀体和阀板应具有良好的耐磨性。我厂百可提供其它形式的卧式或立式受灰器。在物料输送阀与灰斗之间,应设常开型手动检修门。灰斗宜采取气化加热措施。 进气止回阀采用旋启式结构,当输送管道内浓度过高造成输灰支管进气端真空值过高时,进气止回阀自动打开,补入适量地空气以稀释过高的物料浓度,以防止堵管的发生。 由于负压气力除灰系统选择了较高的管内流速,且管道又不太长,故管道一般选用耐磨合金材料(包括直管、弯头等)。通常一个负压除灰系统用一根主输送管,每个电场(单侧或双侧)的灰斗组成一条支线,通过切换阀门与主管相连。切换阀门通常采用专用的隔离滑阀。

气力输送风机的选型计算

气力输送风机的选型计算 现在的工业环境对利用气体来实现物料(如各种粉料、颗粒)的输送,应用层出不穷,不管是正压输送也好,还是负压(真空)吸送也好,均离不开风机的选型,合理的参数设计、工况的管路匹配,莫不是对经济性的考验,哪一般在气力输送中有那些参数需要确知,以便更好的作出风机的选型? 一、输送料与气体的混合比 混合比是粉料气力输送装置的一个非常重要的参数。混合比越大,越有利于增大输送能力,在相同的生产率条件下。所需的管道直径就越小,可选用容量较小的分离、除尘设备,所消耗的风量和能量也越小,从而使粉料气力输送装置的投资费用降低、单位能耗减小。 计算公式: M=Gm/Gq...(Gm代表每小时输送料的重量,Gq代表空气的比重) 二、输送风速 运送物料在所有的输送管段内可靠运转条件下,物料气力输送装置具有最经济的工作性能时侯允许的最小气流速度,就是输送风速。一般输送风速,应较“经济速度”有10%一20%的裕量。可参考常用的管道里的不同输送装置。低压压送式输送的气流速度,一般为20 m /s左右,高压压送式输送的气流速度,一般为8 m/s左右。 三、输送所需的风量 所需风量由物料的输送率、混合比确定,可参考公式: Q=(1.1-1.2)G/(Mч) 式中:G.—讲算输送率,kg/h;

ч——空气重度,在标准大气压下=1.2 kgm3; M——混合比。 四、输送管道直径 根据粉尘输送所需的风量和输送速度来确定管道的直径(m): D2=4Q/ЛV 式中:Q--风量 m3/h V--风速 m/s 五、输送压力 输送气体的压力必须大于物料在输送管中移动时各项压降的总和△P总。这些压降包括:物料在水平输送管中的压降△P1、物料在垂直输送管中的压降△P2、物料在输送弯管中的压降△P3、物料流经卸料器及除尘器的压降△P4等。 1.水平管道的压损: △P1=△P11+△P12=(λ11+Mλ12)(L/D)(ρV2/2) 式中: △P1——纯气体的压降,Pa; △P11一一由于管中输送物料所引起的附加压降(Pa); λ11——气体摩擦系数; λ12---附加摩擦系数(该系数主要根据试验确定) M--料气质量混合比; L一水平输送管长度,m; D—水平输送管直径,m; ρ—气体的平均密度,kgm3;

气力输送系统的设计要点

气力输送系统的设计要点 【摘要】本文简要介绍了气力输送系统的分类和组成,并对气力输送系统设计中存在的一些重要问题进行归纳总结,为以后的工程设计提供参考。 【关键词】气力输送;分类;组成;设计要点 0.前言 气力输送是借助负压或正压气流通过管道输送粉料的技术。与其他机械输送方式如斗提、皮带等相比,具有设备简单、布置灵活、占地面积小、操作及维修方便等特点,在钢铁、煤炭、电力、化工、粮食等行业得到广泛应用[1]。气力输送系统设计的合理与否,对输送效率、运行成本和使用寿命都有重要影响,因此本文对气力输送系统设计中着重考虑的问题进行归纳总结,希望引起工程设计同行的重视,为将来的工程设计提供参考。 1.气力输送系统 1.1气力输送的分类 根据输送管中物料的密集程度,气力输送可分为稀相输送和密相输送。稀相输送的混合比一般为0.1~25,输送气速为18~30m/s,高于浓相输送[2]。 根据输送管中气体的压力大小,气力输送可分为吸送式和压送式。吸送式的输送管内压力低于大气压,能自吸进料,缺点是必须负压卸料,而且物料输送距离较短;压送式的输送管内压力高于大气压,卸料方便,物料输送距离较长,其缺点是须用给料器将物料送入带压的管道中[3]。 1.2气力输送系统的组成 气力输送系统主要包括给料系统、输料系统、集料系统、动力系统和控制系统五大部分。 给料系统的作用是保证粉尘能够连续、均匀地进入输送管中,主要包括粉料缓冲斗、插板阀、旋转给料阀、给料器等。由于吸送式气力输送的输送管内存在一定负压,能够自吸进料,故其给料器通常采用L型或V型给料器,压送式的给料器较复杂,一般采用船型给料器或仓泵。 输料系统是粉料输送的关键环节,由输送直管、弯管、吸气口、吹扫口等组成,输送管的布置对气力输送系统的压力损失、连续稳定运行有至关重要的影响。 集料系统的作用是使料气分离,并将粉料收集后集中处理,主要包括集料器、卸料阀、粉料储罐等。集料器即除尘器,烟尘粒径小、混合比大时,应采用二级

各种气力输送系统的经济性分析和对比

各种气力输送系统的经济性分析和对比 在设计气力除灰系统时,首先要保证能完成预期的输送任务,同时,合理地决定所采用的设备种类和容量,以及与此有关的问题,设计时,不能只看设备费用的多少,而更重要的是要综合考虑物料的性质对质量的影响,输送量、输送距离、输送路线的情况,以及运行管理的难易和费用等等,例如对于某些物料,各种设备的条件均适宜于气力输送,但由于物料含有大量的水分、具有粘附性等原因而不能采用气力输送时,即使机械输送设备费用大,也得选取机械输送方式。也有这样的情况,输送某些物料时,例如,向循环流化床锅炉炉前贮料仓输送石灰石粉时,采用气力输送所需的功率大,乍看起来运行费用较高,但从系统的合理性或生产技术上来看,还是用气力输为好。 究竟在什么样的情况下采用哪一种方式技术经济性比较合理呢,一般来说,在较短距离的输送时,机械输送是有利的;反之,对较长距离的输送。虽然从所需的功率来看,采用气力输送系统是不利的,但在设备费用方面,往往采用气力输送系统是有利的。设备费用和所需功率及运行费用随周围条件不同,变化很大,所以不能笼统地比较,同时还应注意到随着各种平台支架和附属设备的情况不同,变化幅度也很大。总之在设计气力除灰系统时,应该根据工程具体条件.综合性地通过技术经济比较后选择最合适的输送系统和相应的设备。 如果系统的输送出力和输送距离已定,则系统的经济性一般取决于输送的灰气混合比,从设备能量消耗来看,压(抽)气设备所需的功率与系统压力和空气流量的乘积成正比。如果提高灰气混合比,输用的空气量则可减小,在输送速度保持一定的条件下,输送用的空气量与管径的平方成正比,即Q∝D2而系统压力即输送管道的阻力与管内径的平反成反比,即P∝1/D而与灰气比并不是按正比关系增加。 因此,提高输送的灰气比,减少空气量,对降低压(抽)气设备的能量消耗是十分有利的:其次,从系统基建费用来看,由于灰气比的提高,设备和输送管道内径、支架及安装费用都可以相应地减小,降低系统基建费用的效果也是显而易见的。 灰气比μ越大,对于增大输送能力来说越有利,显然也将提高经济性。但是,灰气比过大,则在同样的气流速度下可能产生堵塞,并且输送压力也增高,对负压式和低正压气力输送系统,有可能会超过压气机械所允许的吸气压力或排气压力。因而,灰气比的数值受到物料的物理性质、输送方式以及输送条件等因素的限制。特别是对正压气力输送系统,考虑仓式泵本身的尺寸和构造、输料管的内径和长度、弯头数目以及使用的空气量等条件,其灰气比自然更受到制约。 在设计计算时,要考虑输送条件和参考各种实例来选定灰气比的数值一般选取的范围如表5-8所示 表5-8灰气比μ的数值 输送方式μ 负压式 低真空 高真空<10 10-20

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(围)和粒度分析仪(围更小的数值围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号是增加架桥发生的诱因变化趋势。

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力 按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。系统的最大灰渣产率按第一种情况计算,即取2.05t/h。尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为 4.6kg/h。为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘 设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。 综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。二灰渣输送线操作参数选取

气力输送系统的设计原则与程序

气力输送系统的设计原则与程序 在设计压送式气力输送装置时,首先必须要对被输送物料的性质和料粒形状,输送条件,现场状况等进行了解和研究,在此基础上充分发挥气力输送的优点,正确选择气力输送的类型,以利于提高生产效率。 一、设计原则 1、输送物料的性质和料粒形状物料的粒度常取平均粒度作为物料的计算粒度,并要了解物料粒度的分布情况。物料的流动性一般用堆积角和摩擦角的大小来间接表示。同一种物料由于含水量不同,流动性有很大的差别,对物料的含水量需考虑是内部水分还是表面水分,要考虑物料的粘附作用。 ●物料的密度和堆密度是直接影响气力输送装置的外形尺寸、结构形式及功率 消耗的大小。 ●物料破碎率决定气力输送的布置路线、输送距离和选定合适的气流速度。 ●物料的腐蚀性对输送管道的材质提出特殊的要求。 ●物料有静电效应时,要安装必要的地线和防止带电装置,防止产生静电。

●对爆炸性物料,除防止静电外,必须采取防爆安全措施。 ●对输送有害物料,必须考虑采取密闭的搬运安全措施,防止管道和设备磨损 或损坏而外泄。 2、输送量在压送式气力输送装置设计时,要根据单位时间的输送量来确定装置的容量及规格。气力输送装置往往是成套设备中的一部分,必须与其他主机及辅机匹配,如果在输送量的大小上发生矛盾,可以采取中间料斗贮存缓冲的办法予以解决。输送量还与工艺有关,根据工艺要求决定采用间歇式还是连续式的装置,在选用压送式气力输送形式还应考虑装置的可靠性,要估计气力输送一旦发生故障对生产的影响。 3、输送起点和终点的状况在保证工艺的前提下尽可能缩短输送距离,充分发挥压送式气力输送的优势。装置的安装高度和给料方式要允分考虑周围的环境,必须不阻碍交通,便于检修,并减少设备维护费用。 4、降噪及环保气源机械的噪声影响环境,在气源进口及出口处,必须采取降低噪声措施。如风机或空气压缩机安装在单独的房间内,采用消声器等。气力输送装置必须考虑排气的除尘效果,采用各种类型适合于气力输送特点的除尘器,防止对大气的污染,若采用湿法除尘器时,要考虑污水处理。 5、自动化水平程度气力输送装置可实现集中自动控制,由中央控制室进行远程控制。这不仅减少操作人员,而且实现自动连锁,防止事故发生。 6、安装要点气力输送装置安装在室外时要考虑防雨防冻措施。岔道、增压器、气动或电气控制元件、阀、限位开关等必须要有箱体,防止雨淋而失灵。 7、特殊条件的要求输送高温物料需考虑冷却因素,输送管道要考虑保温和加热。气源机械(如空压机)要考虑水冷条件及排水措施。

气力输送系统的设计和选择1

气力输送系统的设计和选择 1.基本设计数据 1.1装置的位置 :江苏某码头,不考虑海拔、温度范围变化,按常温设计。 1.2被输送的物料 贝壳:属三相不均匀散状物料,ρp=2300kg/m3 ρs=0.75 kg/m3.颗粒尺寸、dmax=30,dmin=10,三维尺寸不均匀,有脆性、磨琢性。 1.3始送数据: 输送流程图及输送管道布置图如图1。 进入系统的物料温度 室外温度 ℃;物料中水的含量 3 % 允许堵塞程度 2 %,允许细粉的损失率 2 % 物料的滑动角 30 ,休止角 40 。 机械特征:干的、易破碎的 、脆性 大 磨琢性 大 流动性:自由流功 粘滞 无 堆密度 750 kg /m3 粒度范围:尺寸10 -15 mm 85 % 尺 % 最大块物料尺寸 30 mm 最大块物料占总物料的百分率 15 输送能力:最小 10000 kg/h ,最大 30000 kg/h 使用要求,系统操作:批量 操作周期:每天24小时的频率 10% 及每周期操作 5 时 输送范围:总垂直升高 8000 mm 总水平距离 15000 mm 要求90°弯头数目 2 要求45°弯头数目 0 系统特征:被输送物料来自 船仓 卸料点数目 1 供气动力设备: 类型 风机 位置 (室外) 需要动力:电机:类型.开式 全密封 级 组 电流 电压 相 功率 装置位置:海拔 m ,环境温度范围 -10-40℃ 管道结构材质 软管 输送介质(空气)、操作类型(批量等)、 15米 贝壳 风机 旋风筒 软管 皮带机 船 2 输送方式确定

按题意,选抽吸式,在或能情况下尽量选中低压风机 3设计计算 (1)输送速度确定 密相输送散状固体物料的最小输送速度大约为5-l0m/s ,但这是极易改变的。对一定的物料,特别不是在密相系统输送的固体颗粒物料,最小输送速度的确定是指物料颗粒开始失掉支持将要落下那点的速度(悬浮速度)。对于大多数物料来说,最小输送速度约为16m/s ,这是稀相系统初始设计选用的较好值。这很好理解:当输送含大块的散状固体物料特别是物料密度较大时,其最低输送速度显然是非得大的。 一旦最小输送速度确定后,设计选用的输送速度一般高于最小输送送速度的20%,以提供防止输送管道堵塞的安全系数。一般不建议采用更大的输送速度,因为这会加大功率消耗和分离设备并使被愉送物料过分破裂降级和使输送系统的部件严重磨损。 本题为不均匀片状为此初选择输送速度v0=20m/s (4)固气比 按资料1:对于稀相输送系统典型的固气比在5-15(kg 物料/kg 空气)之间。设计稀相输送系统合理的方法首先假设其固气比为10,然后再将此值上调或下调,以便使系统的压降与所用鼓风机或压缩机的特性相匹配。 按资料2提出据当量长度和输送压力定 (一)当量输送长度 Z H V V F L =L +K L +K L +L θθ∑∑∑∑ = =15+2*8+2*10 +4=55 m (17—20) 式中; Lz —当量输送长度 ∑Lz —水平直管的总长度 ∑Lv —垂直管的总长度 ∑L θ—斜管的总长度 ∑L f —管件和阀件的总当量长度 Kv 、K θ—换算系数,由试验确定。一般取K θ=1.6;Kv=1.8—2.0,

电厂仓泵干除灰气力输送系统的PLC控制详述

电厂仓泵干除灰气力输送系统的PLC控制详述 文摘本文详细介绍了火力发电厂气力输送(干除灰)系统的工作流程和控制要求,仓泵气力输送技术开始在国内的运用,进一步促进了国内电厂粉煤灰气力输送技术的发展并且气力输送系统的输送距离、输送浓度、系统出力和设备的制造工艺及自动化水平得到加强和提高。 发电厂控制系统采用OMRON公司的C200H可编程序控制器,并在仓泵的输灰控制系统中的应用,实现了对仓泵的进料,进气,排气,出料等过程的计算机控制。本文给出了具体的实施方案,由该装置所构成的控制系统运行正常,其综合效益十分明显。 一、系统构成简介 在仓泵输灰控制过程中有大量连锁及闭锁。如: ①在仓泵体仍有余压得情况下就只能开放气阀降压而禁止开进料阀,进料和放气两阀未完全关闭时则禁止打开进风阀,以防止返灰;②在灰管压力较允许值高时则闭锁打开出料阀和进风阀,以防灰管堵塞或堵塞故障变大;③在空气母管压力较低时闭锁打开进风阀,防止堵管;④在进风阀未完全关闭时,闭锁大开放气阀和进料阀;⑤当仓泵内的灰料高度已达到预定位置、同侧的另一台仓泵不再出料状态且空气母管压力已达到规定值时,连锁打开出料计进风阀进行出料; 当空气母管压力降到规定值后,连锁关闭进风、出料阀,停止出料;另外还者有阀门故障检测系统,当一阀门从全关位置到全开位置或从全开位置到全关位置的动作时间超过一定时间值时,则发出声报警信号,提醒运行人员,该阀门已卡,应立即进行处理。 二、气力输送管中颗粒的运动状态 气力除灰是一种以空气为载体的方法,借助于某种压力设备(正压或负压)在管道中输送粉煤灰的方法。在输送管中,粉体颗粒的运动状态随气流速度与灰气比不同有显著变化,气流速度越大,颗粒在气流中的悬浮分布越均匀;气流速度越小,粉粒则越容易接近管低,形成停流,直至堵塞管道。 通过实验观察到某些粉体在不同的气流速度下所呈现的运动状况具有下面六种类型: (1)均匀流当输送气流速度较高,灰气比很低时,粉粒基本上及以接近均匀分布的状态在气流中悬浮输送。 (2)管底流当风速减小时,在水平管中颗粒向管底聚集,越接近管底,分布越密,当尚未出现停址。颗粒一面做不规则的旋转或碰撞,一面被输送走。 (3)疏密流当风速在降低或灰气进一步增大时,则会出现疏密流,这是粉体悬浮输送的极限状态。以上三种状态为悬浮流。 (4)集团流疏密流的风速再降低,则密集部分进一步增大,其速度也降低,大部分颗粒失去悬浮能力而开始在管道底滑动,形成集团流。粗大的颗粒透气好容易形成集团流。集团流只是在风速较小的水平管和倾斜管中产生。在垂直管中,颗粒所需要的浮力,已由气流的压力损失补偿了,所以不存在集团流。 (5)部分流常见的是栓塞流上部被吹走后的过度现象所形成的流动状态。 (6)栓塞流堆积的物料充满一段管路,水泥及粉灰煤灰一类不容易悬浮的粉粒,容易形成栓塞流。它的输送是靠料栓前后压差的推动。与悬浮流输送相比,在力的作用方式和管壁的摩擦上,都存在原则性区别,即悬浮流为气动力输送,栓塞流为压差输送。 2.1 气力除灰技术特点 气力除灰是一种以空气为载体,借助于某种压力设备在管道中输送粉煤灰的方法。气力除灰技术具有如下的特点: (1)节省大量的冲灰水; (2)在输送过程中,灰不与水接触,固灰的固有活性及其他特性不受影响,有利于粉煤灰的综合利用; (3)减少灰场占地; (4)避免灰场对地下水及周围大气环境的污染;

稀相气力输送与密相气力输送的区别

山东海德粉体稀相气力输送与密相气力输送的区别 山东海德粉体气力输送是利用气流的能量,气力输送又称气流运送或风送体系。密闭管道内沿气流偏向运送颗粒状物料,流态化技能的一种具体应用。气力输送装置的布局简略,操作方便,可作水平的垂直的或倾斜偏向的运送,运送进程中还可同时举行物料的加热、冷却、干燥友好流分级等物理操作或某些化学操作。与呆板运送相比,这种输送方法能量损失较大,颗粒易受破坏,配置也易受磨蚀。含水量多、有粘附性或在高速活动时易孕育产生静电的物料,不宜于举行气力输送。 根据颗粒在管道运送中的密集情况,气力输送分为: 1、稀相输送:固体含量低于100kg/m3或固气比(固体运送量与相应气体用量的质量流率比)为0.1~25运送进程。操作气速较高(约1830ms按管道内气体压力,又分为吸引式和压送式。前者管道内压力低于大气压,自吸进料,但须在负压下卸料,可以大概运送的距离较短;后者管道内压力高于大气压,卸料方便,可以大概运送距离较长,但须用加料器将粉粒送入有压力的管道中。 2、密相输送:固体含量高于100kg/m3或固气比大于25运送进程。操作气速较低,用较高的气压压送形成风送体系。间歇充气罐式密相运送。将颗粒分批参加压力罐,然后通气吹松,待罐内达肯定压力后,打开放料阀,将颗粒物料吹入

运送管中运送。脉冲式运送是将一股压缩氛围通入下罐,将物料吹松;另一股频率为2040min-1脉冲压缩氛围流吹入输料管入口,管道内形成交替分列的小段料柱和小段气柱,借氛围压力推动前进。密相运送的运送本领大,可压送较长距离,物料破坏和配置磨损较小,能耗也较省。水平管道运送体系中举行稀相运送时,气速应较高,使颗粒疏散悬浮于气流中。 山东海德粉体气力输送系统的选型是更具,企业生产工况、输送物料性质所决定的。在选择稀相输送或密相输送是,是要根据输送产量和粉体物料性能设计的。不论是用稀相还是密相,有粉体输送方面的问题均可来电咨询。

气力输送系统的组成气力输送

《食品加工机械与设备》 前言 研究内容:农产品加工中常用的机械和设备以及其构成、各部分的功能,特性,适用范围,使用与维护和相关性能指标的测定(生产率、功率消耗等)。 研究目的和意义:了解现有的设备,设计未来的产品。 第一章物料输送机械 本章学习目标 1)了解各种形态物料的输送特点; 2)掌握输送机械的主要类型及其工作原理; 3)了解各种主要输送机械的基本结构; 4)掌握输送机械的基本性能特点; 5)掌握输送机械的选用和使用要点。 一前言: 输送机械的类型:按传送过程的连续性分为连续式和间歇式 按传送时运动方式可分为直线式和回转式 按驱动方式分机械驱动、液压驱动、气压驱动和电磁驱动 按所传送的物料形态分为固体物料输送机械和液体物料输送机械输送物料的状态:固体物料状态有块状、粒状和粉状,输送机械有带式、螺旋、振动式、刮板式、斗式输送机与气力输送装置,固体物料的组织结构、形状、表面状态、摩擦系数、密度、粒度大小;液体物料状态有牛顿流体和非牛顿流体,输送机械有离心泵、齿轮泵和螺杆泵,液体物料的粘度、成分构成。 良好输送效果,应考虑物料性质、工艺要求、输送路线及运送位置的不同选择适当形式的输送设备。 二固体物料输送机械 (一)带式输送机应用最广泛,连续输送机械,用于块状、颗粒状物料及整件物料的水平或倾斜方向的运送,还常用于连续分选、检查、包装、清洗和预处理的

操作台。v=0.02~4m/s 1.工作原理和类型:环形输送带作为牵引及承载构件,绕过并张紧于两滚筒上,输送带依靠 其与驱动滚筒之间的摩擦力产生连续运动,同时,依靠其与物料之间的 摩擦力和物料的内摩擦力使物料随输送带一起运动,从而完成输送物料 的任务。主要组成部件:环形输送带,驱动滚筒,张紧滚筒,张紧装置, 装料斗、卸料装置、托辊及机架组成 特点:结构简单,适应性广;使用方便,工作平稳,不损失被运输物料;输送过程中物料与输送带间无相对运动,输送带易磨损,在输送轻质粉料时易形成飞扬。 1.2主要构件: 1.2.1输送带: A种类:食品工业常用的输送带有橡胶带、纤维编织带、网状钢丝带及塑料带。 1)橡胶带纤维织品与橡胶构成的复合结构,上下两面为橡胶层,耐磨损,具有良好 的摩擦性能。工作表面有平面和花纹两种,后者适宜于内摩擦力较小的光滑颗粒物 料的输送。规格:300、400~1600mm宽 2)钢带0.6~1.4mm厚,宽<650mm;强度大耐高温、不易伸长和损伤 3)网状钢丝带强度高、耐高温、耐腐蚀,网孔大小可选,常用于水冲洗+输送, 边输送,并清、沥水、炸制、通分冻结、干燥。 4)塑料带耐磨、耐酸碱、耐油、耐腐蚀,适用温度变化范围大,一般有单层和多层 结构。 B托辊: 作用:承托输送带及其上面的物料,避免作业时输送带产生过大的挠曲变形。 种类:上托辊(载运托辊)和下托辊(空载托辊) 上托辊有单辊式和多辊组合式。前者输送带表明平直,物料运送量较少,适合运输成件物品;后者输送带弯曲呈槽形,运输量大、生产率高,适合运送 颗粒状物料,单输送带易磨损。 材料:铸铁、钢管+端头 1)上托辊φ89、φ108、φ159mm , 间距<1/2物件长(大于20公斤)一般 0.4~0.5m 2)下托辊只起托运输送作用,多为平面单辊。 C: 滚筒 1)驱动滚筒一般有电机+减速机+带、链传动,电动滚筒。宽大于带宽10~20cm.

最新5低压吸运气力输送系统设计计算示例

5 低压吸运气力输送系统设计计算示例 (1)单管气力输送系统设计计算示例 例7.3 如图7.78所示,由压榨车间将破碎饼粕送至浸出车间的气力输送系统。浸出车间日处理25 T/d (1)设计输送量G 计的确定 根据浸出车间要求处理饼25T/d ,按24h 计,则 G =25/24=1000(kg/h ) 由公式7-25,得: G 计=α×G =1.1×1000=1100(kg/h ) (2)输送风速V 的选择 由表7.56,取V 为21m/s 。 (3)输送浓度μ的选择 取μ=0.4。 (4)输送风量Q a 的确定 由公式7-27,得: 29924 .02.11100 =?= = μ ρa a G Q 计 (m 3/h ) (5)确定管径D 的确定 由公式7-28,得: 195.021 14.336002992 4.36004=???= = V Q D a π(m ) 取200mm 。则实际输送浓度为: 39.02378 2.11100=?==a a Q G ρμ计 (6)压力损失计算 输料输送压力损失H 物 ①空气通过作业机的压力损失H 机 由表7.1,H 机=0 ②接料器压力损失H 接 采用诱导式接料器,由表7.57,阻力系数为0.7。由公式7-31,得: g V H a j 22 ρζ=接 9.1881.92212.17.02 =???= (mmH 2O ) ③加速物料压力损失H 加 查表7.60得,i 谷粗=17mmH 2O/t ,由公式7-, H 加= i 谷粗G 算=17×1.1=18.7 (mmH 2O ) ④摩擦压力损失H 摩 查表7.65,R =2.21mmH 2O/m ,K 粗=0.669;由公式7-35,得: 236)39.0669.01(70.8421.2)1(=?+?=+=μm K RL H 摩(mmH 2O ) ⑤弯头压力损失H 弯 采用弯头90°,曲率半径为6D ,ζw 为0.083,查表7.60,K w =1.6,由公式7-45,得: 6.3)39.06.11(81 .92212.1083.0)1(22 2=?+???=+=μρζw a w K g V H 弯(mmH 2O ) ⑥恢复压力损失H 复 查表7.61和表7.62,△=0.35,β=1.5,由公式7-47,得: H 复=βΔΗ加=1.5×0.35×18.7=9.8 (mmH 2O )

气力输送的设计要点

气力输送的设计要点 气力输送广泛应用于水泥、石化、电力和冶金等行业中粉粒状物料的输送。由于其具有布置灵活,所占空间小,可避开已有设备和建筑物等优点,因此特别适合于水泥厂的改造和扩建工程。目前,新型干法水泥厂的生料入窑或入均化库、煤粉入窑或入分解炉大多采用了气力输送系统。本文通过分析常用气力输送系统的性能特点和选型要求,指出了每种气力输送方法的差异和限制,并对气力输送的系统选择、供料器选择、空压机风机选择、经济性分析、物料特性对系统选型影响这五个设计要点进行了总结。 1 系统选择 1.1 正压及负压系统 正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。在管路系统中安装两路阀就能实现多点卸料和喂料。但多点喂料供料器过多,会造成大量空气泄漏。特别是旋转叶片供料器,其泄漏量约占空气总供应量的20%。目前国内水泥厂输送生料、煤粉及水泥等粉状物料的气力输送系统基本上采用正压系统。 负压系统适宜于从多喂料点输送物料到一个卸料点。它的优点是通过供料器的空气泄漏和压力降都很小,因而旋转叶片供料器能得到令人满意的使用效果。该系统在国内常应用于小型散装水泥驳船的卸料。1.2 混合系统 混合系统结合了正、负压系统各自的优点,在该系统中,负压部分把物料从多个喂料仓中吸走,而正压部分把物料送入多个卸料仓。气源靠一台通风机或鼓风机提供。 双级混合系统比普通混合系统能更好地输送物料。普通混合系统虽对许多车间内部的短距离物料输送较为理想,但由于系统压力小,物料输送量和输送距离均受到限制。双级混合系统利用中间仓把负压和正压系统分开,并把负压和正压系统所需气源分成两个独立供气装置,这样可以分别选择最佳的真空泵和空压机。由于存在二个独立系统,故整个系统需要2台料气分离器。 图1为双级混合系统,是一个典型的大中型散装水泥船卸料装置,卸料能力达到100t/h以上。它的2台空气动力源中1台可选用液环式真空泵;另1台可选用螺杆式或往复式空压机,在较小系统中则选用罗茨风机。 2 供料器的选择 2.1 供料器的选用因素

阀门在气力输送系统中的应用与选择

阀门在气力输送系统中的应用与选择 气力输送是以压缩气源为输送动力,将粉状物料在密闭容器中从一端输送到另外一端。气力输送所应用的行业非常广泛,如电厂的煤粉、粉煤灰和炉底渣,化工行业的化工原料,建筑行业的水泥和石灰,食品医药卫生等行业的各种粉料或颗粒物料等。而各种阀门的合理选用在气力输送中是至关重要的。阀门要满足各行业气力输送的需求,应具有耐温、耐腐蚀和耐磨损等各方面的优良性能。 2、阀门分类 典型的正压气力输送系统如图1所示。根据阀门在系统中的位置及作用,分为进料用阀、排气用阀、进气用阀、出料用阀和切换用阀等。 2.1、进料用阀 进料用阀在气力输送中是用来切断和接通物料从输送点至输送容器的阀门。合理选择进料阀的口径决定了物料的流量以及整个系统的输送能力。根据输送介质的不同,对其耐温、耐腐蚀和耐磨性能也有不同程度的要求。根据经验,在不同的系统中通常选择闸阀、球阀、圆顶阀等作为进料用阀。 2.2、排气用阀 排气用阀是当气力输送系统进料时,将输送系统内的空气排到进料仓或者烟道中的阀门,以便于顺畅下料,缩短进料时间。其主要输送介质是带有少量粉状物料的空气。常用的排气阀有闸阀、蝶阀、夹管阀、球阀以及圆顶阀等。 2.3、进气用阀 常作进气用阀有蝶阀、球阀、角座阀等。进气用阀的输送介质为压缩空气,所以对耐磨蚀性要求不高。 2.4、出料用阀 当输送设备充满物料后,开启进气阀和出料阀,让物料在压缩空气的驱动下在输送管道系统内输送。所以出料阀的介质为混有压缩空气的粉状物料。作为出料阀

的阀门一般有闸阀、球阀、圆顶阀等。 2.5、分路用阀 分路阀可以起到分流和汇流的作用,将物料从多点汇集到一点或者将物料从一点分散到多点。作为分路阀的有球阀、蝶阀或组合阀等,也有各厂家自制的分路阀。分路阀既可用于管路安装,也可用于库顶安装。一般用于库顶安装时,阀门入口需要连接弯头,库顶需装个小型的卸灰仓,以适当扩大物料通道,减少灰库扬尘。 3、阀门性能 3.1、闸阀 闸阀(图2)有两个闸板来切断物料,闸板的材料可选用不锈钢或合金钢等,以 适用于耐腐蚀和耐磨损等工况。闸阀有手动、气动和电动3种操作方式。通常选用气动或者电动两种自动控制方式。但是由于其结构的原因,闸板的行程较长,对气动或者电动装置的扭矩要求大,动作周期较长,使用不够灵活。气动闸阀是在气缸的带动下闸板开启或关闭阀门,丁字形闸板座采用特殊结构,在带动闸板直线运动的 同时沿中心作圆周转动,对阀座密封面起到了一定的自研磨以及抛光清洁作用,从 而使密封闸板圆周均匀承受物料的冲击和磨损,避免了闸板在长期运行过程中局部损坏或磨穿,使其寿命大大延长。同时,双闸板在弹簧静压下能保证两面密封不渗漏,当闸板的一面有压力时,另一面通过弹簧的作用能和密封座更紧密的接触,以达到 密封的效果。该阀在使用中的主要问题是密封及闸板的冲刷损坏。该阀适合于在全开或全关的状态下工作,如果闸板长期处于半开关的状态下工作,闸板的密封面会 因受介质冲刷而变得不严密。因此该阀门在耐冲刷以及耐磨损方面还应进一步改进。 3.2球阀 球阀(图3)通常是选用自动(气动或电动)控制球阀。球阀有软密封和硬密封2种。软密封球阀的阀座密封圈材料是聚四氟乙烯,其具有摩擦系数小,性能稳定,不易老化和密封性能优良的特点。因为聚四氟乙烯具有较高的膨胀系数、对冷流的敏感

通风除尘与气力输送系统的设计

通风除尘与气力输送系统 的设计 The Standardization Office was revised on the afternoon of December 13, 2020

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间内或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间内部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算内容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机; 4)附近没有其它需要吸风或可以合并吸风的设备或吸点时应采用单独风网。 不符合上述任一条例的两个或两个以上的设备或吸点,应尽量采用集中风网,以发挥“一风多用”的作用。在把几台设备或吸点组合成一个集中风网时,应该遵循以下原则: 1)吸出物的特性相似。由于各种设备的工艺任务各不相同,它们产生的粉尘的五华特性及其价值存在差异。因此不同特性的吸出物,应根据情况尽可能分别吸风。

相关文档
最新文档