粉体表面改性设备

粉体表面改性设备
粉体表面改性设备

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。

现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为:

•重力混合器

•气动混合器

•转鼓式混合机

•v型混合机

•Z型混合机

•高速混合机及高速混合机和冷却混合机组(简称高冷搅机组)

•开炼机

•密炼机

•混炼型单螺杆挤出机,布斯混炼机

•双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。

这些设备存在的主要问题是:

①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。

③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。

④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。

可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。

从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。

这些阶段成果包含两个方面:

①引进国外连续改性机型

②对高冷搅机组进行改革

引进国外机型

引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。

1、PS系列粉体表面改性机

由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。

①PSC表面改性性能结构特征:

本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

②工作原理:

粉体原料经给料输送系统被送至主机上方的雾化室,在输送过程中,由给料输送机特设的加热装臵将粉体加热并干燥,与此同时固体状的改性剂在专用加热容器内也被加热熔化至液体状态后经输送管道送至雾化室。

雾化室内设有两组喷嘴,并均通人由给风系统送来之热压力气流,其中一组有四只喷嘴按不同位臵分布于雾化室内壁,其作用是将由给料输送系统送来的粉体物料吹散呈雾状,另一组有一只喷嘴同时与改性剂输送管道相通,将液状改性剂也吹散呈雾状。此时,原料和改性剂形成雾状,由于受到两组喷嘴从不同方向喷射出气流的作用,得以充分的混合,随即进人主机。

主机由高速旋转的主轴、搅拌棒、冲击锤、中间充满循环导热油的夹层简体等部分组成。进入主机内的雾化物料在搅拌棒的高速搅拌下,受到了冲击、摩擦、剪切等诸多力的作用使粉体颗粒与改性剂得到更充分接触、混合。主机夹层内循

环流动的高温导热油使机内始终保持着稳定的工作温度,此时粉体物料即得到了充分的包覆改性。主机出口处高速旋转运动的冲击锤将包覆改性的物料进一步冲击、粉碎,有效地预防了物料可能形成的结团现象。

改性后的物料经螺旋输送机再由气流输送管道送至成品收集仓。在气流输送过程中,利用输送气流将物料中过高的热量吸收,并经布袋除尘器除尘后排出室外,成品进人收集仓后即可降至可存储的温度。

PSC系列粉体表面改性与通用改性设备性能比较:

项目PSC-400粉体改性机通用设备(高速混合机)

300型

电动功率(KW)2240-55

产量(kg/h)1000-1500500

改性剂用量(%)0.8-12-3

包覆率(%)95-9985

生产方式连续间歇

劳动强度低高

改性效果包覆率高并无包覆现象,颗粒不增大颗粒易产生粘连、部分颗粒过包覆,颗粒体积增大

成品降温不需冷却设备需配备冷却设备

环境污染无污染污染较大

③优点:

a)粉体原料在包覆改性之前进行预加热,同时使原料充分干燥,有利于与改性剂的充分结合。

b)将粉体原料及改性剂均进行雾化处理。粉体表面改性效果的好坏,主要决定于物料的运动状态(或机械对物料的作用方式)、处理温度、处理时间(即物料在机内停留的时间)等。其中处理时间在一般的通风设备上需15-30分钟,其目的是为了保证物料与改性剂得到良好的分散和充分接触。以利改性剂在粉体颗粒表面的均匀包覆。而本机采用了雾化处理后,使物料与改性剂在改性之前即充分混合,从而缩短了在改性仓中的处理时间并提高包覆率。

用PSC-400粉体表面改性机对多种矿物粉体原料进行了改性包覆试验,下表

为其中两种物料试验结果。

实验对象粒度改性剂包覆率生产(kg/h)

重质碳酸钙400目硬脂酸99%1000

锻烧高岭土1250目铝酸酸偶联剂95%800

注:包覆率系采用“活化指数”测定法测定。

通过试验证明,PSC粉体表面改性机各项技术性能指标均达到设计要求,且造价仅为30 万元/台,大大低于国外同类产品价格。

图1 粉体表面改性机系列工艺流程示意图

2、复合式粉体连续改性系统

图2 复合式粉体连续改性系统示意图

该系统是由清华大学材料系粉体工程研究室引进日本技术,由张家港市轻工机械厂生产的新型表面改性设备。

①复合式粉体连续改性系统是由下列机器设备组成:传动上料机、料仓、螺旋混合输送给料器、高精度电子喂料器、卧式改性机、螺旋混合输送器、三转子改性机、旋风分离器、脉冲除尘器、风机、导热油专热器、电气控制系统等组成。

表6 主要技术参数

参数单位卧式改性机三转子改性机

电动动率Kw3755.5

主轴转速R/min10004500

改性筒容积L200

工作温度℃90-150℃

生产方式连续

生产能力Kg/h500-1000

加热方式导热油加热

外形尺寸mm12000×7000×3000

②其主要特点:

•系连续运行的先进设备,优于间歇式生产。

•粉体经过预改性,预热和预混合等前处理工序,保证了混合改性的均匀性,节约了药剂。

•三转子改性机,在高速运动中实现瞬时改性,转速达4500转/分,为系统核心装备

•采用导热油加热,可避免自摩擦升温慢和电能的浪费。

•系统负压运行,密封性好,无粉尘污染。

③设备选型:

该系统适合3000-5000吨/年产量的改性企业,系统设备价格40万元人民币。

3、SLG型三筒连续粉体表面改性机

由原武汉工业大学北京研究生院非矿室和江阳市启泰非金属工程公司共同引进瑞典AGMW公司三筒高速强烈混合表面改性机(HSTP-3/1000),定名为SGL 型三筒连续粉体表面改性机。其外形结构见图3。

图3 HSTP-3/1000型表面改性机

1、给料口;2a、第1混合室;2b 、第2混合室;

2c、第3混合室;3、出料口;4、电机

工作原理:将待改性物料(如碳酸钙)及表面改性剂(如脂肪酸)从人料口给人后,依次经过三个强烈混合室后从排料口排出。这种改性机依靠转子叶片和定子与粉体物料的冲击、剪切和摩擦作用产生表面改性所需的温度。转子的高速旋转强制松散并形成涡流二相流,使表面改性剂能迅速与颗粒表面作用,所以包覆效果好。

该改性机连续生产,自动加药,操作简单,处理能力大。特别适合用硬脂酸类,各种偶联剂等对碳酸钙、滑石、云母、高岭土、石英、硅灰石、硅线石等

非金属矿物填料进行连续表面改性处理。

高速混合机和冷却混合机组的改进对于中国企业习惯使用的高速混合机和冷却混合机组(简称高冷搅机组)进行改革,使之适应粉体表面改性的需要,也是大家关注的一项工作。目前改革的思路集中在以下几点:

a、加大功率,提高转速,实现强烈混合。对比国外(加拿大)强烈混合机,把500L高速混合机的电机功率从75KW加大到110KW,把转速提高到 1000转/分,就能大大加强剪切力,达到强烈混合改性的目的。

b、提高物流现代化。把工人一袋袋的投料、出料改为管道输送,并把改性剂的加入改为人工计量后自动投料,并采用PCL可编程序控制系统,实现半自动化。

c、改进混合搅拌设备。如改进桨叶材质,采用渗碳处理或表面堆焊硬质合金,锅体内壁采用渗碳处理,提高耐磨性和使用寿命。改进桨叶外形,呈流线性,减少运动阻尼,在超细粉体改性机中甚至采用三层桨叶设计。

d、主轴采用气密封,彻底解决压力过大和主轴漏粉问题。

针对上述思路,已生产出两种改革机型:

1、半自动化强烈混合改性机组

由四川大学黄锐教授设计,由江苏张家港市轻工机械厂生产BMD—1000微粉改性生产线工艺流程见图4。

①最大特点

BMD—1100重钙微粉改性生产线工艺流程图是利用电子称全自动计量,使高速混合机的加料实现了远距离自动操作,大大降低了人工劳动强度和人工计量不准的偏差,同时设备间采用密封的管道联结,防止粉尘污染。

②主要工作原理

当碳酸钙原矿经过破碎,细磨,分级后,物料由旋转阀送入贮料仓中,贮料仓下面的三通阀可使物料根据同同要求分流到相应地点。

图4 BMD-1100重钙微粉改性生产线工艺流程图

a、若产品不改性,则由螺旋送料器送到包装机进行包装。

b、若产品需改性,则由螺旋送料器输送到电子称进行自动计量。

若高搅是500L,冷搅是1060L,则每小时机组可混料1吨。若高搅为1000L,冷搅为3500L ,则每小时混料可达1.5—1.8吨。在混合机加料过程中,CaC03由电称自动计量,改性助剂采用人工称重,以自动投料的方式进行。助剂由人工事先称量好,然后放入12单元的顺序投料器中由操作人员在控制室通过手动按钮来控制投料。当称重仪表显示重量达到设定值的 90%时,螺旋加料器自动转换为低速加料,达到设定值后自动停止加料。当下面活化机组允许向其投料时,电子称下面的气动插板阀自动打开,同时电子称斗上的搅拌电机也开始运转,斗壁上的仓壁振动器延时启动,以保证物料全部放完。电子称为零后,气动插板阀自动关闭,电子称进行下一循环的计量过程。

电控系统采用PLC可编程控制器,可自动完成生产中每一部分的运行。所有工作状态均可通过控制室模拟屏显示,并可提供故障报警。

此外,还设有专门密封除尘系统和防架桥装臵,确保车间无粉尘污染。主轴采用气密性,防止压力过大和主轴漏粉。

2、超细粉体高冷搅机组改性机

由青岛远东塑料工程公司设计制造的超细粉体新型高冷搅机组改性机,已经生产出2L+6 L实验室机组,并申请了国家专利。

①原理:目前国内外各种高速捏合机的搅拌原理都是由搅拌器的结构决定的。这些高速捏合机的搅拌器普遍采用桨式结构。由于桨面的斜过与运动方向成一定倾斜角,所以在搅拌器运司时,对成粉粒状态的物料而言,除产生水平环流式分散外,同时还产生轴向分流式分散。物料被极快地抛向釜壁,沿釜壁摩擦上升,随之又被折流板折流,跌落在釜中心所形成的涡流中,再韧抛向釜壁,如此不已,直至混合结束。物料在混合过程中所需要的热量主要来自摩擦热,因此,在同转速情况下,设备的容积愈大,其剪应力愈高,随之摩擦升温速率愈高。所以,当设备小于1001后,其摩擦热变得很小,当设备小于IOL时,摩擦热几乎等于零。所以IOOL以下的高速捏合机在工作时,根本不能依靠摩擦热来达到混合所需要的混合温度,只好由釜壁夹套中的电加热油来提供热量。这样就造成釜温高于料温,物料中分子量低的部分首先粘附釜壁,造成组份比例变化,产生混合不均、预塑化不均等现象。而如果不采用外加热,混合中的

物料又达不到预塑化的效果。这就是实验室数据与大生产数据不能保持一致的重要原因之一。

新型改性机的目的是提供一种高分子材料配混用高速捏合机组,它在加工过程中能产生较高的剪应力,使小到2L的试验设备在3—5min时间内通过摩擦热将物料升温到预塑化温度(110°C)也可以在200~500L容积状态下将纳米级等超细粉体材料进行预分散处理。

②工艺技术路线:新型改性机是一种高分子材料高速捏合机组,包括机体和安装在机上的高速捏合机、低速捏合机二部分。其中高速捏合机主要有带降温夹套的釜体、主轴、三层叶桨、釜盖、折流板、传动装臵、驱动电机构成。低速捏合机主要有带降温夹套的釜体、主轴、低速叶桨、釜盖、传动装臵、驱动电机构成。其特征是:所述高速捏合机的三层叶桨,第一层为与釜底形状一致的低桨,作用是将底层物料抛起;第二层桨叶也是桨式,称为中桨,作用是将中层物料抛起,使层与层之间产生摩擦;第三层叶桨是二端对称的二个流线体,与釜壁作平行运动,作用是对被第一、二层桨叶抛向釜壁,并沿釜壁作摩擦上升的物料进行碾压式剪切,称之为上桨。这种剪应力较大,既能产生足够的摩擦热使物料升温,又足以打破纳米级粒子的团聚力,并对其进行预分散处理。所述折流板是针对三层叶桨的工作原理而设计成上覆式,其作用是将经过流线体碾压式剪切的物料折落向涡流中心。所述驱动电机和传动装臵在用于小型试验设备时,主轴的转速不能低于 1000转/min,在用于纳米级粉体分散时,主轴的转速加大到2000转/min以上。所述带冷却衬套的釜体,主要作用是控制温升速率,其结构特征是夹层中有一条螺旋状冷却水路。所述低速捏合机部分的作用,是在相同时间内将高速捏合机转入的高温物料不粘结的降至常温。

综上所述,新型改性机由于采用新的搅拌原理和新型叶桨组合,强化了剪切分散混合能力,使摩擦热有效地作用在2L-IOOL小型试验用设备中去,使小试的数据可以和工业化生产保持一致。同样,这种强化了的剪切分散混合能力,在用于200-500L高速捏合机时,可有效地对纳米级粉体进行预分散处理的工业化生产中。而低速冷却部分,则在相同时间内将高温物料分散性地降至常温,从而解决了小试配混摩擦热难和纳米级粉体预分散难等问题。

图5是一台由2L高速热捏合机与6L冷混合机构成的高冷混机组,专门用于

实验室的配混

小试。

图5 210高速混合机与冷却混合机示意图

图6是高速捏合机中三层叶桨8-9—10及折流板14的工作状态及料流形式。

图7是俯视上桨10对釜壁作平行运动时,沿釜壁作摩擦上升的物料被碾压式剪切的情况。

图6图7

结论

1、近年来,随着粉体表面改性深加工技术的发展,中国原有的改性设备已经远远不能满足需要,迫切需要对原有的改性设备进行改革和改进。

2、引进、消化、吸收、改进国外先进改性设备,始终是我们关注的重点,本文仅叙述了几种引进的国外机型。相信还会有更新、更好的改性设备引进。

3、对大家最熟悉的高冷搅机组进行改革,使它的功能不断提高,最终满足粉体表面改性的要求,也是中国塑料加工协会改性塑料专委会关注的重点。本文介绍的张家港轻工机械厂和青岛远东塑料工程公司新设计的两种新型改性机,就是改革的初步成果,希望引起大家的重视。

参考文献:

[1]刘伯元、刘英俊主编刘英俊[M],《塑料填充改性》1998中国轻工业出版社

[2]刘英俊王锡臣主编[M],《改性塑料行业指向》2000中国轻工业出版社

[3]刘伯元《粉体的表面改性》 2002.3 塑料技术P6—24

[4]郑水林[M],《粉体表面改性》 1998 中国建材工业出版社

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

SLG 型连续式粉体表面改性机应用研究

SLG型连续式粉体表面改性机应用研究 郑水林1李 杨2骆剑军3 1.中国矿业大学北京校区,北京 100083; 2.北京工业大学; 3.江阴市启泰非金属工程有限公司 摘 要:在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词:粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性:①对粉体及表面改性剂的分散性好;②粉体与表面改性剂的接触或作用机会均等;③改性温度可调;④单位产品能耗低;⑤无粉尘污染;⑥操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

《粉体材料表面改性》课程教学大纲

《粉体材料表面改性》课程教学大纲 课程代码:050542002 课程英文名称:Surface Modification of powder (A2) 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:粉体科学与工程专业 大纲编写(修订)时间:2017.3 一、大纲使用说明 (一)课程的地位及教学目标 粉体表面改性是粉体科学与工程专业方向课,为选修课。本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。 通过本课程的学习,学生将达到以下要求: 1.掌握粉体材料表面改性工艺的方法和原理; 2.使学生掌握目前工业表面改性典型设备; 3.使学生了解表面改性剂的种类、性质、使用条件; 4.掌握粉体改性前后的物性变化及相关的检测方法; 5. 进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。 2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。 3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。了解特种粉体的生产工艺、制备技术及行业发展趋势。具备制备、加工特种粉体的必要的基础知识和基本技能。 (三)实施说明 本课程安排在第七学期学习,共24学时,其中理论讲课24学时。根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。 1.教学方法:课堂讲授中重点对基本概念、基本原理和基本方法的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;积极增加课堂教学的趣味性和互动性,充分调动学生学习的主观能动性;注意培养学生独立进行科学研究的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业课,涉及到许多物粉体表面改性的设备,因此在教学中采用ppt与课堂讲授相结合的教学手段,培养学生浓厚的学习兴趣,确保在有限的学时内,高质量地完成课程教学任务。 (四)对先修课的要求

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

粉体表面改性设备

粉体表面改性设备 中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •重力混合器 •气动混合器 •转鼓式混合机 •v型混合机 •Z型混合机 •高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •开炼机 •密炼机 •混炼型单螺杆挤出机,布斯混炼机 •双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。 ②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。

从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。 ②工作原理: 粉体原料经给料输送系统被送至主机上方的雾化室,在输送过程中,由给料输送机特设的加热装臵将粉体加热并干燥,与此同时固体状的改性剂在专用加热容器内也被加热熔化至液体状态后经输送管道送至雾化室。 雾化室内设有两组喷嘴,并均通人由给风系统送来之热压力气流,其中一组有四只喷嘴按不同位臵分布于雾化室内壁,其作用是将由给料输送系统送来的粉体物料吹散呈雾状,另一组有一只喷嘴同时与改性剂输送管道相通,将液状改性剂也吹散呈雾状。此时,原料和改性剂形成雾状,由于受到两组喷嘴从不同方向喷射出气流的作用,得以充分的混合,随即进人主机。 主机由高速旋转的主轴、搅拌棒、冲击锤、中间充满循环导热油的夹层简体等部分组成。进入主机内的雾化物料在搅拌棒的高速搅拌下,受到了冲击、摩擦、剪切等诸多力的作用使粉体颗粒与改性剂得到更充分接触、混合。主机夹层内循

SLG型连续式粉体表面改性机应用研究

第25卷增刊非金属矿Vo l 25Special Issue 2002年9月Non M etallic M ines Sep,2002 SLG型连续式粉体表面改性机应用研究 郑水林1 李 杨2 骆剑军3 (1 中国矿业大学北京校区,北京 100083;2 北京工业大学;3 江阴市启泰非金属工程有限公司) 摘 要 在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词 粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性: 对粉体及表面改性剂的分散性好; 粉体与表面改性剂的接触或作用机会均等; 改性温度可调; 单位产品能耗低; 无粉尘污染; 操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面处理的SLG型连续式粉体表面改性机,并对其进行了应用研究。 1 SLG型连续式粉体表面改性机结构和性能特点1 1 结构和工作原理 SLG型连续式粉体表面改性机, 主要由温度计、出料门、进风口、风管、主机、进料口、计量泵和喂料机组成(图1)。其主机由三个呈品字形排列的改性圆筒组成。 图1 SLG型连续式粉体表面改性机结构 1 温度计; 2 出料门; 3 进风口; 4 风管; 5 主机; 6 进料口; 7 计量泵; 8 喂料机 工作时,待改性的物料经喂料机给入,经与计量和连续给入的表面改性剂接触后,依次通过三个圆筒形的改性腔从出料口排出。在改性腔中,特殊设计的高速旋转的转子和定子与物料的冲击、剪切和摩擦作用,产生其表面改性所需的温度。该温度可通过转子转速、粉料通过的速度或给料速度及风门大小来调节,最高可达120 。同时转子的高速旋转,强制物料松散并形成涡旋二相流,使表面改性剂能迅速、均匀或均等地与颗粒表面作用,包覆于颗粒表面。因此,该机的结构和工作原理,基本上能满足对粉体及表面改性剂的良好分散性、粉体与表面改性剂的接触或作用机会均等的技术要求。 1 2 性能特点 SLG型连续式粉体表面改性机的工艺配置,主要由给料装置、给药装置、SLG型连续式粉体表面改性机、旋风集料器及除尘器组成(图2)。这一配置,具备了连续生产、无粉尘污染等工艺特性,且操作简便、运行平稳、单位产品能耗低。 目前,该型粉体表面改性机共研制出二种机型,

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

表面与界面

无机粉体表面改性方法综述 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑

SLG型连续式粉体表面改性机改性机理析疑

SLG型连续式粉体表面改性机改性机理析疑 《非金属矿》2003年第5期 骆剑军 刘董兵 摘 要 在SLG型连续式粉体表面改性机向市场推广过程中,不少专家和用户就该设备的改性原理并与传统重力型搅拌 式改性设备作对比后,提出了一些问题,本文就此作出详细的解答和说明。 关键词 SLG型连续式粉体表面改性机 改性机理 析疑 分散 混合 SLG型连续式粉体表面改性机(下称SLG型改性机)自1999年底推向市场以来,以其良好的可操作性、高效的表面处理效果、稳定的产品质量,以及处理能力大、低能耗、低污染、粉体产品不返粗等优点,赢得广大用户认可。尤其值得一提的是,该机对于超微细粉体,甚至纳米粉体,都有很好的改性和分散效果。对于不少专家和用户就SLG型改性机改性原理和与传统重力型搅拌式改性设备作对比后,提出的一些问题,本文作出解答和说明。 1粉体表面改性的四大要素 粉体表面改性的完成,必须具备以下四大要素。 1.1粉体细度 改性粉体必须具有一定的细度,应用时才能体现出它的表面活性和功能性。目前一般所用的填料粉体,细度都在325目以上。 1.2合适的、适量的改性药剂 在改性过程中,根据粉体表面不同的活性基团、不同的应用方向或客户的不同要求,应选择不同的改性药剂,其选择应具有特定性和针对性。另外,根据粉体的品种、细度和比表面积的不同,应选择一个比较恰当的改性药剂用量。药剂用量过小,粉体颗粒达不到最大的表面包覆率;药剂用量过大,则会增加生产成本,甚至会出现反包覆的现象,降低改性效果。 1.3粉体和改性药剂的分散混合 在粉体改性过程中,粉体和改性药剂必须充分分散混合,才有利于改性剂对矿物粉体进行最大限度的包覆或活化。若粉体不能充分分散,就会出现药剂包覆粉体的团聚颗粒,作为填料应用于制品中会出现所谓的“粉头”现象;若改性药剂不能充分分散,又会导致部分药剂未参与改性过程而使改性药剂用量增大,从而增加生产成本;若粉体和改性药剂两者分散混合不充分,则会直接导致成品粉体包覆率和活化指数都低。 1.4改性温度 粉体改性过程是一个吸热过程,不管是药剂对粉体颗粒表面的物理包覆,还是药剂活性基团与粉体颗粒表面活性官能团之间的化学链接,一定的热量可促使粉体表面改性高效快速完成。在粉体改性四个必备要素中,第一要素是基础,第二要素可通过大量的实验和应用经验获得,第三、四两个要素则与所使用的改性设备关系密切,不少专家和用户的疑义,就是针对SLG型改性机的改性工艺设计和上述改性要素而提出的。 2问题讨论与分析 2.1粉体细度 SLG型改性机对1250目以上超微细粉体甚至纳米级粉体,都具有良好的分散和改性效果。而传统的重力型改性设备(如高搅机或捏合机)在处理1250目以上粉体时,在不同程度上都会出现改性成品粉体颗粒团聚返粗、活化指数低的现象,而且粉体越细,改性活化效果越差,对纳米粉体则根本无法处理。此前,国内对超微细粉体和纳米粉体的表面处理和分散,要么利用湿法改性工艺,要么依赖进口粉体或利用进口设备进行处理,这必然会导致生产成本增加,降低产品的市场竞争力。而SLG型改性机对超微细重钙、高岭土、氢氧化镁、 硫酸钡、绢云母、粉煤灰、纳米氧化锌、氧化铝及纳米轻钙等粉体的应用实践表明,该设备突破了传统改性设备的这一瓶颈,能很好地解决这一问题,拓宽了国内表面改性粉体的加工应用范围。

超细粉体的应用及其表面改性机理浅析

超细粉体的应用及其超细粉体的应用及其表面表面表面改性机理改性机理改性机理浅析 浅析刘涛(上海汇精亚纳米新材料有限公司 凤阳汇精纳米新材料科技有限公司) 功能材料是高分子材料研究、开发、生产和应用中最活跃的领域之一,在材料科学中具有十分重要的地位。超细粉体不仅是一种功能材料,而且其为新的功能材料的复合更使之具有广阔的应用前景,在国民经济各个领域都有着广泛的应用,起着极其重要的作用。一:超细粉体的性质及应用 1.超细粉体表面特性 超细粉体科学与技术是近年来发展起来的一门新的科学技术,是材料科学的一个重要组成部分。对于超细粉体统一定义,一般将粒径大于1μm 的粉体称为微米粉体,粒径处于0.1-1μm 之间的粉体称为亚微米粉体,粒径小于100nm 的粉体称为纳米粉体,也有人将粒径小于3μm 的粉体称为超细粉体。超细粉体通常又分为微米粉体、亚微米粉体及纳米粉体。超细粉体的粒径与其特性的关系如下表所示。 2.超细粉体表面结构 根据晶体的空间结构,可以分为四种类型紧密堆积结构、骨架结构、层状结构和链状结构。晶体受外力作用破坏时,将沿着晶体构造中键合力最弱的地方断裂。在断裂面上均产生得不到补偿的断键,即不饱和键。不同化学组成的超细粉体在新鲜表面具有极不相同的不饱和度。根据断裂键能的性质,表面不饱和键有强弱之分,断裂面以离子键和共价键为主的是强不饱和键,表面为极性表面断裂面以分子键为主的为弱不饱和键,表面为非极性表面。超细粉体不同,表面官能团的种类和数量不同,同一超细粉体表面官能团有一定的分布。 3、超细粉体的应用 (1)超细粉体在塑胶领域中的应用 超细粉体在化工领域中的应用十分广泛,在涂料、塑料、橡胶、造纸、催化、裂解、有机合成、化纤、油墨等领域都有广泛的应用。在塑料行业,将超细粉体与塑料复合可起到增强增韧的作用,如将纳米碳酸钙表面改性后,对材料的缺口抗冲击强度和双缺口冲击强度的增韧效果十分显著,而且加工性能依然良好。 除此之外,超细粉体的加入,可以改善复合材料的耐老化性,防止塑料光辐射老化,提高塑料

金属粉体表面改性综述

金属粉体表面改性综述 姓名:王海云学号:1103011030 班级:11级粉(1)[摘要]随着材料新性能的要求越来越高,人们对金属粉体的表面改性也提出了新的要求,本文从概述金属粉体的形状、微结构和缺陷开始,阐述了金属粉体表面改性的方法及金属粉体表面改性的主要影响因素,以探索和研究金属粉体的表面改性。 [关键词]表面改性金属粉体方法主要影响因素 金属粉体有着独特的形态特征和物理、化学及机械性质,作为独立材料或作为添加材料已广泛应用于各个领域。目前,金属粉末已经形成产业化生产,无论是从粉体的品种,还是粒度、功用都有系列产品可供选择应用,作为金属粉体的主要功用之一,即是将金属粉材料与表面技术结合起来,形成表面涂层,对基体材料进行改性和赋予基体新的功能。随着人民的社会生活水平的提高,对材料的新性能要求日趋提高,材料的功能化便是发展的趋势。然而,从材料的整体性能出发来追求功能化往往受到限制,所以更多关注的是材料的表面性能。 1.金属粉体的形状、微结构和缺陷 金属粉体的结构一般与粗晶相同,用气相蒸气法制取的各种金属粉体的形状是多种多样的。六方密堆金属镁超微粉体呈六角对称的片状或等轴状,锌超微粉基本上与镁的形状相同。 面心立方金属银、钴、镍、铜、钯和金的形状十分相似,它们的单晶为八面体,一般为立方体的平面截了角的八面体,截角的程度从

零(则八面体)至50%(立方八面体)。 2.表面改性 超微粉体表面改性指通过采用表面添加剂的方法,使超微颗粒表面发生化学反应和物理作用,从而改变微粒的表面状态,改善或改变粉体的使用性质的处理过程。通过表面改性,可提高粉体的分散性、耐久性、耐候性,提高表面活性,从而使超微粒表面产生新的物理、化学、光学特性,适应不同的应用要求,拓宽其应用领域,并显著提高材料的附加值。粉体表面改性的主要方法是根据需要在粉体表面引入一层包覆层。这样改性后的粉体就可以看成是有“核层”和“壳层”组成的复合粉体,通过在金属粉体上涂覆一层化学组成不同的覆盖层,能够使其具有兼容性、提高其热、机械及化学稳定性,改变其光、磁、电、催化、亲水、疏水及烧结特性,提高其抗腐蚀、耐久性和使用寿命。 2.1 溶胶-凝胶法 溶胶-凝胶过程是指无机前驱体通过各种反应形成三维网状结构。金属醇盐经过水解或缩合反应形成金属氧化物分子是最常见的溶胶-凝胶反应。 溶胶-凝胶法中,二氧化硅是应用最为广泛的一种调节表面和界面性质的表面修饰剂。选择二氧化硅作为颗粒表面的包覆层原因有两个:其一是二氧化硅粉体即使在等电点PH 值等于2 左右也不容易聚集;其二是它在中性PH 值及较高的盐浓度条件下也有很高的稳定性。因此,用二氧化硅覆盖颗粒表面可以使颗粒分散在介质中达到较高的

无机非金属材料粉体表面技术研究进展

学号:1003102111 姓名:杨高林 无机非金属材料粉体表面技术研究进展早在20世纪50年代研究人员就注意到,对于无机颜料,如钛白粉,用二氧化硅或三氧化铝进行表面复合或包膜处理可以改变其保光性和耐候性。但作为技术加工研究表面改性是在最近一二十年的事情,尤其是在现在有机/无机复合材料、无机/无机复合材料、涂料或涂层材料、吸附和催化材料、环境材料及超细粉体和纳米粉体的制备和应用具有重要意义。表面改性是无机粉体的主要要加工技术之一,对提高无机粉体的应用性能和应用价值有着至关重要的作用。我们都知道,粉体表面改性或表面处理与许多学科密切相关,其中包括粉体工程、物理化学、有机化学、无机化学、高分子化学、无机非金属材料、高分子材料、复合材料、结晶学、光学、电学磁学等。可以说分体表面改性是粉体工程或者颗粒制备技术与其他众多学科相关联的边缘学科。粉体表面改性主要包括以下四个研究内容: 1>粉体改性的原理与方法 2>表面改性剂 3>表面改性工艺与设备 4>粉体表面改性产品的检测与表征 一分体改性的原理 利用物理、化学机、械等方法对颗粒表面进行处理,根据应用的需要有目的地改变颗粒表面的物理化学性质,如表面晶体结构和官能团表面能、界面润湿性、电性、表面吸附和反应特性等,以满足现代

新材料,新工艺和新技术发展的需要。 二表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、微胶囊包覆、机械力化学、等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、微胶囊包覆改性法和机械化学改性法及原位聚合改性法。 三表面改性剂 粉体的表面改性,主要是依靠表面改性剂在粉体颗粒表面的吸附、反应,包覆或包膜来实现的。因此,表面改性剂对于粉体的表面改性或表面处理具前应用的表面改性剂主要有偶联剂、表面活性剂、有机硅、不饱和有机酸及有机低聚物,超分散剂、水溶性高分子等。 四表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为机械化学与表面化学包覆改性复合工艺,干燥与表面化学包覆改性复合工艺,沉淀反应与表面化学包覆改性复合工艺等。干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷

粉体表面改性方法原理、工艺技术及使用的粉体改性剂

粉体表面改性方法原理、工艺技术及使用的粉体改性剂 无机粉体的表面改性是根据使用行业所需求粉体具备的性能而进行的对应表面改性,以满足现代新材料、工艺和技术的发展需求,提升原有产品的性能特点,而且还可以提升对应的产能以及生产效率,在粉体加工行业也越来越受到重视,目前无机粉体表面改性的方法主要为6大类。 1、方法一:物理涂覆 方法原理:利用高聚物或树脂等对粉体表面进行处理,一般包括冷法和热法两种。 粉体改性剂:高聚物、酚醛树脂、呋喃树脂等。 影响因素:颗粒形状、比表面积、孔隙率、涂敷剂的种类及用量、涂敷处理工艺等。 适用粉体:铸造砂、石英砂等。 2、方法二:化学包覆 方法原理:利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆,一般包括干法和湿法两种。除利用表面官能团改性外,该方法还包括利用游离基反应、鳌合反应、溶胶吸附等进行表面包覆改性。 粉体改性剂:如硅烷、钛酸酯、铝酸酯、锆铝酸盐、有机铬等各种偶联剂,高级脂肪酸及其盐,有机铵盐及其他各种类型表面活性剂,磷酸酯,不饱和有机酸,水溶性有机高聚物等。 影响因素:粉体的表面性质,粉体改性剂种类、用量和使用方法,改性工艺,改性设备等。 适用粉体:石英砂、硅微粉、碳酸钙、高岭土、滑石、膨润土、重晶石、硅灰石、云母、硅藻土、水镁石、硫酸钡、白云石、钛白粉、氢氧化铝、氢氧化镁、氧化铝等各类粉体。 3、沉淀反应

方法原理:通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包膜”,以达到改善粉体表面性质,如光泽、着色力、遮盖力、保色性、耐候性、电、磁、热性和体相性质等。 粉体改性剂:金属氧化物、氢氧化物及其盐类等各类无机化合物。 影响因素:原料的性质(粒度大小和形状、表面官能团),无机表面改性剂的品种,浆液的pH值、浓度,反应温度和反应时间,洗涤、脱水、干燥或焙烧等后续处理工序。 适用粉体:钛白粉、珠光云母、氧化铝等无机颜料。 4、机械力化学 方法原理:利用超细粉碎及其他强烈机械作用,有目的的对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构、溶解性能(表面无定形化)、化学吸附和反应活性(增加表面活性点或活性基团)等。 改性设备及药剂:球磨机、气流粉碎机、高速机械冲击磨等,助磨剂、分散剂、改性剂等。 影响因素:粉碎设备的类型、机械作用的方式、粉碎环境(干、湿、气氛等)、助磨剂或分散剂的种类和用量、机械力的作用时间以及粉体物料的晶体结构、化学组成、粒度大小和粒度分布等。 适用粉体:高岭土、滑石、云母、硅灰石、钛白粉等各类粉体。 5、插层改性 方法原理:利用层状结构的矿物粉体颗粒晶体层之间结合力较弱(如分子键或范德华力)或存在可交换阳离子的特性,通过离子交换反应或化学反应改变粉体的界面性质和其他性质的改性方法。 粉体改性剂:季铵盐类、聚合物、有机单体、氨基酸等有机插层剂,羧基钛、金属氧化物、无机盐等无机插层剂。 影响因素:原料的性质、反应环境、插层剂种类和用量等。 适用粉体:高岭土、石墨、云母、水滑石、蛭石、累托石、金属氧化物以及层状硅酸盐等。 6、高能表面改性 方法原理:指利用紫外线、红外线、电晕放电、等离子体照射和电子束辐射等方法对粉体进行表面改性的方法。

相关文档
最新文档