变压吸附原理

变压吸附原理
变压吸附原理

变压吸附的基本原理

变压吸附(PSA)技术是近30年来发展起来的一项新型气体分离与净化技术,1942年德国发表了第一篇无热吸附净化空气的专利文献,60年代初,美国联合碳化物公司首次实现了变压吸附四床工艺技术的工业化。由于变压吸附技术投资少,运行费用低,产品纯度高,操作简单,灵活,环境污染小,原料气源适应范围宽,因此,进入70年代后,这项技术广泛应用于化工,冶金,轻工及环保等领域。

吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般密度相对较大的多孔固体)被称为吸附剂。被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四类,即:化学吸附,活性吸附,毛细管凝缩和物理吸附,变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。

物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华和电磁力)进行吸附。其特点是应:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各项物质的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。

变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附质温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸收而使其他组分得以提纯;利用吸附剂的第一个性质,可实现吸附剂在低温高压下吸附而在高温,低压下解吸再生,从而达构成吸附剂的吸附于再生循环,达到连续分离气体的目的。

2.吸附剂

工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝,活性炭类,硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和炭分子筛等。吸附剂最重要的物理特征包括容积,孔径分布,表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布,不同的比表面积,和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。

吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的,优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。

同时要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数尽可能大,所谓分离系数是指:在达到吸附平衡时(弱吸附组分吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比。分离系数越大,分离越容易。一般而言,变压吸附气体分离装置中的吸附剂的系数不易

小于3.

另外,在工业变压吸附过程中还应考虑吸附与解吸间的矛盾。一般而言,吸附越容易则解吸越困难。对于C5,C6等强吸附质,就应该选择吸附能力相当较弱的吸附剂如硅胶等,以使吸附容量适当而解吸较容易;而对于N2,O2,CO等弱吸附质,就应该选择吸附能力相当较强的吸附剂如分子筛等,以使吸附容量更大,分离系数更高。

此外,在吸附过程中,由于吸附床内压力是周期性变化的,吸附剂要经受气流的频繁冲刷,因而吸附剂还应该有足够的抗磨性。

在变压吸附气体分离装置常用的几种吸附剂中,活性氧化铝类属于对水有强亲和力的固体,一般采用三水合铝或三水铝矿的热脱水或热活化法制备,主要用于气体的干燥。

硅胶类吸附剂属于一种合成的无定型二氧化硅,它是胶态二氧化硅球形粒子大的刚性连续网络,一般是由硅酸钠盐溶液和无机盐混合来制备的,硅胶不仅对水有极强的亲和力,而且对烃类和CO2等组分也有较强的吸附能力。

活性炭类吸附剂的特点是:其表面所具有道德氧化物基团和无机物杂质使表面性质表现为弱极性或无极性,加上活性炭所具有道德特别大的内表面积,使得活性炭成为一种能大量吸附多种弱极性和非极性有机分子的广谱耐水性吸附剂。

沸石子分子筛类吸附剂是一种含碱性元素的结晶态偏硅铝酸盐,属于强吸附剂,有着非常一致的孔径结构和吸附选择性,对CO、CH4、N2、Ar、O2等均具有较高的吸附能力。

NA-CO专用吸附剂是我公司和南京化工大学共同开发的一种专门用于吸附CO的吸附剂,其特点是通过在吸附剂载体上加入贵金属,使其对CO具有特别的选择性和吸附精度,从而大大提高CO的分离效果。

碳分子筛是一种以碳为原料,经特殊的碳沉积工艺加工而成的专门用于提纯空气中的氮气的专用吸附剂,其孔径分布非常集中,只比氧分子直径略大,因此非常有利于对空气中氮氧的分离。

对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。

3吸附平衡:

吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程,吸附分离过程实际上都是一个平衡吸附过程。在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相得分子数和离开吸附相得分子数相等时,吸附过程就达到了平衡。在一定的温度和压力下,对于相同的吸附剂和吸附质,该动态平衡吸附量是一个定值。

在压力高时,由于单位时间内撞击到吸附剂表面的气体分子数多,因而压力越高动态平衡吸附容量也就越大;在温度高时,由于气体分子的动能大,能被吸附剂表面分子引力束缚的分子就少,因而温度越高平衡吸附容量也就越小。

我们用不同温度下的吸附等温线来描述这一关系,吸附等温线就是在一定的温度下,测定出各气体组分在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量用曲线连接而成的曲线。

下面给出的是吸附剂HXBC-15B对不同的气体组分在38℃下的吸附曲线,从该曲线可以看出:在相同的温度和压力下,吸附剂对不同的气体组分的吸附容量是不同的,变压吸附氢提纯技术正是利用吸附剂的这一特性,大量吸附强吸附组分而很少吸附弱吸附组分,从而使强吸附组分和弱吸附组分得以分离。

不同气体组分38℃下在活性炭类吸附剂上的吸附等温线图:

从上图的B→C和A→D可以看出:在压力一定时,随着温度的升高吸附容量逐渐减少。实际上,变温吸附过程正是利用上图中吸附剂在A→D段的特性来实际吸附与解吸的。吸附

剂在常温(即A点)下大量吸附原料气中的某些杂质组分,然后升高温度(到D点)使杂质得以解吸。

变压吸附原理

1.什么叫吸附? 答:当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 2.气体分离的原理是什么? 当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 3.什么叫化学吸附?什么叫物理吸附? 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。物理吸附通常分为变温吸附和变压吸附。 4.变压吸附属化学吸附或物理吸附? 分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。 5.变压吸附常用吸附剂有哪几种?他们各自的作用是什么? 变压吸附常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。 硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。它是用[wiki]硫酸[/wiki]处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及[wiki]石油[/wiki]组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。 活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初[wiki]氢[/wiki]氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。在一定操作条件下,它的干燥深度可达[wiki]露点[/wiki]-70℃以下。 活性炭是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造,所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。

变压吸附技术样本

变压吸附气体分离技术的应用和发展 摘要: 变压吸附气体分离技术在工业上得到了广泛应用, 已逐步成为一种主要的气体分离技术。它具有能耗低、投资小、流程简单、操作方便、 可靠性高、自动化程度高及环境效益好等特点。简单介绍了变压吸附分离技术 的特点, 重点介绍了近年来变压吸附技术各方面的进步和变压吸附技术当前所 达到的水平(工艺流程、气源、产品回收率、吸附剂、程控阀、自动控制等方面), 并对变压吸附技术未来的发展趋势进行了预测。 l 前言 变压吸附 (Pressure Swing Adsorption, PSA)的基本原理是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性, 经过周期性的压力变换过程实现气体的分离或提纯。该技术于l962年实现工业规模的制氢。进入70年代后, 变压吸附技术获得了迅速的发展, 装置数量剧增, 规模不断增大, 使用范围越来越广, 工艺不断完善, 成本不断下降, 逐渐成为一种主要的、高效节能的气体分离技术。 变压吸附技术在中国的工业应用也有十几年历史。中国第一套PSA工业装置是西南化工研究设计院设计的, 于l982年建于上海吴淞化肥厂, 用于从合成氨弛放气中回收氢气。当前, 该院已推广各种PSA工业装置600多套, 装置规模从数m3/h到60000m3/h, 能够从几十种不同气源中分离提纯十几种气体。 在国内, 变压吸附技术已推广应用到以下九个主要领域:

1.氢气的提纯; 2.二氧化碳的提纯, 可直接生产食品级二氧化碳; 3.一氧化碳的提纯; 4.变换气脱除二氧化碳; 5.天然气的净化; 6.空气分离制氧; 7.空气分离制氮; 8.瓦斯气浓缩甲烷; 9.浓缩和提纯乙烯。 在H2的分离和提纯领域, 特别是中小规模制氢, PSA分离技术已占主要地位, 一些传统的H2制备及分离方法, 如低温法、电解法等, 已逐渐被PSA 等气体分离技术所取代。PSA法从合成氨变换气中脱除CO2技术, 可使小合成氨厂改变其单一的产品结构, 增加液氨产量, 降低能耗和操作成本。PSA分离提纯CO技术为C l化学碳基合成工业解决了原料气提纯问题。该技术已成功的为 国外引进的几套羰基合成装置相配套。PSA提纯CO2技术可从廉价的工业废气 制取食品级CO2。另外, PSA技术还能够应用于气体中NOx的脱除、硫化物的脱除、某些有机有毒气体的脱除与回收等, 在尾气治理、环境保护等方面也有广阔的应用前景。 变压吸附的特点 变压吸附气体分离工艺在石油、化工、冶金、电子、国防、医疗、环境保护等方面得到了广泛的应用, 与其它气体分离技术相比, 变压吸附技术具有以下优点: 1.低能耗, PSA工艺适应的压力范围较广, 一些有压力的气源能够省 去再次加压的能耗。PSA在常温下操作, 能够省去加热或冷却的能耗。 2.产品纯度高且可灵活调节, 如PSA制氢, 产品纯度可达99.999%, 并可根据工艺条件的变化, 在较大范围内随意调节产品氢的纯度。 3.工艺流程简单, 可实现多种气体的分离, 对水、硫化物、氨、烃类等杂质有较强的承受能力, 无需复杂的预处理工序。

变压吸附技术在焦炉煤气制氢中的应用

变压吸附技术在焦炉煤气制氢中的应用 戴四新 (厦门市建坤实业发展公司,福建厦门 361012) 摘要:介绍了变压吸附(PSA)技术的基本原理及其应用于焦炉煤气提氢的Sysiv和Bergbau PSA制氢典型工艺。指出PSA技术是近年国内外发展最快、技术最成熟、成本最低的煤气制氢方法,在国内焦炉煤气制氢中最具发展前途,应大力推广应用。 关键词:变压吸附(PSA)技术;焦炉煤气;制氢技术 中图分类号:TQ028.1+5 文献标识码:B 文章编号:1004-4620(2002)02-0065-02 Application of the Pressure Shift Absorbing Technique in Hydrogen Making Process from COG DAI Si-xin (Xiamen Jiankun Industry Developing Corp.,Xiamen 361012,China) Abstract:The basic pinciple of the Pressure Shift Absorbing(PSA) Technique and the representative technics(Sysiv and Bergban)of it`s application for hydrogen making process from COG are discribing.It is pointed out that in recend past years the development of the PSA technique for the hydrogen-making process from COG is the most rapid and the technique is also the most perfect and economical way in the world,and it has the best developing foreground in hydrogen-making process from COG in China.It should be expanded and applied widely soon. Key words:pressure shift absorbing(PSA);coke oven gas(COG);hydrogen making technology

制氮机组工作原理

制氮机组工作原理 工作原理:碳分子筛是一种以煤或果壳为原料经特殊加工而成的黑色颗粒。其表面布满了无数的微孔。碳分子筛分离空气的原理,取决于空气中氧分子和氮分子在碳分子筛微孔中的不同扩散速度,或不同的吸附力或两种效应同时起作用。在吸除平衡条件下,碳分子筛对氧、氮分子吸附量接近。但在吸附动力学条件下,氧分子扩散到分子筛微孔隙中速度比氮分子扩散速度快得多。因此,通过适当的控制,在远离平衡条件的时间内,使氧分子吸附于碳分子筛的固相中,而氮分子则在气相中得到富集。同时,碳分子筛吸附氧分子的容量,因其分压升高而增大,因其分压下降而减少。这样,碳分子筛在加压时吸附氧分子使氮分子得到富集,减压时解吸出氧分子排到空气中,如此反复循环操作,达到分离空气的目的。简称PSA制氮。2、工艺流程本装置按工艺流程划分:可分为空气源净化处理部分;变压吸附制氮部分;缓冲罐部分等三部分。 空气源净化处理部分:由冷冻干燥机(气源系统),多级过滤器(气源系统),高效除油器,空气缓冲罐等组成。由无油压缩机压缩的空气(含油量≤0.01mg/m3,压力≥0.65MPa)经过滤器分离滤除杂质,然后进入冷冻干燥机(或冷却器)进行冷冻干燥出水。(冷冻干燥机设有自动排水器能自动排出大量的水份。)然后进入高效除油器除去微量油分。经以上处理后的压缩空气是洁净的无油干燥空气贮于空气缓冲罐中。变压吸附制氮部分(又称组件),由吸附罐B1、B2及相关管路阀门组成。干燥的空气进入B1或B2罐时,空气中氧气和二氧化碳被分子筛吸附,从吸附塔输出的是工业粗氮,经过滤器F2源源不断贮存在氮气缓冲罐C2中。B1和B2罐每隔1分钟自动交换一次,一个工作,一个再生。

变压吸附基础知识

一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084% (空气中各种气体的容积组分为:N2: 78.084%、02: 20.9476%、氩气:0.9364%、CO2: 0.0314%、其它还有 H2、 CH4、 N2O、 O3、 SO2、NO2 等,但含量极少),分子量为 28,沸点: -195.8C,冷凝点:-210C。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂一一碳分子筛最佳吸附压力为 0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现 O2 、N2 的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对 O2、 N2 的分离作用是基于这两种气体的动力学直径的微小差别,O2 分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率, N2 分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和 CO2 的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是 N2 和 Ar 的混合气。

变压吸附原理及应用

变压吸附气体分离技术 目录 第一节气体吸附分离的基础知识 (2) 一、吸附的定义 (2) 二、吸附剂 (3) 三、吸附平衡和等温吸附线—吸附的热力学基础 (6) 四、吸附过程中的物质传递 (10) 五、固定床吸附流出曲线 (12) 第二节变压吸附的工作原理 (14) 一、吸附剂的再生方法 (14) 二、变压吸附工作基本步骤 (16) 三、吸附剂的选择 (17) 第三节变压吸附技术的应用及实施方法 (20) 一、回收和精制氢 (20) 二、从空气中制取富氧 (24) 三、回收和制取纯二氧化碳 (25) 四、从空气中制氮 (26) 五、回收和提纯一氧化碳 (28) 六、从变换气中脱出二氧化碳 (31) 附Ⅰ变压吸附工艺步骤中常用字符代号说明 (32) 附Ⅱ回收率的计算方法 (32)

第一节气体吸附分离的基础知识 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面的原子的剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的压力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais) 吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本文以下叙述的除了注明之外均为气体的物理吸附。

PSA制氮机工作原理及工艺流程

PSA制氮机工作原理及工艺流程 一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:N2:78.084%、O2:20.9476%、氩气:0.9364%、CO2:0.0314%、其它还有H2、CH4、N2O、O3、SO2、NO2等,但含量极少),分子量为28,沸点:-195.8℃,冷凝点:-210℃。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色 碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2和Ar的混合气。 由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 三、PSA制氮基本工艺流程 空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。 制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。当流程处于左吸状态时,控制左吸的电磁阀

变压吸附制氢工艺

变压吸附制氢工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残

PSA变压吸附制氮原理资料

制氮机 制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。 根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。 制氮机是按变压吸附技术设计、制造的氮气设备。制氮机以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。 中文名制氮机 含义制取氮气的机械组合 工作原理利用碳分子筛的吸附特性 主要分类深冷空分,膜空分,碳分子筛空分、 1工作原理 1. ? PSA变压吸附制氮原理 2. ?深冷空分制氮原理 3. ?膜空分制氮原理 2主要分类 1. ?深冷空分制氮 2. ?分子筛空分制氮 3. ?膜空分制氮 3设备特点 4系统用途 5技术参数 工作原理 PSA变压吸附制氮原理 碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

变压吸附设计说明

内蒙古宜化化工有限公司30万吨/年聚氯乙烯 变压吸附装置 (工程号:KY9304) 工艺设计说明书 设计阶段:施工图 图号:KY9304-30-01 天津渤海化工集团规划设计院 中国天津 2009年06月

编制:方玉云09.6 校核:陶建设09.6 审核:许淑萍09.6

目录 1概述 (6) 1.1设计概况 (6) 1.2原料、产品及副产品 (7) 1.3公用工程参数及消耗量 (9) 1.4 生产制度和劳动定员 (10) 2 工艺 (12) 2.1 概述 (12) 2.2工艺原理 (12) 2.3工艺流程叙述 (13) 2.4设备选型说明 (14) 2.5能源利用 (14) 2.6主要控制指标 (15) 2.7装置布置 (16) 2.8吸附剂的装填及数量 (18) 2.9消耗定额 (18) 3管道设计 (20) 3.1概述 (20) 3.2变压吸附装置工艺管道特性 (20) 3.3设计遵循的标准规范 (20)

3.4管道及管道器材的选用 (21) 3.5吸附剂装填注意事项 (22) 3.6管道施工及验收 (22) 3.7管架设计 (24) 3.8静电接地与跨接 (24) 3.9程控阀安装方向 (24) 4防腐设计 (26) 4.1设计范围 (26) 4.2涂料选型 (26) 4.3施工要求 (26) 5绝热设计 (28) 5.1概述 (28) 5.2施工要求 (28)

1概述 1.1设计概况 1.1.1设计依据 1.1.1.1内蒙宜化(甲方)与四川开元科技有限公司(乙方)签订的《内蒙古宜化化工有限公司30万吨/年聚氯乙烯变压吸附装置》合同及技术附件; 1.1.1.2业主提供的气象、水文及地质概况、布置区域等设计基础资料。 1.1.2设计原则 1.1. 2.1采用先进、可靠的变压吸附气体分离技术,技术方案力求新近可靠,既要体现技术先进的优势,又要切实解决好工程放大和工程配套问题。 1.1. 2.2贯彻“五化”(一体化、露天化、轻型化、社会化、国产化)原则。 1.1. 2.3依托工厂现有设施,充分发掘工厂潜力,以节省投资,缩短建设周期,创造尽可能好的经济效益和社会效益。 1.1. 2.4严格执行国家和行业有关设计规范、规定及标准。 1.1. 2.5本装置的原料及产品为易燃易爆物质,在设计中严格执行国家及有关部委关于消防、环保、劳动安全与工业卫生的有关规范,采取有效措施,改善劳动条件,保证安全生产。 1.1.3设计范围及设计分工 1.1.3.1装置界区划分

变压吸附制氧技术方案教材

ZY-1000/80Nm3/h变压吸附制氧 技术方案 目录 第一章:公司简介 第二章:变压吸附制氧简介 第三章:技术方案

第四章:近两年变压吸附设备部分业绩表 第五章:公司投资成功案例 一、公司简介 成都宏达新元科技有限公司是一家专业从事气体设备及气体产品应用研究开发的专业公司。公司的核心业务包括: 设备销售、租赁、整改 ★VPSA真空变压吸附制氧

★PSA变压吸附制氧设备 ★制氮设备、氮气纯化装置 ★LNG系统成套设备和LNG泵 企业拥有现代化标准生产车间和大批专业从事VPSA真空变压吸附、PSA变压吸附、气体分离及机械技术人员,为气体及气体设备领域用户提供独特的产品、服务、技术咨询和解决方案。 我公司下辖的企业有四川简阳天欣气体公司和广西百色聚源气体公司,为客户提供优质高纯度的气体。企业还在四川省内与成都欣国力低温公司、简阳川空通用机械厂建立了良好的合作关系。 我公司于2011年3月17日在梧州市苍梧县工商行政管理处登记注册成立的广西川桂气体科技有限公司。其性质为有限责任。注册资金2000万元人民币。 我们将不断完善售后服务、改善设备工艺、加强质量管理,并与研究机构密切配合,为广大用户提供更出色的产品与服务。。。。。。 二、变压吸附制氧技术简介 变压吸附制氧技术是近几十年发展起来的一种空分制氧工艺。与传统的深冷空分制氧装置相比,变压吸附制氧装置具有投资少、能耗低、运行维护费用低、工艺条件温和(常温、低压)、工艺流程简单、自动化程度高、操作灵活性高(可随时开停)、

建设工期短和安全性好等优点,因此得到国内外大型气体公司和研究机构的广泛关注,并纷纷投入巨大的人力物力研究开发。自九十年代国外开发成功高效锂基制氧分子筛后,变压吸附空分制氧技术开始迅猛发展并得到广泛应用。目前,在很多用氧场合下变压吸附空分制氧可替代深冷空分制氧,并且装置的经济性明显优于传统的深冷空分制氧装置。 2.1.变压吸附空气分离制氧原理 空气中的主要组份是氮和氧,因此可选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。氮和氧都具有四极矩,但氮的四极矩(0.31?\u65289X 比氧的(0.10 ?\u65289X大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1 所示)。因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。

变压吸附式制氮设备

变压吸附式制氮设备 一、变压吸附制氮设备,即PSA制氮设备,其工作原理如下述: 变压吸附 (Pressure Swing Adsorption,简称PSA制氮) 是一种先进的气体分离技术,它在当今世界的现场供气方面具有不可替代的地位。一般PSA制氮选择优质进口碳分子筛(CMS)为吸附剂,它吸附空气中的氧气、二氧化碳、水分等,而氮气不易被吸附。 在吸附平衡的情况下,任何一种吸附剂在吸附同一种气体时,气体压力越高,则吸附剂的吸附量越大,反之,压力越低,吸附量越小。如上所述,使用较高压力的压缩空气,碳分子筛对氧气、二氧化碳、水分等的吸附量会增大,可以提高分子筛的吸附效率。 碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线如下图: PSA碳分子筛制氮装置中有两个装满碳分子筛的吸附塔,洁净、干燥的压缩空气进 入变压吸附制氮装置,流经装填有碳分子筛(CMS)的吸附塔。压缩空气由下至上流经 吸附塔,利用分子筛在不同压力下对 氮和氧等的吸附力不同,氧气、水、 二氧化碳等组份在碳分子筛微孔吸附, 未被吸附的氮气通过吸附塔,在出口 处富集,成为产品气,由吸附塔上端 流出,进入缓冲罐。经一段时间后, 吸附塔中碳分子筛吸附达到饱和,需 进行再生。(吸附塔内吸附再生简单示意图如左图) 再生是通过停止吸附步骤,降低吸附塔的压力来实现的。已完成吸附的吸附塔短期 均压后开始降压,脱除已吸附的氧气、水、二氧化碳等组份,完成再生过程。 两个吸附塔交替进行吸附和再生,从而产生流量和纯度稳定的产品氮气。两只吸附 器的切换由控制系统智能控制自动完成。

二、变压吸附制氮设备组成及工艺流程示意: 三、变压吸附制氮设备产品图片(只有制氮主机,不含配套设备):

变压吸附(PSA)制氮原理及工艺基本知识

变压吸附(PSA)制氮技术原理及工艺基本知识 一、基础知识 1 氮气知识 1.1 氮气基本知识 氮气作为空气中含量最丰富的气休,取之不竭,用之不尽。氮气为双原子气体,组成氮分子的两个原子以共价三键相联系,结合得相当牢固,致使氮分子具有特殊的稳定性,在巳知的双原子气体中,氮气居榜首。氮的离解能(氮分子分解为原子时需要吸收的能量)为941.69kJ?moL-1。氮的化学性质不活泼,在一般状态下表现为很大的惰性。在高温下,氮能与某些金属或非金属化合生成氮化物,并能直接与氧和氢化合。在常温、常压下,氮是无色、无味、无毒、不燃、不爆的气体,使用上很安全。 在常压下,把氮气冷至-196℃将变成无色、透明、易于流动的液氮。液氮将凝结成雪花状的固体物质。 氮气是窒息性气体,能致生命体于死亡。 氮气(N 2)在空气中的含量为78.084%(空气中各种气休的容积组分为:N 2 :78.084%、 O 2:20.9476%、氪气:0.9364%、CO 2 :0.0314%、其它还有H 2 、CH 4 、N 2 0、0 3 、S0 2 、N0 2 等, 但含量极少),分子量为28,沸点:-195.8℃, 冷凝点:-210℃。 1.2 氮气的用途 氮气的惰性和液氮的低温被广之用作保护气体和冷源。以氮气为基本成份的氮基气氛热处理,是为了节能和充分利用自然资源的一种新工艺新技术,它可节省有机原料消耗。氮还有“灵丹妙药”之称而受人青睐,它和人的日常生活密切相关。例如,氮气用于粮食防蛀贮藏时,粮库内充入氮气,蛀虫在36h内可全部因缺氧窒息而死,杀灭1万斤粮食害虫,约只需几角钱。若用磷化锌等剧海药品黑杀,每万斤粮食需耗药费100多元,而且污染粮食,影响人民健康。又如充氮贮存的苹果,8个月后仍香脆爽口,每斤苹果的保鲜费仅需几分钱。茶叶充氮包裝,1年后茶质新鲜,茶汤清澈明亮,滋味淳香。 2 压力知识 变压吸附 (PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂碳分子筛最佳吸附压力为0.75~0.9MPa, 整个制氮系统中气体均是带压的,具有冲

CO-H2分离变压吸附工艺方案

PSA净化项目 初步方案 附件1 装置设计要求 1.1 技术条件及规格 1.1.1 原料气条件 CO 理论含量为30.5%(此时H 含量为68.31%,其它组份的百分比同上表)。 2 流量:79200Nm3/h(CO含量为30.5%即理论含量时,装置所需的原料气量)压力:3.2 MPag 温度:40℃ 1.1.2 CO产品气 压力:0.005~0.02 MPag 温度:40℃ 产品气 1.1.3 H 2 压力:3.0MPag 温度:40℃ 1.2 装置工艺流程与物料平衡

图1 变压吸附提纯CO/H 2 流程框图 物流说明:1-原料气,2-CO产品气,3-氢气产品气, 4-PSA-CO吸附尾气,5-解吸废气,6-CO置换气 附件3 装置工艺流程描述 3.1工艺流程简述 本设计方案拟采用变压吸附(PSA)气体分离技术从原料气中分离提纯CO 和H 2 。整个工艺过程分为三个工序,即原料气预处理工序、变压吸附提纯CO工 序(PSA-CO)、变压吸附提纯氢气工序(PSA-H 2 )。 经过低温甲醇洗脱硫脱碳后的原料气,首先通过预处理将其中的重组分杂质 脱除,然后送入PSA-CO工序分离提纯得到CO产品气,PSA-CO吸附尾气送入PSA-H 2 工序,在PSA-H 2工序得到H 2 产品气。 流程框图见图1。 3.1.1预处理工序 经过低温甲醇洗脱硫脱碳后的原料气首先进入预处理工序。 预处理工序的目的是将经过低温甲醇洗后的原料气中的甲醇等重组分杂质脱除,保护PSA-CO工序吸附剂。 3.1.2变压吸附提纯CO工序(PSA-CO) PSA-CO工序的作用是使CO进一步与其它组份如H 2、N 2 等杂质组份分离,得 到CO产品。来自预处理工序的原料气,进入PSA-CO吸附塔,吸附尾气从塔顶流入PSA-H 2 工序。经过一定循环步骤后,吸附塔内合格的CO通过逆向放压和抽真空方式排出吸附塔,进入CO产品气缓冲罐。 为了保证CO产品的连续性,PSA-CO装置由18个吸附塔组成,任何时刻均有

真空变压吸附技术

真空变压吸附技术分离煤矿瓦斯气体中的甲烷 A.OLAJOSSY1, A. GAWDZIK2, Z. BUDNER2 and J. DULA2 1.波兰克拉科夫矿冶大学 2.波兰重型有机合成研究所‘Blachownia’,Kedzierzyn~Koz′le 从对真空变压吸附技术的实验室研究和计算机计算中得出的结论,有助于回收煤矿瓦斯气体中的甲烷。这种煤矿瓦斯气体分离过程需在绝对值为25kPa 解吸压力、绝对值为300kPa吸附压力和温度为237K的条件下进行。甲烷含量为55.2%的煤矿瓦斯气体·浓缩于甲烷含量为96~98%的富甲烷气体。在再循环甲烷与进给下降量比率P/F=1.8~2.12条件下,甲烷回收率达到86~91%。当从富甲烷气体中移除96~98%的氮和氧条件下时,吸附气体中甲烷含量是11~15%。在吸附阶段时,甲烷吸附波带来了吸附床的排放点,煤矿瓦斯气体可以实现分离,然后在对流吹扫阶段,甲烷吸附波带来了吸附床的进入点。 关键词:真空变压吸附技术;煤矿瓦斯气体;甲烷分离;氮气抑制;计算机过程仿真;活性炭 前言 在开采前预处理的煤层中,煤矿瓦斯气体中的甲烷和从煤层中释放出来的甲烷充当一个很有价值的能量搬运者——它的价值相当可观但还没有充分利用。它向大气的排放量会导致温室效应。在部分热能厂或热电站,煤矿瓦斯气体作为一种低能量气体燃料被充分用于其自用。它普遍用于燃气涡轮机。一种利用煤矿瓦斯气体的替代方法是将其转换成富含至少96%体积比例的甲烷的气体,然后运输到部分天然气供应系统中。在已知的分体气体混合物的方法中,PSA(变压吸附)法在实践中从煤层气中回收甲烷。迄今为止,从20世纪80年代煤层气回收甲烷的试验工厂在德国建成(Pilarczyk和Knoblauch, 1987)。此方法已应用于从天然气公司富含氮的小溪流中分离出氮(达米科等,1993年;Buras 和Mitariten,1994年;Shirley等,1996年)。

变压吸附PSA制氮机工作原理

变压吸附(PSA)制氮机工作原理 1.概述 变压吸附法属于物理方法净化气体,原理是利用吸附剂对不同气体的吸附特性使气体净化、变压吸附的操作循环是在二个不同压力条件下进行,在高压下吸附混合气体中的杂质,低压下解吸,这中间没有温度变化,因此过程不需要热量,与其它需要供热的方法相比设备装置比较简单,但变压吸附的缺点是放空与吹净时有效气体的损失大. 2.变压吸附制氮装置工作原理 变压吸附制氮装置,是一种新型的空气分离设备,以压缩空气为原料,碳分子筛为吸附剂,采用变压吸附流程,在常温低压下,利用空气中的氧气和氮气在碳分子筛中的扩散速率不同,把氧气和氮气加以分离. 3.工艺流程 变压吸了会制氮装置工艺流程是用在常温下变压吸附法.变压吸附为无热源的吸附分离过程,碳分子筛对吸附组分(主要是氧分子)的吸附容量因其分压升高而增加,因其分压的下降而减少.这样,碳分子筛在加压时吸附,减压时解吸,放出被吸附的部分,使碳分子筛再生,形成循环操作. 变压吸附过程,循环过程包括:吸附、均压、降压、释放、冲洗、然后再充压、吸 变压吸附制氮装置工艺流程图 工作原理 空压机产生高压空气(0.6MPa-0.8MPa)经过空气储气罐缓冲—→C级过滤器(主要过滤压缩空气中的水分)—→冷干机干燥除水—→T级过滤器(主要过滤压缩空气中的水和油)—→A级过滤

器(主要过滤压缩空气中的油)—→活性碳过滤器(过滤油)—→吸附塔1(进入吸附塔的压缩空气是经PLC编程器控制1、2、3、4、5、6、7、8、9气动阀的关、闭来实现气体的流向、吸附塔的加压吸附、减压解吸的过程)—→吸附塔2—→氮气储气罐—→流量计—→仓房

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

变压吸附流程说明

变压吸附流程说明 4.1工艺过程简述 本装置VPSA过程,以一个吸附塔T0101A为例,简述如下: a. 吸附过程(A) 压力为1.7~1.9Mpa的变换气自装置外来,首先进入原料气气水分离器中分离掉其中夹带的液滴,经FIRQ-0101计量后进入VPSA系统。 打开程控阀KS0101A、KS0102A,变换气自塔底进入T0101A (同时有2个吸附塔处 于吸附状态)内。在多种吸附剂的依次选择吸附下,其中的H 2O、CO 2 等组分被吸附下来, 未被吸附的氢氮气及一氧化碳等从塔顶流出,经压力调节系统PICA-0101稳压该工序。 当被吸附杂质的传质区前沿(称为吸附前沿)到达床层出口预留段时,关掉该吸附塔的原料气进料阀和产品气出口阀,停止吸附。吸附床开始转入再生过程。 b. 顺放-1过程(P1) 这是在吸附过程结束后,吸附塔内的气体与产品气非常接近,打开程控阀KS0103A、KS0110,缓慢打开随动调节阀HV0102顺着吸附方向将吸附塔内的气体流向产品气管道的过程,该过程不仅回收了吸附塔内有效气体,同时也降低了吸附塔内压力,相当于增加一次均压降。 c.均压降压过程(1D~10D) 这是在顺放-1过程结束后,顺着吸附方向将塔内的较高压力的氢氮气放入其它已完成再生的较低压力吸附塔或到均压罐的过程,该过程不仅是降压过程,更是回收床层死空间有效气体的过程,本流程共包括10次均压降压过程以保证有效气体的充分回收。 d.顺放-2过程(P2) 这是在均压降过程结束后,打开程控阀KS0106a,KS0114顺着吸附方向,将吸附塔内含量较高的有效气体放入煤气气柜的过程,该过程充分回收了吸附塔内有效气体,不仅降低工厂消耗,而且对工厂系统物料平衡和动力平衡有利。 E.逆放过程(D)

变压吸附技术浅析

变压吸附技术浅析 摘要介绍变压吸附技术,以及其的广泛应用、工艺改进和展望未来发展方向。 关键词变压吸附;气体分离;工艺改进;有机气体 变压吸附技术是20世纪40年代发展起来的一项新型气体分离技术。步入90年代后,在世界能源危机日益严重的国际环境下,变压吸附技术也得到了更为广泛的关注,已成为现代工业中较为重要的气体分离及净化方法。目前有数千套变压吸附装置在世界各地运行,用于各类气体的分离、提纯和工业气体的净化。如氢气、一氧化碳等气体的分离与提纯,天然气、乙炔气体的净化,空气分离制氧气和制氮气,废气的综合利用等。如同所有的新兴技术一样,伴随着变压吸附分离的技术进步,特别是吸附材料性能的提和吸附工艺的不断创新,环保、节能和节约的优点愈显突出,变压吸附分离技术正在加速占领工业气体分离的市场。 1变压吸附介绍 1.1 变压吸附概念 变压吸附( pressure swing adsorption, PSA) 是一种很常用的分离或提纯气体混合物的工艺,其主要的工业应用包括: a) 气体干燥; b) 溶剂蒸汽回收; c) 空气分馏; d) 分离甲烷转化炉排放气和石油精炼尾气中的氢; e) 分离垃圾埯埋废气中的二氧化碳和甲烷; f) 一氧化碳和氢的分离; g ) 异链烷烃分离; h) 酒精脱水。全世界大量的变压吸附操作单元应用于这些领域和其它一些领域。实际上,上述所列的a~ d 领域中,变压吸附已成为规定的分离工艺,并且适用范围很大,从个人医用的空气中 分离90% 的O2到甲烷转化炉排放气中分离99. 999%以上的氢均可适用。 变压吸附分离气体的概念比较简单。在一定的压力下,将一定组分的气体混合物和多微孔-中孔的固体吸附剂接触,吸附能力强的组分被选择性吸附在吸附剂上,吸附能力弱的组分富集在吸附气中排出。然后降低压力,被吸附的组分从吸附剂中解吸出来,吸附剂得到再生,解吸气中富集了气体中吸附能力强的组分,一般解吸时没有外部加热。 这个概念定义有许多不同的术语。变压吸附过程是在高于大气压的压力下吸附,在常压下解吸。真空变压吸附( vacuum swing adsorption,VSA) 过程是常压下吸附,真空下解吸。压力-真空变压吸附( pressure-vacuum swing adsorption,PVSA) 过程是则利用了上两种过程的优点。虽然概念比较简单,变压吸附/ 真空变压吸附的应用却相当的复杂,因为它包括了多层柱的设计,在多层柱上完成一系列连续的非等温、非等压、非稳定的循环吸附操作,包括了吸附、解吸、冲洗等过程,以控制产品气纯度、回收率以及分离操作的最优化。 1.2变压吸附的基本原理 变压吸附法的基本原理是利用吸附剂对不同气体的吸附容量、吸附力、吸附速度随压的不同而有差异的特性,在吸附剂选择吸附的条件下,加压吸附混合物中的易吸附组分(通常是物理吸附) ,当吸附床减压时,解吸这些吸附组分,从而使吸附剂再生。 1.3变压吸附的优点 1) 能耗低。它只在增压时消耗功,而且工作压力较低。真空解吸流程采用鼓风机 就可以增压。吸附剂再生不需要加热,只需消耗真空泵不大的功。制氧电耗0. 41kWh/

相关文档
最新文档