三维实体网格模流分析介绍及应用

三维实体网格模流分析介绍及应用
三维实体网格模流分析介绍及应用

三维实体网格模流分析介绍及应用

作者:(台湾)科盛科技股份公司张政亿刘文斌

摘要:由于塑料射出产品大多为薄壳产品,因此在模流分析上多使用薄壳模型(shell model)并指定厚度;或用STL格式模型,再依薄壳理论分析之。但由于薄壳理论的简化太多,在先天有诸多的限制,无法完全仿真塑料流动上的的所有现象;再加上部份的塑料件实为粗厚件,其厚度已超出薄壳理论的范围,且网格厚度定义不易,种种的误差累积可能会使分析结果的参考性变低。新一代的三维模流分析技术,使用三度空间的实体元素,不需做任何厚度的假设;再加上统御方程式不做任何的减化。可忠实的表现出所有塑料流动上的现象,其参考性也大为提高。本文即藉由Moldex3D以及数个实际案例来说明三维模流分析技术的优异性能。

关键词: 三维模流分析、Moldex3D、shell model、薄壳理论

一、案例

因为使用实际3D理论来求解,因此对于塑料射出的应用不再局限于薄壳件,应用的范围更为广泛,且所得到的结果更为准确,在此列举连结器─如图1及图2所示、手机上盖─如图3及图4所示的实际短射与Moldex3D分析结果比较以供参考。下文中并将列举不同案例以说明3D模流分析在实际产品上的应用。

图1、连接器产品模流分析与短射样品比较图2、连接器产品模流分析与短射样品比较

图3、手机外壳产品模流分析与短射样品比较图4、手机外壳产品模流分析与短射样品比较

A.喷流现象

非薄壳件的一个常见的流动现象为喷流(jetting),通常这种现象会在成品表面留下皱折的痕迹。以薄壳理论为基础的mid-plane及STL 网格对于这种肇因于厚件及高射速的流动现象均无法做正确的仿真。本案例的几何如图5; 一模四穴含流道的体积约为635c.c.,充填时间为5秒,每一穴的每秒流率约为32c.c.,对一般射出而言并不算高速,但因为本案例几何造形不属于薄壳件,如此射速已足以让熔胶突出模壁表面,依此即可预测此处将有熔胶皱折的喷流现象产生。分析结果如图6。

图5、喷流案例之几何外观图6、Moldex3D预测的喷流现象

B. 变形扭曲

本案例为一电子产品的传动齿条,几何形状如图7。此产品的主要扭曲原因是来自于斜向齿形的排列。以薄壳网格来建立本模型的话,不容易正确的表达齿形特征; 三维网格则无

此限制。三维网格产生如图8。图9则为放大四十倍的变形扭曲情形。

图7、齿条之几何外观图8、齿条之实体三维网格

图9、扭曲变形的预测结果(放大40倍) 图10、机车后把手几何外观

C. 纤维配向

为了增加产品的机械强度,在塑料中加入纤维已是一个非常普遍的做法。但在强度增加的同时,却也往往会有不等向收缩的问题发生。通常如果纤维配向性越高,则不等向收缩变形的问题会越严重。解决的办法通常是尽量把纤维的配向打乱,然而纤维配向的预测向来是薄壳理论分析较弱的一环;而立体的3D网格则可不受此限。本案例为一机车的后把手,几何形状如图10。实体网格则如图11。由图12的纤维配向仿真结果可看出有明显的配向,业者即可则可参考此图来重新选择进胶口位置。

图11、实体三维网格图12、机车后把手流动仿真结果

(end)

Moldflow的模流分析入门实例[精品文档]

基于MOLDFLOW的 模流分析技术上机实训教程主编: 姓名: 年级: 专业: 南京理工大学泰州科技学院

实训一基于Moldflow的模流分析入门实例 1.1Moldflow应用实例 下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。 图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。 (2)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。 图1-3 “创建新工程”对话框图1-4 工程管理视图 (3)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入 模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“lianpen.stl”。单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫

米。 图1-5 导入选项 单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。 图1-6 脸盆模型 图1-7 工程管理视窗图1-8 方案任务视窗

(4)网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。双击方案任务 图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。 单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。 图1-9 “生成网格”定义信息图1-10 网格日志划分完毕后,可以看见如图1-11所示的脸盆网格模型,此时在管理视窗新增加了三角形单元层和节点层,如图1-12所示。 图1-11 网格模型图1-12 层管理视窗

基于霍尔三维结构的三峡工建

基于霍尔三维结构的三峡工程分析 1.霍尔的三维结构 霍尔三维结构又称霍尔的系统工程,后人与软系统方法论对比,称为硬系统方法论Hard System Methodology,HSM)。是美国系统工程专家霍尔(A ? D- Hall)于1969年提出的一种系统工程方法论。 霍尔的三维结构模式的出现,为解决大型复杂系统的规划、组织、管理问题提供了一种统一的思想方法,因而在世界各国得到了广泛应用。霍尔三维结构是将系统工程整个活动过程分为前后紧密衔接的七个阶段和七个步骤,同时还考虑了为完成这些阶段和步骤所需要的各种专业知识和技能。这样,就形成了由时间维、逻辑维和知识维所组成的三维空间结构。其中,时间维表示系统工程活动从开始到结束按时间顺序排列的全过程,分为规划、拟定方案、研制、生产、安装、运行、更新七个时间阶段。逻辑维是指时间维的每一个阶段内所要进行的工作内容和应该遵循的思维程序,包括明确问题、确定目标、系统综合、系统分析。优化、决策、实施七个逻辑步骤。知识维列举需要运用包括工程、医学、建筑、商业、法律、管理、社会科学、艺术、等各种知识和技能。三维结构体系形象地描述了系统工程研究的框架,对其中任一阶段和每一个步骤,又可进一步展开,形成了分层次的树状体系。 霍尔三维结构将系统的整个管理过程分为前后紧密相连的六个阶段和七个步骤,并同时考虑到为完成这些阶段和步骤的工作所需的各种专业管理知识。三维结构由时间维、逻辑维、 知识维组成,如图示:

控制论 社会科学 工程技术 (1)时间维(工作进程) 对于一个具体的工作项目,从制定规划起一直到更新为止,全部过程可分为七个阶段: ① 规划阶段。即调研、程序设计阶段,目的在于谋求活动的规划与战略; ② 拟定方案。提出具体的计划方案。 ③ 研制阶段。作出研制方案及生产计划。 ④ 生产阶段。生产出系统的零部件及整个系统,并提出安装计划。 ⑤ 安装阶段。将系统安装完毕,并完成系统的运行计划。 ⑥ 运行阶段。系统按照预期的用途开展服务。 ⑦ 更新阶段。即为了提高系统功能,取消旧系统而代之以新系统,或改进原有系统,使之更 加有效地工作。 (2)逻辑维(解决问题的逻辑过程) 明确问题:收集资料(考察、测量、调研、需求分析、市场预测)了解系统的环境、目的、 系统的各组成部分及其联系等。 选择目标:提出目标,制定准则(标准) 系统综合:方案策略,对每种方案进行说明 系统分析:比较分析各方案一建模一计算或仿真 方案优化:选出待选方案集,交决策部门,同时最优化:单目标、多目标 作出决策: 知识维 规划阶 逻辑维 综 合 实 施 计 划 确 疋 时间 维 决 策 方案阶段 研制阶段 生产阶 段 安装阶段 运行阶段 更新阶段

MAGMAsoft模流分析简介

MAGMAsoft模流分析简介 中文名: MAGMA SOFT铸造仿真软件 英文名: MAGMASOFT.V4.4 资源格式: 光盘镜像 版本: V4.4 发行时间: 2008年12月 地区: 美国 语言: 英文 简介: 铸型的充填、凝固、机械性能、残余应力及扭曲变形等的模拟为全面最佳化铸造工程提供了最可靠的保证。以往只有对铸造工程参数及铸造质量的影响因素有透彻的了解,才能使铸造工程师对生产高质量的铸件拥有信心。传统的方法对铸造工程的最佳化工作既耗资又费时,时程的压力使得很多铸造工程无法发挥全面的潜力。

MAGMASOFT软件中的专用模块满足您独特的需求。 ●MAGMA standard 标准模块包括: ●Project management module 项目管理模块 ●Pre - processor 分析前处理模块 ●MAGMA fill 流体流动分析模块 ●MAGMA solid 热传及凝固分析模块 ●MAGMA batch 制程仿真分析模块 ●Post - processer 后处理显示模块 ●Thermophysical Database 热物理材料数据库 ●MAGMA lpdc 低压铸造专业模块 ●MAGMA hpdc高压铸造专业模块 ●MAGMA iron铸铁铸造专业模块 ●MAGMA tilt 倾转浇铸铸造专业模块 ●MAGMA roll-over浇铸翻转铸造专业模块 ●MAGMA thixo 半凝固射出专业模块 ●MAGMA stress 应力应变分析模块 ●MAGMA disa DISA铸造生产线模块 使用MAGMASOFT铸造仿真软件则是最经济、最方便的方式,它为以最低的成本生产高质量的铸件提供正确有效的解决方案。 MAGMASOFT铸造仿真软件的应用: ●铸造部件设计的开发 ●最佳化生产制程 ●新模具的生产

网格畸变之研究分析

网格畸变之研究分析 尚晨晨 (中国农业大学,100083) 摘要:本文介绍了非线性有限元分析大变形网格畸变问题。利用ABAQUS计算了四面体单 元和六面体单元,分别利用C3D20、C3D20R、C3D8、C3D8I、C3D8R-ENHANCED单元, 从减小网格畸变角度比较了它们的优劣。最后,针对当今人们对网格畸变的研究,介绍了 四边形面积坐标法、无网格法和混合变分用于解决网格畸变问题的方法。 关键字:网格畸变 ABAQUS单元 一、概述 非线性有限元分析常常遇到大变形网格畸变,研究者们发展了多种大变形网格畸变的对策。无网格法避免了网格依赖性,在处理网格畸变问题上有天然的优势,比如无网格局部彼得洛夫伽辽金(MLPG)法。使用任意拉格朗日欧拉单元(ALE),这是一种组合了欧拉方法和拉格朗日方法优点的杂交技术。在有限元方法中,弹塑性材料的大变形研究已经非常深入,例如混和变分、增强应变和压力投影等方法,已被广泛使用的次弹塑性本构模型和超弹塑性本构模型。使用有限元方法计算橡胶类材料的大变形时会遇到体积锁死和压力振荡的问题,对此最有效的办法是混合变分法。 二、ABAQUS中针对网格畸变的单元算例比较 利用ABAQUS计算了四面体单元和六面体单元,分别利用C3D20、C3D20R、C3D8、C3D8I、C3D8R-ENHANCED单元,比较各单元的优劣。本文的算例是一根混凝土连续梁。 图1 Tex单元(四面体单元)C3D20 图2 Hex单元(六面体单元) C3D20 三、解决网格畸变问题的其他方法 3.1 四边形面积法 四边形面积坐标法(QACM)引起其他许多学者的兴趣,他们将QACM用于各自的板壳单元中进行动力显式分析。非线性算法有两大类,一是显式方法,即对时间的中心差分法,特点是能解决最复杂的非线性问题,但具有条件稳定性,且精度较差;另一种是隐式方法,常用Newton-Ralphson迭代法,具有无条件稳定性,精度较高,但需占用大量的磁盘空间和内存。其中隐式算法基于非线性连续介质力学原理,因此发展四边形面积坐标单元的隐式算法更有利于系统深入的研究QACM在非线性领域的性能,具有更大的意义。

霍尔三维结构在学前教育的应用

在阅读题和词汇语法题中,有这几个词的选项肯定是答案:beyond, entitle, availabel, bargain, lest, except for 在“自然科学”阅读中,有这几个词的选项肯定要排除:all, only, totally, compalatly, untimely. 在“态度题”中,有这两个词的选项要排除:indiffrent(漠不关心的),subject(主观的) 词汇:(很有冲刺性) come go keep hold get put make turn bring look call ask stand lay run live 以上词跟介词搭配必考几道! 重点记忆词汇(括号内注明的是这次要考的意思) bargain(见了就选) except for(见了就选) offer(录取通知书) effects(个人财物) gap(不足、差距) mark(污点、做标记) mind(照料、看管) moment(考了8次) present(拿出) inquire deliberate advisable accuse anything but but for consume with extensive at intervals origin preferable to procedure profitable property pace point range refuse refer to relief religion relatively release rise single

sole spoil stick suit surprise urgent vary tense tolerant trace vacant weaken wear off (有一些你总见到,但是总是拿不准代表什么,但真的就爱考这个!所以还是背背吧) 需要辨析的: 1. call off(取消、放弃) 和call up(召集、唤起) 2. adapt to 和adopt 3. arise 和arouse 4. count on = rely on 5. cope with = deal with 6. no doubt 和in doubt 7. employee 和employer 8. general 和generous 9. instant 和constant 10. lie(及物) 和lay(不及物) 11. regulate 和regular 12. supply(有目的提供) 和offer(无目的提供) 语法:(分值小) 1. 虚拟语气:采集者退散 表示建议的几个词:wish, would rather, had rather; it is time that + 过去式; it is high time that + 过去式; but for、lest、as if、as though、would、should、could、might +动词原型。 2. 非谓语动词:采集者退散 最常考:不定式表示主动、将来,通常爱做后置定语; 其次考:分词现在分词表示主动进行,过去分词表示被动完成。通常做状语。 再次考:动名词动词名词化,做主语和宾语。

常用模流分析软件简介

常用模流分析软件简介 Moldflow 美国MOLDFLOW上市公司是专业从事注塑成型CAE软件和咨询公司,自1976年发行了世界上第一套流动分析软件以来,一直主导塑料成型CAE软件市场。MOLDFLOW一直致力于帮助注塑厂商提高其产品设计和生产质量,MOLDFLOW的技术和服务提高了注塑产品的质量,缩短了开发周期,也降低了生产成本,MOLDFLOW已成为世界注塑CAE的技术领袖。利用CAE技术,可以在模具加工前,在计算机上对整个注塑成型过程进行模拟分析,准确预测熔体的填充、保压和冷却情况,以及制品中的应力分布、分子和纤维取向分布、制品的收缩和翘曲变形等情况,以便设计者能尽早发现问题并及时进行修改,而不是等到试模后再返修模具。这不仅是对传统模具设计方法的一次突破,而且在减少甚至避免模具返修报废、提高制品质量和降低成本等方面,都有着重大的技术、经济意义。塑料模具的设计不但要采用CAD技术,而且还要采用CAE技术,这是发展的必然趋势。 模流分析:MOLDFLOW。模流分析(Mouldflow)早期主要应用于结构体强度计算与航天工业上,而各领域的CAE应用功能不尽相同。但应用于塑料注射与塑料模具工业的CAE 在台湾被称为模流分析,这最早是由原文MOLDFLOW直译而来。 MOLDFLOW是由此领域的先驱Mr. Colin Austin在澳洲墨尔本创立﹐早期(1970~)只有简单的2D流动分析功能,并仅能提供数据透过越洋电话对客户服务﹐但这对当时的技术层次来说仍有相当的帮助﹔之后开发各阶段分析模块, 逐步建立今日完整的分析功能。 同一年代﹐美国Cornell大学也成立了CIMP研究项目,由华裔教授Dr.K.K.Wang所领导﹐针对塑料射出加工做系统理论研讨,产品名为C-MOLD。自1980年代起,随着理论基础日趋完备,数值计算与计算机设备的发展迅速,众多同类型的CAE软件渐渐在各国出现﹐功能也不再局限于流动现象探讨。约1985年工研院也曾有过相似研发,1990年起清华大学化工系张荣语老师也完成CAE-MOLD软件提供会员使用,目前则由科盛公司代理销售。 MOLDFLOW公司创办人Colin Austin是个机械工程师﹐1970年前后在英国塑料橡胶研究协会工作。1971年移民澳洲﹐担任一家射出机制造厂的研发部门主管﹔在当时﹐塑料材料在应用上仍被视做一种相当新颖的物料﹐具备了一些奇异的特性。但在塑料加工领域工作了几年后﹐他开始对一般塑料产品的不良物性感到疑虑﹐一般的塑料制品并没有达到物品的适用标准﹐相反的﹐塑料已逐渐成为'便宜'、'低质量'的同义字﹔但他却发现﹐多数主要不良质量的成因却是因为不当成品设计与不良加工条件所造成的﹐所以他开始省思﹐产品设计本身需同时考虑成型阶段﹐才是成功最重要的关键。 他开始花费大量时间在研究塑料流动的文献上﹐但发现这些理论并不能合理解释他在工厂现场所看到的许多问题﹔因此他开始换角度去思考这些问题﹐将射出机台视为一整组加工程序﹐螺杆正是能量的传递机构﹐而模具内部的流动形态﹐才是决定成品质量的最主要因素。具体的关键问题是﹐浇口位置?在何处进浇? 几个浇口? 尺寸为何? 这是一个革命性观念的启始,模具内部的流动形态才真正决定了产品品质,而不仅是机台参数设定或产品外观设计;最佳产品是需要完整考量、系统化的设计观念才有办法得到! 但即使了解了这个观念,问题仍未解决,因为在当时,模具内部成型时的流动形态,仍无法在试模前判断;而要去预测流动形态,必须依据非常复杂的流体力学与热传问题的联立方程式求解,以人力来做几乎是不可能。但随著学术理论发展,电脑计算功能的进步,正式为模流CAE开启了一扇门,1978年,MOLDFLOW公司成立,提供初步的电脑辅助分析技术给世界上不同国家的塑胶制造公司,包括汽车业,家电业,电子业,以及精密模具业等。

基本三维实体造型

课题:第7章基本三维实体造型 课 能力目标: 视图分析能力;培养读图、识图能力,综合布局能力,空间逻辑思维能力,基本三维实体空间结构逻辑分析;会分析并逻辑分解三维组合体(绘图中的以大化小);会创建基本三维实体及组合体:掌握三维坐标系,右手法则在坐标系中的应用;会创建基本三维实体:多段体、长方体、柱体、球体、圆环、锥体、楔体等;拉伸、旋转、扫掠、放样的应用;基本三维实体的组合创建应用;会熟练应用视图工具;三维视图、视觉样式、三维动态观察的应用、实时平移与缩放的应用。 本章重点: 基本三维实体的创建与应用,三维坐标系,三维视图,及视图实时平移与缩放的应用。本章难点: 三维实体创建的综合应用、三维坐标系的灵活应用。 教学用具:多媒体计算机网络机房,AutoCAD2009软件,随书配套光盘素材:“第7章”。 第1次课 4学时 二维绘图编辑知识技能建构1 能力目标: 理解并会对象选择、夹点编辑、删除、缩放、旋转、移动、修剪、打断、拉长等命令基本操作。 教学重点: 对象选择、夹点编辑、删除、缩放、旋转、移动、修剪、打断、拉长等命令的基本操作。教学难点: 对象选择、夹点编辑、删除、缩放、旋转、移动、修剪、打断、拉长等命令的熟练应用。教学方法: 建议通过操作练习、任务驱动等方法传授基本知识和技能。 教学过程: 一、三维实体与三维视图 怎样理解三维立体与二维平面图形的关系? 三维立体造型是二维平面图形进入三维立体空间的结构表现,任何复杂的三维造型都包含了组成实体的不同方向和角度的三维面。 系统提供了哪4种三维实体等轴测图? 便于观察三维模型,这四种视图是:“西南等轴测”、“东南等轴测”、“东北等轴测”、“西北等轴测”。 二、三维视图动态观察、实时平移与缩放 1三维视图动态观察 “三维动态观察器”的作用是什么? 应用“三维动态观察器”可以对三维实体模型从各个方位观察实体模型得到任意角

三维实体结构的分析

三维实体结构的分析 一、问题描述 图25所示为一工字钢梁,两端均为固定端,其截面尺寸为, m d m c m b m a m l 03.0,02.0,2.0,16.0,0.1=====。试建立该工字钢梁的三维实体模型,并在考虑重力的情况下对其进行结构静力分析。其他已知参数如下: 弹性模量(也称杨式模量) E= 206GPa ;泊松比3.0=u ; 材料密度3/7800m kg =ρ;重力加速度2/8.9s m g =; 作用力Fy 作用于梁的上表面沿长度方向中线处,为分布力,其大小Fy=-5000N 三、结果演示 图 25 工字钢结构示意图

使用ASSYS 8。0软件对该工字钢梁进行结构静力 分析,显示其节点位移云图。 四、实训步骤 (一)ASSYS8.0的启动与设置 与实训1第一步骤完全相同,请参考。 (二)单元类型、几何特性及材料特性定义 1定义单元类型。点击主菜单中的 “Preprocessor>Element Type >Add/Edit/Delete ”,弹 出对话框,点击对话框中的 “Add…”按钮,又弹出一对 话框(图26),选中该对话 框中的“Solid ”和“Brick 8node 45”选项,点击“OK ”, 关闭图26对话框,返回至上 一级对话框,此时,对话框 中出现刚才选中的单元类型:Solid45,如图27所示。点击“Close ”,关闭图27所示对话框。注:Solid45单元用于建立三维实体结构的有限元分析模型,该单元由8个节点组成,每个节点具有X 、Y 、Z 方向的三个移动自由度。 图26单元类型库对话框 图27 单元类型对话框 图28 材料特性参数对话框

MOLDFLOW模流分析结果解释

MOLDFLOW模流分析结果解释 解释结果的一个重要部分是理解结果的定义,并知道怎样使用结果。下面将列出常用结果的定义及怎样使用它们的建议,越常用的结果将越先介绍。 屏幕输出文件(screen output)和结果概要(results summary) 屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。

图169. 充模分析的屏幕输出文件 屏幕输出文件和结果概要都有与图170相似的部分。它同时包含了分析过程中(第一部分)和分析结束时的关键信息。使用这些信息可以快速查看这些变量,从而判断是否需要详细分析某一结果,以发现问题。

图170. 结果概要输出 充模时间(Fill Time) 充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果。云纹线的间距应该相同,这表明熔体流动前沿的速度相等。制件的填充应该平衡。当制件平衡充模时,制件的各个远端在同一时刻充满。对大多数分析,充模时间是一个非常重要的关键结果。 压力(Pressures) 有几种不同的压力图,每种以不同的方式显示制件的压力分布。所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。 使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。模具的设计压力极限最好为100 MPa (~14,500 psi)左右。如果所用注塑机的压力极限高于140MPa,则设计极限可相应增大。模具的设计压力极限应大约为注射机极限的70%。假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。 象充模时间一样,压力分布也应该平衡。压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。 具体的压力结果定义如下: ?压力(Pressure) 压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。默认的动画是时间动画,因此,你可以通过动画观察压力随时间变化的情况。压力分布应该平衡,或者在保压阶段应保证均匀的压力分布和几乎无过保压。 ?压力(充模结束时)(Pressure (end of filling)) 充模结束时的压力属于单组数据,该压力图是观察制件的压力分布是否平衡的有效工具。因为充模结束时的压力对平衡非常敏感,因此,如果此时的压力图分布平衡,则制件就很好地实现了平衡充模。 ?体积/压力控制转换时的压力(Pressure at V/P switchover ) 体积/压力控制转换时的压力属于单组数据,该压力图同样是观察制件的压力分布是否平衡的有效工具。通常,体积/压力控制转换时的压力在整个注塑成型周期中是最高的,此时压力的大小和分布可通过该压力图进行观察。同时,你也可以看到在控制转换时制件填充了多少,未填充部分以灰色表示。

5第五章 三维实体网格划分

第五章三维实体网格划分 本章讲述三维实体网格划分。包括三部分内容: ●生成四面体网格零件:对实体指定线性或者2次四面体网格。 ●四面体网格填充器:通过从曲面网格生成四面体网格来对实体划分网格。 ●扫描实体网格:通过从曲面网格生成六面体或者楔形网格对实体划分网格。 5.1 生成3D零件网格 本节说明如何使用四面体网格划分方法生成3D网格。在【Generative Structural Analysis】(通用结构分析)工作台和【Advanced Meshing Tools】(高级网格划分工具)工作台都有本命令。根据用户安装的产品不同,显示的选项是不同的: ●【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划分) 系列产品。 ●【FEM Solid】(有限元实体划分)系列产品。 5.1.1 【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划 分)系列产品 在通常的用户中,一般安装的是第一种情形。在这种设置下,无论是在通用结构分析工作台还是高级划分工具工作台,定义3D网格的零件时,弹出的对话框只有两个选项卡。(1) 点击【Meshing Methods】(网格划分方法)工具栏内的【Octree Tetrahedron Mesher】 (四面体网格划分器)按钮,如图5-1所示。如果用户在【Generative Structural Analysis】(通用结构分析)工作台,则需要点击【Model Manager】工具栏内的【Octree Tetrahedron Mesher】(四面体网格划分器)按钮,如图5-2所示。 图5-1【Octree Tetrahedron Mesher】(四面体网格划分器)按钮图5-2 (2) 在图形区选择要划分网格的实体零件。选择后弹出【OCTREE Tetrahedron Mesh】(四面体网格划分器)对话框,如图5-3所示。 注意!只能选择属于【PartBody】下的元素。 ●【Global】选项卡:可以修改网格全局参数。 ●【Local】选项卡:创建局部网格参数。 (3) 在对话框的选项内输入相应的数值。在本例中,在【Size】(尺寸)数值栏内输入20mm。(4) 点击对话框内的【确定】按钮,生成新的网格零件,并且在模型树上显示出新的网格零件名称,如图5-4所示。

三线一网格分析总结

“三线一网格”三季度分析总结报告 练塘支行 一、本季度推广实施工作开展总体情况(动员宣传、培训、制度建设、系统推广运用、履职任务完成、执行员工行为“网格化管理”情况等) 根据总行《关于做好“三线一网格”管理模式推广提升工作的通知》的文件精神,练塘支行对三季度“三线一网格”管理模式推广提升工作进行了一次总结,现将总体情况汇报如下: 1、加强宣传引导、提升思想认识。为加强对“三线一网格”管理模式的推广提升,我部严格按照总行要求,落实到每个员工,认真执行动员宣传、培训、系统推广、制度建设等工作,定期开展“三线一网格”管理模式的学习交流讨论,在相互促进中加深理解与认识。 2、积极开展学习,提升工作效率。自“三线一网格”推广以来,我部要求全部员工认真学习,合理利用,严格按照时间节点完成系统内履职任务,认真执行员工行为“网格化管理”,加强了行为管理,提升了工作效率。 3、细化职责分工,提升学习效果。按照支行要求,我行对“三线一网格”管理模式推广提升工作进行了科学合理的安排。主要采取了自主学习与集中学习有机结合的方式。 二、工作特色亮点、经验成效。 1、绘制员工行为网格化管理图,张贴于醒目位置,让员工能找准位子,提升效率,充分发挥网格化管理的作用。 2、落实人文关爱,发挥党、团、工会合力,打造温馨家园,增强员工归属感和幸福感,构建农行和谐幸福家园。

3、党建带团建,持续开展青年员工创新创效活动显成效。发挥青年员工生力军和先锋队作用。 三、差距和不足 要及时定期的进行督导检查,详细了解工作开展情况,并对重要岗位履职进行检查,提示工作的要点,做到明目标,知底细,查优劣,对员工的履职情况也要做到每月一检查,对发现的问题要及时指出。 四、下一步措施 挖掘好人好事,及时上传好人好事,树榜样,立新风,正行貌,传播正能量,为全行掀起向"榜样的力量"学习的浪潮,比学赶超劲头十足。 认真做好总结工作,交流工作中遇到的难点和疑惑,结合日常业务经营和员工行为管理情况,对存在问题和风险隐患深入分析,和员工一起共同探讨和落实案防措施 五、意见和建议。 1、系统登录可启用指纹登录方式。指纹登陆方式目前已成为基层行及营业网点众多系统采取的主流登录方式。通过限制指纹登录,可以有效规避他人代替操作,有效避免“三线一网格”工作流于形式。 2、加大知识测试力度。由于“三线一网格”管理模式正处于初期阶段,因此,大量的理论基础和规章制度还需要员工进行学习掌握,只有加大知识测试力度,才能更好更快地推广普及该模式。 3、建议研发手机APP,使“三线一网格”模式更亲民。通过研发手机APP,让员工可随时随地使用该模块。例如家访时,现场定位,上班签到GPS定位等等,更亲民更实用。 2018年9月12日

ANSYS算例-三维实体结构的分析

三维实体结构的分析 前面的实训练习中,是采用先生成节点,然后连接节点生成元素的方法来建立有限元模型的,它适用于结构比较简单的零件。但是对于一些复杂结构,如果还是采用上面的方法建立有限元模型,不但非常繁琐,而且容易出错,甚至在有些情况下几乎是不可能的。因此,本实训中将介绍三维实体结构的有限元分析。 一、问题描述 图25所示为一工字钢梁,两端均为固定端,其截面尺寸为, m d m c m b m a m l 03.0,02.0,2.0,16.0,0.1=====。试建立该工字钢梁的三维实体模型,并在考虑重力的情况下对其进行结构静力分析。其他已知参数如下: 弹性模量(也称杨式模量) E= 206GPa ;泊松比3.0=u ; 材料密度3/7800 m kg =ρ;重力加速度2 /8.9s m g =; 作用力Fy 作用于梁的上表面沿长度方向中线处,为分布力,其大小Fy=-5000N 二、实训目的 本实训的目的是使学生学会掌握ANSYS 在三维实体建模方面的一些技术,并深刻体会ANSYS 软件在网格划分方面的强大功能。 图25 工字钢结构示意图

三、结果演示 使用ASSYS15.5软件对该工字钢梁进行结构静力分析,显示其节点位移云图。 四、实训步骤 (一)ANSYS 14.5的启动与设置 与实训1第一步骤完全相同,请参考。 (二)单元类型、几何特性及材料特性定义 1定义单元类型。点击主菜单中的 “Preprocessor>Element Type >Add/Edit/Delete”,弹 出对话框,点击对话框中的 “Add…”按钮,又弹出一对话 框(图26),选中该对话框 中的“Solid”和“Brick 8node 45”选项,点击“OK”,关闭图 26对话框,返回至上一级对 话框,此时,对话框中出现 刚才选中的单元类型:Solid45,如图27所示。点击“Close”,关闭图27所示对话框。注:Solid45单元用于建立三图26单元类型库对话框 图27 单元类型对话框 图28 材料特性参数对话框

模流分析基础入门教程

《模流分析基础入门》 目录 第一章、计算机辅助工程与塑料射出成形 1-1 计算机辅助工程分析 1-2 塑料射出成形 1-3 模流分析及薄壳理论 1-4 模流分析软件的未来发展 第二章、射出成形机 2-1 射出机组件 2-1-1 射出系统 2-1-2 模具系统 2-1-3 油压系统 2-1-4 控制系统 2-1-5 锁模系统 2-2 射出成形系统 2-3 射出机操作顺序 2-4 螺杆操作 2-5 二次加工 第三章、什么是塑料 3-1 塑料之分类 3-2 热塑性塑料 3-2-1 不定形聚合物 3-2-2 (半)结晶性聚合物 3-2-3 液晶聚合物 3-3 热固性塑料 3-4 添加剂、填充料与补强料 第四章、塑料如何流动 4-1 熔胶剪切黏度 4-2 熔胶流动之驱动--射出压力 4-2-1 影响射出压力的因素 4-3 充填模式 4-3-1 熔胶波前速度与熔胶波前面积 4-4 流变理论

第五章、材料性质与塑件设计 5-1 材料性质与塑件设计 5-1-1 应力--应变行为 5-1-2 潜变与应力松弛 5-1-3 疲劳 5-1-4 冲击强度 5-1-5 热机械行为 5-2 塑件强度设计 5-2-1 短期负荷 5-2-2 长期负荷 5-2-3 反复性负荷 5-2-4 高速负荷及冲击负荷 5-2-5 极端温度施加负荷 5-3 塑件肉厚 5-4 肋之设计 5-5 组合之设计 5-5-1 压合连接 5-5-2 搭扣配合连接 5-5-3 固定连接组件 5-5-4 熔接制程 第六章模具设计 6-1 流道系统 6-1-1 模穴数目之决定 6-1-2 流道配置 6-1-3 竖浇道尺寸之决定 6-1-4 流道截面之设计 6-1-5 流道尺寸之决定 6-1-6 热流道系统 6-2 流道平衡 6-2-1 流道设计规则 6-3 浇口设计 6-3-1 浇口种类 6-3-2 浇口设计原则 6-4 设计范例 6-4-1 阶段一:C-mold Filling EZ 简易充填模拟分析 6-4-2 阶段二:执行C-mold Filling & Post Filling 最佳化6-5 模具冷却系统

(完整版)网格划分设计知识点汇总

一、网格设计而非划分 在进行数值模拟计算(包括FEA、CFD等)中,网格的质量对分析计算的结果有至关重要的影响。高质量的网格是高精度 分析结果的保证,而质量不好或者差的网格,则可能会导致计算的无法完成或者得到无意义的结果。划分网格是需要认真考虑的,它内部的计算方程需要设计出好的网格,计算才能更准确。 在一个完整的分析计算过程中,与网格设计和修改相关的前处理工作占到了CAE工程师工作量的70-80%,CAE工程师往往要花费大量的时间来进行网格处理,真正用于分析计算的时间很少,所以主要的瓶颈在于如何快速准备好高质量的满足分析计算要求的网格。 该项工作对技术人员的技术经验和背景有相当高的要求。具体的说,就是要求前处理工程师能够根据CAE工程师提出的分析要求“设计”出能满足CAE工程师分析要求的合适的网格,然后提交给CAE工程师进行分析计算。之所以是网格“设计”而不是网格“划分”,说明了要设计出能够满足分析计算要求的高质量的网格,并不是一件容易的事情,要完成这项工作需要很 多方面的知识和技术要求。 针对一个具体的分析计算要求,要获得一个满足该分析计算的高质量网格,需要从以下几个方面进行综合考虑: 1.分析计算的目的(定性还是定量?)。 2.分析计算的类型,如强度分析、刚度分析、耐久性分析、NVH分析、碰撞分析、CFD分析、热流分析、动力学响应分析等。(不同的分析类型对网格的质量和形状有不同的要求。) 3.分析计算的时间要求。(要求时间的紧迫与否也决定了采用何种网格形式) 4.分析计算所采用的求解器。(不同的求解器对不同的分析问题有特定的网格形式和要求) 5.分析计算可能应用的单元类型。(所应用的求解器可以采用的单元类型,也会决定网格的质量与形状要求) 6. 尽可能采用最好的网格类型。(对于面,尽可能采用四边形网格;对于体,尽可能采用六面体单元) 由此可见,满足计算分析要求的高质量的网格是由前处理工程师精心“设计”出来的,而不是随随便便“划分”出来的。 二、四面体和六面体单元比较 本文只谈四面体和六面体选择的问题 有限元工程师80%的工作可能都在于网格打交道,对于网格的划分及选择确实是,也必须是非常关心的问题。网格划分的 相关问题很多,比如薄壳的处理,一阶单元和二阶单元的选择,单元配合等等。 目前,基本上大部分的有限元前处理软件都基本实现了对面单元的自动四边形划分,但是自动六面体单元还是一个难点,有些号称能够自动化六面体划分的,其实采用自欺欺人的办法(划分只有表面网格是六面体,但是扒开了看,里层多数还是采用四面体),能够自动划分出完美的六面体网格基本还是难题。 相对于四面体,六面体的优势有: 第一,美。不要小看这一点,网格的美与否对结果的影响其实也是非常大的。划分网格就像打磨一件艺术品一样。“漂亮”的网格算出来正确结果的可能性绝对要比“糟糕的”网格大的多。 第二,理论上六面体的精度要比四面体高,这里只谈一阶单元(二阶两者精度相当)。在有限元理论上也介绍的很明白,一阶四面体单元是属于常应变单元,所谓的常应变单元就是单元只存在一个应力和应变,没有应力梯度。而六面体单元则是梯度单元,只要不是缩减积分单元,单元内部是可以存在多个应力和应变积分点的,这样可以准确的描述梯度变化区域。也就意味着,如果是同等精度的话,六面体在应变梯度变化大的地方变形的更加合适。 第三,同等模型尺寸下,六面体的节点数量要比四面体少得多。例如,50*75*50的立方体,5mm 的网格大小,如果在四面体下,节点数14658个,单元数9759,而在同等大小的尺寸的六面体下,节点数1936,单元数 1500。也就是说网格数量大幅度减少。 四面体的优点: 四面体虽然在算法上好像优势不大,但是瑕不掩瑜。四面体本身可填充任何几何形状,这个特性是六面体无法比拟的。 1、网格划分快捷。这是四面体网格最大的特点,不管是什么类型的几何体,通常都可以一键操作,再复杂的结构,分分钟就能得到一个网格出来。对于复杂几何体来说,这是非常重要的,以前发动机分析,六面体网格,没有半个月的功夫,怎能完成,现在也就半天功夫。

-xxx模流分析报告

目录 第1章模流分析的概述 -------------------- 2 1.1模流分析的原理------------------------------------------------------------------------- 2 第2章塑件的工艺性分析------------------- 3 2.1原材料分析 ---------------------------------------------------------------------------------- 3 2.2结构分析 --------------------------------------------------------------------------------------- 3 2.3成形工艺分析------------------------------------------------------------------------------ 4 第3章成形方案的设计与分析 ---------------- 4 3.1成形方案的设计------------------------------------------------------------------------- 4 3.2初始方案的分析------------------------------------------------------------------------- 5 3.2.1侧浇口的特点--------------------------- 5 3.2.2工艺参数的设置------------------------- 5 3.2.3网格模型的划分------------------------- 6 3.2.4流动+翘曲的分析------------------------ 7 3.2.5冷却分析------------------------------- 9 3.3优化方案的分析------------------------------------------------------------------------ 10 3.3.1点浇口的特点-------------------------- 10 3.3.2冷却分析------------------------------ 13 第4章方案对比-------------------------------- 13 4.1浇口位置对比----------------------------------------------------------------------------- 13 4.2工艺条件设定----------------------------------------------------------------------------- 13 4.3实验结果对比----------------------------------------------------------------------------- 14

LTE网格测试问题分析报告

第三轮网格测试问题分析报告(10月19-21号) 网格事件 (1)主被叫掉话-(无线)-弱覆盖 问题时间:10:04:59.212 问题描述:(1)主叫在10:04:59:212起呼,在10:05:05.780主被叫建立通话,随着测试的进行,由于覆盖较差,主叫占用新马路试扩L-1小区连续上发B2测量报告,在10:06:01.877主叫发起了SRVCC切换,切换后发生掉话;(2)主叫掉话后,被叫收到了核心网下发的BYE消息后上发BYE200消息,之后释放无线数据承载,本次掉话是由于主叫掉话导致,不应该统计被叫掉话。 问题分析:主叫在占用新马路试扩L-1小区进行通话时,由于覆盖较差,发生了SRVCC切换,由于没有添加此路段的最优2G邻区,导致SRVCC切换完成后发生掉话;建议增加该路段的覆盖及优化2G邻区。 (2)主被叫掉话-(无线问题-TAU失败导致主被叫掉话) 问题时间:14:56:29.459 问题描述:正常通话过程中,14:57:22.749主被叫终端占用金陵村二三期LF-1(38400,389)后发起TAU请求,此时主被叫终端无线环境较差,10s后主被叫TAU失败,RRC释放,主被叫掉话 问题分析:需核查核心网是否收到终端TAU请求,优化该路段覆盖情况。

(3)主叫掉话-(无线问题-MOD3干扰导致主叫掉话) 问题时间:15:56:53.193 问题描述:正常通话过程中,主叫终端占用萨家湾试扩L-1(38098,155)RSRP=-83 MOD3=2且与邻区内有多路同频强信号有MOD3干扰(38098,227)RSRP=-82 MOD3=2 、三牌楼大街试扩L-3(38098,161)RSRP=-82 MOD3=2最终无线链路失败,导致RRC重建重建失败主叫掉话 问题分析:优化该路段干扰问题。

霍尔三维结构运用实例-医疗装备

医院信息系统的研发 一、规划阶段 1、首先对所处的社会的、经济的、技术的环境因素进行广泛的、有一定深度的调查和 研究。对医院信息系统来说,要面临以下的境况:(1)医院发展面临的问题:大量的医学数据库分布在医院的各个角落,如:医疗信息、门诊信息、药品信息、收费信息、材料信息和影像信息等等,而且这些医用的数据不断的增长,而对如此庞大的分布式和多源性的数据,任何个人和团体都难以通过手工来整理统计数据信息,从而获得有用的信息;信息流在中间传输环节上脱节、丢失、错乱而导致不必要的内部矛盾;病人结算时常出现排长队的现象;医院科室之间经常出现重复操作的现象;(2)医院信息系统在发达国家已经得到了广泛的应用,并创造了良好的社会效益和经济效益。 2、根据以上的调查结果,提出关于医院信息系统的一个纲领性计划:实现整个医院的 人、财、物等各种信息的顺畅流通和高度共享,为全院的管理水平现代化和领导决策的准确化打下坚实的基础。 二、方案阶段 1、对以上的纲领性计划进行分解、量化和协调,提出一个相互协调、具体的、可量化的目标树:硬件平台系统设计,网络设计,数据库系统和系统管理平台,网络管理,工程服务,培训服务,系统维护与支持 2、进一步根据这些相互协调的目标,提出多个能实现这些目标的具体方案。这涉及一系列的具体问题。以硬件平台系统设计为例:(1)服务器,必须保证其速度快、稳定、质量可靠;(2)工作站,以保证网络的高速度运转、高可靠性为标准;(3)打印机,以打印速度快、耐用、运行成本低,世界著名的打印机生产商产品完全符合其要求;(4)配备电源,电源中断时,如果网络正在运行,可能导致数据丢失、设备损坏从而造成无法弥补的损失,因此,必须保证机器的不间断运行,但仅能提供一段很短的时间,并发出警报; 3、根据所提出的具体方案,进一步提出为实施这个方案,在技术方面、社会方面、经济方面、环境方面可能出现的、需要通过研究才能解决的问题。例如: 4、对所提出的方案的成本费用和效益进行尽可能详细和严格的计算,以便让方案的委托人或雇主估计承受能力和根据效益进行决策。 三、研制阶段 1、提出该系统的详细的研制方案, 2、提出详细的实施(生产或施工,包括往后各阶段)计划 四、生产阶段和运行阶段:网络安装,遵循EIA/TIA568B布线标准,安装内容如下:提供网络拓扑设计图,安装服务器及网络设配器,安装工作站及网络设配器,安装Switch HUB,UTP 及所有接头,安装服务器网络操作系统,安装工作站应用软件 完成()的制造,连接好网络 五、更新阶段:网络调试,按照标准调试每一个节点,保证每一个工作站能正常运行,并进行严格的安装后测试,减少每一个点的不良隐患,使网络能稳定运行。

相关文档
最新文档