药物设计合成

药物设计合成
药物设计合成

肿瘤多药耐药逆转剂的设计与合成

班级:药学四班姓名:王梦雪学号:2011092604 肿瘤是威胁人类健康的主要疾病之一,化疗药物为其治疗的主要手段,肿瘤细胞的多药耐药性的产生是目前肿瘤化学治疗失败的一个主要原因。目前尚无有效逆转多药耐药的药物,因此,研究设计新型逆转剂仍然是抗癌药物研究的重点课题。而海洋就像一座药用资源的宝库,开发海洋药物,已成为当前药物开发的热点。海洋生物为了生存繁衍和适应海洋的独特环境,在漫长的进化中各自形成了特殊的结构和奇妙的生理功能,为人类提供了众多结构新颖、功能独特和生理活性强的活性物质。

目的:恶性肿瘤为细胞性病变,多药耐药(MDR)的产生是肿瘤化疗中存在的主要问题。开发多药耐药逆转剂,逆转现有化疗药物的耐药性意义重大。

方法:以全甲基化的海洋生物碱Ningalin B为先导化合物,设计并合成了一类以2,5-吡咯二酮为骨架的结构新颖的类似物。以3,4-二甲氧基苯乙酮为起始原料,通过Mitsunobu反应合成了5种未见报道的新化合物。

结果:所有化合物均通过核磁共振氢谱、核磁共振碳谱和质谱进行了结构表征,抗多药耐药活性实验正在进行。

结论:所设计合成的化合物有望成为新型的低毒高效的肿瘤多药耐药逆转剂。

一.化合物的结构与生物活性讨论

海洋天然产物不仅是药物的重要来源,而且在药物开发中作为分子骨架而受到关注。从蓝绿藻Stigonema dendroideum分离得到的海洋天然产物Dendroamide A,以及从海洋海鞘Lissoclinum patella中分离得到的海洋天然产物Patellamides B、C和D是抗肿瘤MDR类化合物中比较典型的化合物。近来发现海洋生物碱Ningalins B的甲基化衍生物具有良好的抗肿瘤MDR的活性,受到药物化学家的关注。

N

OH

OH O

HO HO

OH

OH

O

N

OMe

OMe

permethyl Ningalin B

O

MeO

MeO

OMe

OMe

O

A B

C

D

E

Ningalin B

图 1 Ningalin B及其甲基化衍生物

海洋生物碱Ningalins B是由Fenical在1997年从Ningaloo海角附近的西澳大利亚海岬附近的Didemnum类海鞘中分离得到的,Ningalins B及其全甲基化的结构式见图1。Ningalin B 的甲基化衍生物对L1210 和HCT116肿瘤细胞的细胞毒性比Ningalin B分别低5倍和2.5倍。而对治疗HCT116/VM46肿瘤细胞的抗肿瘤药长春碱和阿霉素有显著的逆转性。在1μM 的浓度条件下,全甲基化的Ningalin B达到100%的逆转。可见,Ningalin B多酚的结构全甲基化转变为芳甲基醚的类似物是一类新型的低毒高效的多药耐药(MDR)逆转剂。

P-gp的过量表达是产生肿瘤多药耐药的典型机理,Peace对全甲基化的Ningalin B的药效团进行了定义:两个平面芳香环与带有长的脂肪链的氮原子,并且两者处于尽量张开的状态,

空间上芳环之间要有适当的距离。化合物结构中的修饰基的疏水性对于抑制P-gp 的过量表达是非常重要的,但是并不能作为抑制P-gp 高表达的必要条件。研究表明,吡咯环与芳环间烷基链的长短影响到物质抗MDR 的活性,碳链延长,亚甲基数增多有利于MDR 抗性修饰基活性的表达。对构效关系的进一步研究,为我们设计多药耐药逆转剂药物提供了新思路。

Ningalin B 的全合成以及甲基化已有报道,本研究以全甲基化的Ningalin B 为先导化合物,用1H-2,5-吡咯二酮代替全甲基化的Ningalin B 中的C 和D 环骨架,设计和合成了一类结构新颖的类似物(化合物7a~7e ),长短不同的烃基链将1H-2,5-吡咯二酮环和另一甲氧基取代的苯环连接,其目的是考察烃基链的长短、核心骨架的改变以及甲氧基个数和位置的变换对多药耐药逆转剂活性的影响。 二.实验部分

目标化合物的具体合成路线见图2。以3,4-二甲氧基苯乙酮(1)和溴为起始原料,在0℃的无水乙醚中发生溴化反应生成2,收率78%;以氯仿为溶剂,2于室温下被六亚甲基四胺氨化几乎定量得到铵盐3;向化合物3的无水甲醇溶液中滴入氢溴酸(48%),室温反应过夜,以70%的产率得到4;在有氮气保护的条件下,向2-(3,4-二甲氧基苯基)乙酸的二氯甲烷溶液中加入脱水剂N,N‘-二环己基碳二亚胺和1-羟基苯并三氮唑,冰浴冷却下反应30min 后,加入4和适量的敷酸剂三乙胺,然后自然升至室温,继续反应过夜生成5,产率76%;上步酰化产物5在叔丁醇中,叔丁醇钾存在下,保温30°C 反应2h ,最后以45%的收率得到化合物6;在最后一步的目标产物的合成实验中,采用Mitsunobu 反应,氮气保护下,将中间体6、2-(3,4-二甲氧基苯基)乙醇和三苯基磷溶于无水四氢呋喃,冰浴下滴加偶氮二甲酸二异丙酯,反应混合物自然升至室温,继续反应12 h ,所得的粗产品用石油醚和乙酸乙酯的混合溶剂作为淋洗剂进行硅胶柱柱层析分离得到目标化合物7a ,收率60%。使用上述相同的方法又制得了四种类似物7b~7e ,产率为53~68%。

COCH 3

OMe

MeO

COCH 2Br

OMe

MeO

MeO

N H OMe MeO

OMe

O

O

MeO N OMe MeO

OMe O

O

2Br OMe

MeO

N N N N

COCH 2NHCOCH 2

OMe

MeO

OMe

OMe

2NH 2HBr OMe

MeO

a

d

e

12

3

45

6

7

图2 目标化合物7a~7e 的合成路线

7a : R=2-(3,4-二甲氧基苯基)乙基; 7b :苯甲基; 7c :4-甲氧基苯基甲基; 7d :(3,4-二甲氧基苯基)甲基; 7e :(3,4,5-三甲氧基苯基)甲基

(a) 溴/乙醚,0℃;

(b) 六亚甲基四胺/氯仿,室温;

(c) 氢溴酸/甲醇,室温;

(d) 2-(3,4-二甲氧基苯基)乙酸,N,N‘-二环己基碳二亚胺/1-羟基苯并三氮唑/三乙胺/二氯甲烷,氮气,冰水浴至室温;

(e) 叔丁醇钾/叔丁醇,30°C;

(f) ROH,三苯基磷/偶氮二甲酸二异丙酯/四氢呋喃,0°C至室温。

所得的目标产物7a~7e均通过核磁共振氢谱、核磁共振碳谱和质谱进行了结构表征,化合物7a~7e均为首次用化学方法合成的新化合物。可继续进行所得目标产物的抗多药耐药活性实验。

设计药物合成路线的方法

设计药物合成路线的方法 一.主要思路 二.主要步骤 1药物结构的剖析:在设计药物的合成路线时,首先应从剖析药物的化学结构入手,然后根据其结构特点,采取相应的设计方法。 2药物剖析的方法:对药物的化学结构进行整体及部位剖析时,应首先分清主环与侧链,基本骨架与功能基团,进而弄清这些功能基以何种方式和位置同主环或基本骨架连接。 研究分子中各部分的结合情况,找出易拆键部位。键易拆的部位也就是设计合成路线时的连接点以及与杂原子或极性功能基的连接部位。如:C -O 、C -S 、C -N 键等。 3考虑基本骨架的组合方式,形成方法;如:基本骨架是芳香环,可采用苯或者苯的同系物或衍生物为原料合成; 基本骨架为杂环化合物的,有一部分可以以天然来源的杂环化合物为原料,例如吡啶,但大部分需要采用缩合或者环合的方式合成。 以此化合物的合成为 例: 4.类型反应法 类型反应法—指利用常见的典型有机化学反应与合成方法进行的合成设计。 主要包括各类有机化合物的通用合成方法,功能基的形成、转换、保护的合成反应单元。 对于有明显类型结构特点以及功能基特点的化合物,可采用此种方法进行设计。 利用典型有机化学反应:如烷基化反应、酰基化反应、酯化反应、缩合反应等等。 例1 抗霉菌药物克霉唑(邻氯代三苯甲基咪唑) 药物合成工艺路线 和引入次序功能基和侧链形成方法功能基一侧链架组合方式主环形成方法或基本骨主环与基本骨架工艺路线设计??? ? ???????→→?

路线一: 路线二: Cl C 6 H C 6 H 5 5 N H N Cl CH 3 Cl CCl 3 Cl C 6 H 5 C 6 H 5 Cl Cl COOC 2 H 5 Cl C 6 H 5 C 6 H 5 OH Cl C 6 H 5 C 6 H 5 Cl Cl COOH Cl COCl Cl COC 6 H 5 Cl Cl C 6 H 5 Cl Cl C 6 H 5 C 6 H 5 Cl

第九章 药物合成设计原理和方法 答案

第九章 药物合成设计原理和方法 答案 一、 名词解释 1、 靶分子:就合成设计而言,凡是合成的有机分子均可称为“靶分子”(target molecule )。 2、 合成子:是组成靶分子或中间体骨架的各个单元结构的活性形式(synthon )。 二、 完成下列反应 1、 生物碱鹰爪豆碱的合成 N H O HCHO HOAc N N O 2 + + Hg(OAc)2 2 2、 喜树碱中间体的喹啉环的合成 NH 2CHO N O O CO 2Me CO 2N O N O OMe N O CO 2Me COOH N + Friedlander 1)MeOH/HCl 3、β - 咔啉的合成 N H NH 2 N H NH Ar Pictet-Spengler 4 、 Ar C CH 2CH 3 O 2 2) HC(OMe)3/MeSO 3H/MeOH/△ OMe OMe ArC H C CH 3 X 2ArCHCOOMe CH 3 22)浓 HCl CH 3 ArCHCOOH 5、全身麻醉药氟烷的合成。

CF2Cl CF2 Zn,CH3OH 40℃F2C CFCl BrF2C CHFCl AlCl 50℃ F3C CHBrCl 三、按要求完成下列化合物全合成。 1、采用逆合成分析法完成布洛芬(Ibuprofen)的逆推过程并写出合成的反应。 i-Bu COOH i-Bu COOH FGA FGI i-Bu OH CN i-Bu i-Bu i-Bu OH CN O Fc i-Bu+ Cl O Ca i-Bu CN Ea i-Bu Cl +NaCN i-Bu+HCHO+HCl (ZnCl2) Fb 2、采用逆合成分析法完成下面化合物的逆推过程并写出合成的反应。 CHO OH CHO OH Cb CHO + HCHO (NaOH/H2O/MeOH) OH COOH (Al(OPr)3/PhC O) (DIBAL/THF) 3、采用逆合成分析法完成茉莉酮的逆推过程并写出合成的反应。 O O O C5H9 O O FGA C5H9 O O EtO2C O Cb (NaOH/H2O/EtOH)1)NaOH/H2O 2)HCl/△

药物设计学简答题

简答题 11、理想的药物靶点应具有哪些特点? (1)药物作用于靶点对疾病治疗的有效性。 (2)中靶后引起的毒副作用反应小。 (3)便于筛选药物的靶点成药性 13、骨架迁越及在药物设计中的应用? 骨架迁越:由苗头或先导化合物分子产生新结构的分子,保留原有的生物活性,通过结构骨架变换,连接适宜的药效团,产生新结构类型的药物,骨架迁越涉及丰富的药物化学内涵和技巧。 应用:(1)将化合物转化成为类药分子-----改善药物动力学性质; 刚-柔骨架的变换,改善药代性质;亲脂-极性骨架变换,改善溶解性和分配性;新的骨架若参与同受体结合,可改善与受体的亲和力;骨架适中的策略如果过小的骨架如苯环缺乏有用信息;过于复杂的骨架带来成本过高问题。 (2)创制具有自主知识产权的新药或IP产品--破专利,Me-too,Me-better; 14、前药设计应注意哪些原则? (1)在母体药物最适宜功能基处键合载体分子。 (2)前药应无活性或活性较低,转运基团应无活性。 (3)明确前药在体内的活化机制。 (4)转化为母体药物的速度应该是快速动力学过程,并降低母体药物的直接代谢,以保证母体药物在靶点有足够的浓度。 (5)应容易合成与纯化,最好是一步反应,且载体廉价易得。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化 性质相关的体内过程,进行有的放矢的药物设计。 4、药物作用的靶点的定义及理想的药物靶点特点是什么? 靶点:也称靶标,指具有重要生理或病理功能,能够与药物相结合并产生药理作用的生物大分子及其特定的结构位点,这些生物大分子主要是蛋白质,有一些是核酸或其他物质。特点:①药物作用于靶点对疾病治疗的有效性②药物作用于靶点后引起的毒副反应小③便于筛选药物靶点的成药性。 5、简述药效基团的虚拟筛选一般流程。 小分子准备→产生构象→由活性分子生成药效基团的假设→优化、修改药效基团的假设→生成药效团模型→数据库搜寻(虚拟筛选) 6、Lipinski的类药五倍律是什么?什么情况下该方法不适合预测药物的类药性?

药物合成与制药工艺

药物合成与制药工艺课程设计 指导老师: ☆药物化学:李家明 ☆制药工艺学:李传润 设计名称:罗美昔布的合成工艺流程设计设计时间: 2012.3.1-2012.5.12 班级: 09 制药工程 小组成员:边术梓(09313001) 蔡华代(09313002) 陈捷(09313003)

课程设计说明书目录 一.前言 (3) (一)基本介绍………………………………………………-- (二)相关信息………………………………………………-- (三)药理学作用……………………………………………-- 二.部分GMP要求…………………………………………………-- 三.设计资料……………………………………………………-- 四.工艺路线选择………………………………………………-- 五.制法及流程说明……………………………………………-- 六.物料衡算……………………………………………………-- (一)物料衡算基准………………………………………-- (二)物料衡算过程………………………………………-- (三)物料平衡表………………………………………………-- (四)原料消耗定额……………………………………………-- (五)物料衡算图………………………………………………-- 七.能量衡算……………………………………………………-- (一)设备的热量衡算………………………………………-- (二)加热剂、冷却剂、压缩空气的计算……………………-- (三)设备选型………………………………………………-- (四)设备流程图…………………………………………--八.总结…………………………………………………………--九.参考文献…………………………………………………………--

药物合成反应习题集

《药物合成技术》习题集适用于制药技术类专业

第一章概论 一、本课程的学习内容和任务是什么?学好本课程对从事药物及其中间体合成工作有何意义? 二、药物合成反应有哪些特点?应如何学习和掌握? 三、什么是化学、区域选择性?举例说明。 四、什么是导向基?具体包括哪些类型?举例说明。 五、药物合成反应有哪些分类方法?所用试剂有哪些分类方法?举例说明。 六、查资料写一篇500字左右的短文,报道药物合成领域的新技术及发展动 态? 第二章卤化技术(Halogenation Reaction) 一、简答下列问题 1.何为卤化反应?按反应类型分类,卤化反应可分为哪几种?并举例说明。 2.在药物合成中,为什么常用卤化物作为药物合成的中间体? 3.在较高温度或自由基引发剂存在下,于非极性溶剂中,B r2和NBS都可用于烯丙位和苄位的溴取代,试比较它们各自的优缺点。 4.比较X2、HX、HOX对双键离子型加成的机理、产物有何异同,为什么?

5.解释卤化氢与烯烃加成反应中,产生马氏规则的原因(用反应机理)。为什么Lewis 酸能够催化该反应? 6.解释溴化氢与烯烃加成反应中,产生过氧化效应的原因? 7.在羟基卤置换反应中,卤化剂(HX 、SOCl 2、PCl 3、PCl 5)各有何特点,它们的使用范围如何? 二、完成下列反应 C CH 3CH 3 CHCH 3 Ca(OCl)2/AcOH/H 2O 1. Ph 2CHCH 2CH 2OH 2.CH 3 SO 2Cl Cl /AIBN 3. OH 48%HBr 4 CH 3 CH 3 5. 2 O C O CH 3OH I 2/CaO THF/MeOH AcOK Me 2CO ? 6. 三、为下列反应选择合适的试剂和条件,并说明原因。 (CH 3)2C CHCH 3 CHCH 2Br (CH 3)2C 1. CH 3 CH CH COOH CH 3 CH CH COCl 2. HOCH 2(CH 2)4CH 2OH (CH 2)4CH 2I CH 2I 3.

药物合成反应实验讲义

药物合成反应实验讲义 编写教师:王曼张云凤

目录 实验1 苯妥英钠(Phenytoin Sodium)的合成 (1) 一、目的要求 (1) 二、实验原理 (1) 三、仪器与试剂 (2) 四、实验步骤 (3) 五、结构确证 (3) 思考题: (4) 实验2 尼群地平的合成 (5) 一、实验目的 (5) 二、方案提示 (5) 三、要求 (5) 实验3 阿昔洛韦的合成研究 (6) 一、目的 (6) 二、要求 (6)

实验1 苯妥英钠(Phenytoin Sodium)的合成 (综合性实验11学时) 一、目的要求 1. 学习安息香缩合反应的原理和应用氰化钠及维生素B1为催化剂进行反应的实验方法。 2. 了解剧毒药氰化钠的使用规则。 二、实验原理 苯妥英钠为抗癫痫药,适于治疗癫痫大发作,也可用于三叉神经痛,及某些类型的心律不齐。苯妥英钠化学名为5,5-二苯基乙内酰脲,化学结构式为: H N N ONa O 苯妥英钠为白色粉末,无臭、味苦。微有吸湿性,易溶于水,能溶于乙醇,几乎不溶于乙醚和氯仿。 合成路线如下: CHO 催化剂C CH O [O]C C O O C C O O +C O NH2 NH2 NaOH H N N ONa O 2

三、仪器与试剂 1、主要仪器 磁力搅拌器、温度计、球形冷凝管、三口烧瓶、水浴锅、真空泵、布氏漏斗、抽滤瓶、圆底烧瓶、滴管、量筒、烧杯、玻璃棒、小漏斗等。 2、试剂 名称规格用量 苯甲醛 C.P. 7.5ml NaOH 2mol/L 7.5ml 乙醇 C.P. 20ml VB1 C.P. 2.7g NaOH C.P. 适量 硝酸65%—68%25ml NaOH 15%25ml 醋酸钠 C.P. 1g 尿素 C.P. 3g 乙醇95%40ml 活性炭工业少量95%乙醇-乙醚混合液1:1 少量

药物合成考试题

一、名词解释 1.亲电试剂亲点试剂一般都是带正电荷的试剂或具有空的p轨道或者d轨道,能够接受电子对的中性分子 2.亲核试剂一些带有未共享电子对的分子或负离子,与正电性碳反应时称为亲核试剂,所谓亲核试剂就是一种电子对供体,即路易威斯 3.硝化反应是向有机化合物分子中引入硝基(—NO2)的反应,硝基就是硝酸失去一个羟基形成的一价的基团 4.协同反应协同反应又称一部反应,是指起反应的分子—单分子或双分子—发生化学键的变化,反应过程中只有键变化的过渡态,一步发生键和断键,没有自由基或离子等活性中间体的产生。 5.自由基反应通过化合物分子中的共价键均型成自由基而进行的反应,在链反应中起了重要的引发、传递和终止过程的作用 6.重氮化反应芳香族伯胺和亚硝酸作用(在强酸介质下)生成重氮盐的反应称为重氮化反应 7.卤化反应卤化反应又称卤代反应,是指有机化合物中的氢或其他基团被卤素取代生成含卤有机化合物的反应 8.缩合反应两个或两个以上有机分子相互作用后以共价键结合成一个大分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应 9.氧化反应有机化反应时把有机物引入氧或脱去氢的反应叫氧化反应 10.烃化反应用烃基取代分子中的氢原子(包括官能团或碳骨架上的氢原子)或通过加成而引入烃基的反应 11.酰化反应为有机化学中,氢或者其他基团被酰基取代的反应 12.重排反应取代基由一个原子转移到同一个分子中的另一个原子上的反应,分子的碳骨架发生重排生成结构异构体的化学反应 13.还原反应物质(分子、原子或离子)得到电子或电子对偏近的反应。有机物反应时把有机物引入氢或失去氧的反应 二、简答题 1.药物合成反应研究的内容有哪些? 讨论药物合成反应的机理,反应物结,反应条件和,方向,反应物之间的关系。反应的主要影响因素实际特点,应用范围与限制。讨论药物合成反应的一般规律和特殊性质一击各基本反映之间的关系。 2.学习药物合成的目的是什么? 答:使学生能系统的掌握药物制备中重要的有机药物合成单元反应和合成设计原理,使学生掌握药物合成的本质和一般规律以及现代药物合成领域中的新理论新试剂和新方法培养对典型药物合成过程中各种变化因素的分析能力及选择合理的工艺条件和控制方法的能力利用药物化学制药工艺学等后续课程的学习为将来从事药物合成生产操作实施常规生产与管理参与新药开发奠定基础 3.药物合成反应主要研究的内容是什么? 答:主要研究反应机理反应的主要影响因素应用范围以及在药物合成中的应用等,以探讨有机药物合成反应的一般规律 4.卤化反应,在药物合成反应中有哪些重要作用 以制备具有不同的生理活性的含卤素有机药物 在官能团转化中,卤化物,常常是一类重要的中间体 为了提高反应选择性卤素原子,可作为保护基,阻断基

第九章 药物合成设计原理和方法 练习题

第九章药物合成设计原理和方法练习题 一、名词解释 1、靶分子: 2、合成子: 二、完成下列反应 1、生物碱鹰爪豆碱的合成 2、喜树碱中间体的喹啉环的合成 3、β- 咔啉的合成 4、合成 ArCHCOOH CH3 5、全身麻醉药氟烷的合成。 F3C CHBrCl

三、按要求完成下列化合物全合成。 1、采用逆合成分析法完成布洛芬(Ibuprofen)的逆推过程并写出合成的反应。 i-Bu COOH 2、采用逆合成分析法完成下面化合物的逆推过程并写出合成的反应。 CHO OH 3、采用逆合成分析法完成茉莉酮的逆推过程并写出合成的反应。 O 4、采用逆合成分析法完成下面化合物的逆推过程并写出合成的反应。 MeO2C CHO COOMe

5、采用逆合成分析法完成下面化合物的逆推过程并写出合成的反应。 CO 2Me OH 6、完成非那西丁(Phenacetin)的合成反应。 NHCOCH 3 OH 7、完成吲哚美辛(Indometacin)的合成反应。 CH 2COOH CH 3 CO Cl O H 3C 8、 完成芬太尼(Fentany Citrate)的合成。 CH 3CH 2CON N CH 2CH 2

9、完成盐酸多巴(Dopamine Hydrochloride)的合成。 OH OH NH2 HCl 10、完成盐酸可乐(Clonidine Hydrochloride)的合成。 Cl Cl N H H N HCl 11、完成硫酸沙丁胺醇(Sulbutamol sulfate)的合成。 OH CH2OH CHCH2NH(CH3)3 OH 1/2 H2SO4

《药物合成与设计》课程标准

《药物合成与设计》课程标准 课程代码:A6308 课程类型:理实一体化课 学时/学分:48/3.0 适用专业:药品生产技术专业 1.课程概述 《药物合成与设计》是药品生产技术专业的一门重要的职业技术课程,本课程标准是依据江苏工程职业技术学院纺染工程学院药品生产技术专业教学计划而编制,适用于全日制三年制药品生产技术专业。 本课程的教学内容主要包括几种典型的药物合成技术如卤化技术、烷基化技术、酰化技术、氧化和还原技术等。通过本课程的学习,使学生对合成反应过程有系统的理解,会分析典型药物合成过程中的各种变化因素,选择合理的工艺条件和控制方法,熟练进行操作,具备制药企业生产一线的技术技能人才所必需的理论知识和操作技能。培养学生理解能力、独立思考能力,以及在实际工作中发现问题、分析问题和解决问题的能力,并具备较强的创新精神和开拓能力,为学习后续专业课程、职业技能训练及将来工作奠定基础。 2.课程目标 本课程的培养目标是:突出药物合成知识的应用和实践能力的培养,教学内容的选取依据完成化学原料药及医药中间体生产过程的“典型工作任务”,并对岗位技术人员所必备的技能、知识、素质进行排序和整合,注重内容的实用性与通用性。具体应达到以下目标: (1) 基本素质培养目标 ①具有生产岗位所必备的安全意识,保证生产的正常进行; ②有团队意识,服从企业的管理; ③有较强的质量意识,具备严谨的工作作风,保证产品质量。 ④具有良好的职业道德和环境保护意识。 ⑤具有再学习能力,创新意识和创新精神。

(2)知识与技能培养目标 ①熟悉利用卤化、烷基化、酰化、氧化、还原等方法制备药物的基本原理,及其在生产中的应用。 ②掌握常用药物合成中反应物结构、反应条件、反应方向、反应产物之间的关系;能够分析其各种影响因素对产品的影响,正确选择原料、试剂、反应条件和控制方法。 ③掌握常用的药物合成反应实验(小试、放大)操作方法,以及典型药品制备、分析方法,设备清理、维护方法;具备熟练的动手操作能力,综合运用所学知识分析、解决实际问题的能力。 ④了解典型化学原料药、医药中间体生产过程所涉及的工艺、设备、操作规程等现场知识和操作技能,以及制药企业管理方式、安全生产、环保要求等行业规范。 (3)职业能力培养目标 ①具有运用药物合成知识分析和解决实际问题的能力。 ②具有良好的学习方法和良好的学习习惯。 ③具有实验操作能力,综合分析问题和解决问题的能力。 ④具有利用网络工具获取知识的能力。 3.课程实施和建议 3.1课程内容和要求 项目一课程认识 教学内容: 1、药物合成方法与特点; 2、常用试剂的分类与用途; 3、药物合成生产装置; 4、药物合成的发展趋势与新技术。 教学要求: 1、了解药物合成的一般方法和特点 2、掌握常用试剂的分类

药物合成原理

S纤减肥胶囊合成原理姓名:汤琰学号:2012512236 学院:农学院专业:园艺 摘要:减肥药可以减少肠道对食物中脂类物质的吸收,控制人体热量的摄入,防止新的脂肪存储。通过产热的形式消耗原有过多的脂肪,加快脂的代谢速率,使其转化为蛋白质糖,保持了身体原有营养成份的平衡,具有调节血脂、美体瘦身的保健功能。 关键字:脂肪酸、代谢、调节血脂 正文:S纤减肥胶囊: 一、肥胖的危害与减肥的必要性 肥胖的危害与减肥的必要性肥胖的危害与减肥的必要性肥胖的危害与减肥的必要性肥胖是人体内脂肪积聚过多所致的现象,并不是人们视为的“健康”标志。肥胖不仅影响形体美,而且给生活带来不便,更重要是容易引起多种并发症,加速衰老和死亡。难怪有人说肥胖是疾病的先兆、衰老的信号。 1、是健康长寿之大敌 据统计肥胖者并发脑栓塞与心衰的发病率比正常体重者高一倍,患冠心病比正常体重者多二倍,高血压发病率比正常体重者多二~六倍,合并糖尿病者较正常人约增高4倍,合并胆石症者较正常人高四~六倍,更为严重的是肥胖者的寿命将明显缩短。据报导超重10%的45岁男性,其寿命比正常体重者要缩短4年,具日本统计资料表明标准死亡率为百分100%,肥胖者死亡率为127.9%。 2、影响劳动力 易遭受外伤易遭受外伤易遭受外伤易遭受外伤身体肥胖的人往往怕热、多汗、易疲劳、下肢浮肿、静脉曲张、皮肤皱折处患皮炎等,严重肥胖的人,行动迟缓,行走活动都有困难,稍微活动就心慌气短,以致影响正常生活,严重的甚至导致劳动力丧失。由于肥胖者行动反应迟缓,也易遭受各种外伤、车祸、骨折及扭伤等。 3、易发冠心病及高血压 肥胖者脂肪组织增多,耗氧量加大,心脏做功量大,使心肌肥厚,尤其左心室负担加重,久之易诱发高血压。脂质沉积在动脉壁内,致使管腔狭窄,硬化,易发生冠心病、心绞痛、中风和猝死。 4、易患内分泌及代谢性疾病 伴随肥胖所致的代谢、内分泌异常,常可引起多种疾病。糖代谢异常可引起糖尿病,脂肪代谢异常可引起高脂血症,核酸代谢异常可引起高尿酸血症等。肥胖女性因卵巢机能障碍可引起月经不调。 5、对肺功能有不良影响 肺功能的作用是向全身供应氧及排出二氧化碳。肥胖者因体重增加需要更多的氧,但肺不能随之而增加功能,同时肥胖者腹部脂肪堆积又限制了肺的呼吸运动,故可造成缺氧和呼吸困难,最后导致心肺功能衰竭。 6、易引起肝胆病变

药物合成学习题

《药物合成技术》 习题集 适用于制药技术类专业 河北化工医药职业技术学院李丽娟二00六年七月

第一章 概论 一、本课程的学习内容和任务是什么?学好本课程对从事药物及其中间体合成工作有何意义? 二、药物合成反应有哪些特点?应如何学习和掌握? 三、什么是化学、区域选择性?举例说明。 四、什么是导向基?具体包括哪些类型?举例说明。 五、药物合成反应有哪些分类方法?所用试剂有哪些分类方法?举例说明。 六、查资料写一篇500字左右的短文,报道药物合成领域的新技术及发展动态? 第二章 卤化技术(Halogenation Reaction ) 一、简答下列问题 1.何为卤化反应?按反应类型分类,卤化反应可分为哪几种?并举例说明。 2.在药物合成中,为什么常用卤化物作为药物合成的中间体? 3.在较高温度或自由基引发剂存在下,于非极性溶剂中,B r 2和NBS 都可用于烯丙位和苄位的溴取代,试比较它们各自的优缺点。 4.比较X 2、HX 、HOX 对双键离子型加成的机理、产物有何异同,为什么? 5.解释卤化氢与烯烃加成反应中,产生马氏规则的原因(用反应机理)。为什么Lewis 酸能够催化该反应? 6.解释溴化氢与烯烃加成反应中,产生过氧化效应的原因? 7.在羟基卤置换反应中,卤化剂(HX 、SOCl 2、PCl 3、PCl 5)各有何特点,它们的使用范围如何? 二、完成下列反应 C CH 3CH 3 CHCH 3 Ca(OCl)2/AcOH/H 2O 1. Ph 2CHCH 2CH 2OH 3 2. CH 3 SO 2Cl Cl /AIBN 3.

OH 4 CH 3 CH 3 Fe/Br 5. O C O CH 3OH I 2/CaO AcOK Me 2CO ? 6. 三、为下列反应选择合适的试剂和条件,并说明原因。 (CH 3)2C CHCH 3 CHCH 2Br (CH 3)2C 1. CH 3 CH CH COOH CH 3 CH CH COCl 2. HOCH 2(CH 2)4CH 2OH (CH 2)4CH 2I CH 2I 3. CH 3 O CH 2CH 2CO 2H CH 2CHCOBr Br CH 3 O 4. CH 3CH CH CO 2CH 3CH 2 CH CH CO 2CH 3Br 5. O 2CH 2OH CH 2CH 2OH O CH 2CH 2CH 2CH 2Cl Cl 6. CH 2OH 3 CH 2Cl OCH 3 7. 8. BrCH 2(CH 2)9COOH CH 3CH(CH 2)8COOH Br CH 2 CH(CH 2)8COOH

药物合成反应与设计翻译部分

药物合成反应与设计翻译部分(第三版闻韧主编)第一章翻译: About 216–224 g. (1.62–1.68 moles) of powdered anhydrous aluminum chloride is added to a 1Lthree-necked flask.在1L的三口烧瓶中加入大约216-224g(1.62–1.68 moles)的无水三氯化铝。While the free-flowing catalyst is stirred (Note 3), 81 g. (0.67 mole) of acetophenone is added from the dropping funnel in a slow stream over a period of 20–30 minutes. 自由流动的催化剂边搅拌边用滴液漏斗缓慢滴加81g苯乙酰。Considerable heat is evolved, and, if the drops of ketone are not dispersed, darkening or charring occurs. 放热反应,假如滴加的酮不能被分散,就会变黑或是碳化。When about one-third of the acetophenone has been added, the mixture becomes a viscous ball-like mass that is difficult to stir.当三分之一的乙酰苯被滴加,反应混合物变成一个很难搅拌的粘性的球状团块。Turning of the stirrer by hand or more rapid addition of ketone is necessary at this point. 在这时,改用手动搅拌或快速滴加酮是非常必要的。The addition of ketone, however, should not be so rapid as to produce a temperature above 180°. 然而,速度不能太快,当反应温度超过180℃时。Near the end of the addition, the mass becomes molten and can be stirred easily without being either heated or cooled. The molten mass, in which the acetophenone is complexed with aluminum chloride, ranges in color from tan to brown.当快滴加完时,团块开始融化,表明苯乙酰已经和三氯化铝混合完全,颜色也逐渐从黄褐色变为棕色。Bromine (128 g., 0.80 mole) is added dropwise to the well-stirred mixture over a period of 40 minutes (Note 4). 在40分钟内在搅拌下把溴缓慢滴加到混合物中。After all the bromine has been added, the molten mixture is stirred at 80–85°on a steam bath for 1 hour.溴滴加完后,熔融混合物在80-85℃蒸气浴下搅拌1小时。The complex is added in portions to a well-stirred mixture of 1.3 l. of cracked ice and 100 ml. of concentrated hydrochloric acid in a 2-l. beaker (Note 6).反应物加入到1.3L碎冰和100ml浓盐酸的混合物中在2L的烧杯中混合均匀。Part of the cold aqueous layer is added to the reaction flask to decompose whatever part of the reaction mixture remains there, and the resulting mixture is added to the beaker.把部分的冰水层加入到烧瓶中洗涤残留物,然后合并到烧杯中。The dark oil that settles out is extracted from the mixture with four 150-ml. portions of ether 分四次把深色的油从混合物中用150ml萃取出来。The extracts are combined, washed consecutively with 100 ml. of water and 100 ml. of 5% aqueous sodium bicarbonate solution, dried with anhydrous sodium sulfate, and transferred to a short-necked distillation flask. 合并萃取液,用100ml水和100ml 5%的小苏打洗涤,用无水硫酸钠干燥。The ether is removed by distillation at atmospheric pressure, and crude 3-bromoacetophenone is stripped from a few grams of heavy dark residue by distillation at reduced pressure. 乙醚在常压下蒸馏, 微量的溴苯乙酮通过减压蒸馏的方法从大量深色残渣中被分离出来。The colorless distillate is carefully fractionated to obtain 94–100 g.通过分馏,得到无色的流出液94-100g 第一章 在1L的三口烧瓶中加入大约216-224g(1.62–1.68 moles)的无水三氯化铝。自由流动的催化剂边搅拌边用滴液漏斗缓慢滴加81g苯乙酰。放热反应,假如滴加的酮不能被分散,就会变黑或是碳化。当三分之一的乙酰苯被滴加,反应混合物变成一个很难搅拌的粘性的球状团块。在这时,改用手动搅拌或快速滴加酮是非常必要的。然而,速度不能太快,当反应温度超过180℃时。当快滴加完时,团块开始融化,表明苯乙酰已经和三氯化铝混合完全,颜色也逐渐从黄褐色变为棕色。

药物合成工艺路线的设计和选择

第二章 药物合成工艺路线的设计和选择 药物生产工艺路线是药物生产的基础和依据。一个化学合成药物往往具有多种不同的合成途径,通常将具有工业生产价值的合成途径称为该药物的工艺路线。人们习惯上将化学合成药物的合成按起始原料的不同分为全合成和半合成两类:以结构简单的化工产品为起始原料,经一系列化学反应和物理处理过程制备的方法称为全合成(total synthesis );由具有一定基本结构的天然产物经化学结构改造和物理处理过程制备的方法称为半合成(semi synthesis )。一个药物具体采用何种方法合成主要取决于经济的合理性。 药物生产工艺路线的技术先进性和经济合理性是衡量生产技术水平高低的尺度。在创新药物研究中,人们通过筛选发现先导化合物,进而合成一系列目标化合物,优选出最佳的有效化合物作为新药(new chemical, NCE )。在此过程中经济问题居于次要地位,需要主要考虑的是如何最为快捷地合成所需化合物以进行进一步研究;但是一旦研究中新药(investigational drug, IND )在临床实验中显示出优异性质,便要加紧进行生产工艺研究,寻求合成药物的最佳途径,并根据社会的潜在需求量确定生产规模──这时必须把药物工艺路线的工业化、最优化和降低生产成本放在首位,同时考虑清洁化生产等诸多问题。 进行药物生产工艺路线的设计和选择必须首先对该药物或结构类似的化合物进行国内外文献资料的调查研究和论证,然后优化一条或多条技术先进、操作条件切实可行、设备条件容易解决和原辅料有可靠来源的技术路线,最后写出文献综述报告和生产研究方案,作为大规模工业化生产的基础。 第一节 药物生产工艺路线设计的基本方法──逆合成分析 合成是指从某些原料出发,经过若干步反应,最后制备出所需的产物,最后产物就是合成目标物(药物),或叫目标分子(target molecule ,TM)。实际上,进行合成路线设计时是反其道而行之。 考虑对一个特定药物进行合成,第一步是对这个药物分子的结构特征和理化性质进行收集和考察,由此可以简化合成中的问题或避免不必要的弯路。例如非甾体雌激素药物已烯雌酚(diethylstilbestrol, 2-1)的分子带有明显的对称性,因此可以考虑只合成一部分结构单元,采用分子对接的方法合成目标药物分子,从而减化合成步骤(详见分子对称法);而在考虑前列腺素E 2的合成时,由于已知分子中β-羰基酮体系是不稳定的,因此可以安排在合成的最后几步形成这一结构单元,使其避免经历较多的化学反应。 2-2 , 前列腺素E 2 OH HO 2-1, 已烯雌酚 进行药物分子合成的第二步是以以上分析为基础,从药物本身出发,一步步倒推出合成此药物的各种合成路线和起始原料,也就是我们通常所说的逆合成法(retrosynthesis)。 逆合成法是药物生产工艺路线设计的最基本的方法,也叫做反合成法(antithetic synthesis),其他一些更为复杂的设计方法都是建立在此方法基础上的,所以首先要掌握逆合成法。逆合成法的整个设计思路也被称为逆(反)合成分析,即从目标分子的结构出发,逐步

新药设计与合成复习资料

软药 是容易代谢失活的药物,使药物在完成治疗作用后,按预先设定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性,这类药物被称为软药 前药 将药物经过化学结构修饰后得到的在体外无活性或或性较小、在体内经酶或非酶的转化释放出活性药物而发挥药效的化合物,称为前体药物,简称前药。 硬药是指具有发挥药物作用所必需的结构特征的化合物,该化合物在生物体内不发生代谢或转化,可避免产生某些毒性代谢产物。 软药与前药的异同点:都是进入体内后都可按预期方式发生代谢。区别在于软药本身有活性,代谢的结果是失活;而前药本身无或低活性,代谢的目的是活化。软药与硬药都是有效药物,不同的是软药在体内呈现药理作用后,极易被代谢失活(毒),避免出现不良反应和毒性;而硬药基本不经历代谢过程以原形排出。 先导化合物 简称先导物,是通过各种途径和手段得到的具有某种生物活性和化学结构 的化合物,用于进一步的结构改造和修饰,是现代新药研究的出发点。 先导化合物的优化:因先导化合物存在着某些缺陷,如活性不够高,化学结构不稳定,毒性较大,选择性不好,药代动力学性质不合理等等,需要对先导化合物进行化学修饰,进一步优化使之发展为理想的药物,这一过程称为先导化合物的优化。 先导优化方法:经结构剖析与改造,确定与药理活性有关的药效基团,根据不同的目的,(改善药效学或药动学性质),通过生物电子等排体,前药原理,拼合原理以及类似物和拟肽设计等进行构效关系,定量构效关系或三维定量构效关系研究,可发现一大批具有相同基本结构的优良药物。 定量构效关系(QSAR ) 是药物活性与化学结构之间的定量关系。 电子等排体:电子等排体是指具有相同数目的原子,相同的电子总数,相同的电子排列的原子或分子,离子,因而又称为同电异素体,例如,—COO —、—CO —、—NH —、—CH2—等基团是电子等排体,—Cl 、—Br 、—CH3等也是电子等排体。 生物电子等排体:凡是有相似的物理和化学性质,又能产生相似生物活性的基团或分子。 经典的生物电子等排体包括Grimm 的氢化物替代规律及Erlenmeyer 定义所限定的电子等排体。取代基团的形状、大小和外层电子构型大致相同,组成基团的原子数、价键数、不饱和程度及芳香性等方面极其相似, 按照Erlenmeyer 氢化物取代规律可分为一价、二价、三价、四价及环内等价5 种类型 。 非经典的生物电子等排体不符合Erlenmeyer 的电子等排定义,基团的原子数可以不同,形状和大小变化亦较大,但保留了原基团的pKa 值、静电势能、最高占据分子轨道和最低空轨道等性能,因而仍显示相应的生物活性,如—CO —和—SO2— 以及 —SO2NH2 和—PO( OH) NH2等 电子等排体的应用:1环与非环结构及构象限制。如己烯雌酚和雌二醇。2可交换的基团。如磺胺类药物。3基团反转。如哌替啶是一个哌啶的乙酯。 合理药物设计 根据药物作用的靶点生物大分子(受体或酶)的三维空间结构来模拟与 其向嵌合互补的天然配体或第五的结构片段来设计活性化合物分子的方法。 致死合成 与生物体内基本代谢物的结构有某种程度相似的化合物,与基本代谢物竞争 性或干扰基本代谢物的利用,或掺入生物大分子的合成之中形成伪生物大分子,导致致死合成,从而影响细胞的生长。 类似物设计 以现有药物或具有生物活性的物质为先导物,按预定的设想经结构修饰或改造,以获得疗效比先导物更好、毒副作用更小的新药。 生物烷化剂 抗肿瘤药物的一类。这类药物在体内能形成缺电子活泼中间体或其他具有 活泼的亲电性基团的化合物,进而与生物大分子(如DNA\RNA\或某些重要的酶类等)中富电子基团(如氨基、巯基、羟基、羧基、磷酸基等)进行亲电反应,形成共价结合,使其丧失活性或使DNA 分子发生断裂。 软烷化剂:烷化作用温和,选择性的作用于肿瘤 硬烷化剂:烷化过程失活,毒性大 me-too 药物 :药物作用于酶或受体,结构类似的药物,尤其带有相仿药效构象的化合物,应可与同一酶或受体作用,理应产生类似的药效。利用已知药物的作用机制和构效关系的研究成果,在分析已知药物的化学结构的基础上,设计合成该药物的衍生物、结构类似物和结构相关化合物,并通过系统的药理学研究,所产生的新药与已知药物比较,具有活性高或活性类似等特点的新药称为“模仿(me-too)药”,有别于完全照抄他人化学结构的“仿制药”。 新药研发的进步历程:滞后性模仿-跟随性模仿- 模仿创新-率先性创新的发展模式 治疗指数 半数致死量(药量)LD50与半数有效量ED50之比一般地,TI 越大,它的安全性和有效性越有保证。 50 50 ED LD TI

药物合成工艺路线的设计和选择

药物合成工艺路线的设计和选择 第一节概述 工艺路线:一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途径称为该药物的工艺路线。 工艺研究的首要任务:在化学合成药物的工艺研究中,首先是工艺路线的设计和选择,以确 定一条经济而有效的生产工艺路线。 工艺路线设计与选择的研究对象:(1)即将上市的新药 在新药研究的初期阶段,对研究中新药 (investigational drug,IND)的成本等经济问题考虑 较少,化学合成工作一般以实验室规模进行。当IND 在临床试验中显示出优异性质之后,便要加紧进行生 产工艺研究,并根据社会的潜在需求量确定生产规 模。这时必须把药物工艺路线的工业化、最优化和降 低生产成本放在首位。 (2)专利即将到期的药物 药物专利到期后,其它企业便可以仿制,药物的价格 将大幅度下降,成本低、价格廉的生产企业将在市场 上具有更强的竞争力,设计、选择合理的工艺路线显 得尤为重要。 (3)产量大、应用广泛的药物 某些活性确切老药,社会需求量大、应用面广,如能 设计、选择更加合理的工艺路线,简化操作程序、提 高产品质量、降低生产成本、减少环境污染,可为企 业带来极大的经济效益和良好的社会效益。 第二节药物合成工艺路线的设计 药物合成工艺路线设计属于有机合成化学中的一个分支,从使用的原料来分,有机合成可分为全合成和半合成两类:

(1)半合成(semi synthesis):由具有一定基本结构的天然产物经化学结构改造和物理处 理过程制得复杂化合物的过程。 (2)全合成(total synthesis):以化学结构简单的化工产品为起始原料,经过一系列化学 反应和物理处理过程制得复杂化合物的过程。 与此相应,合成路线的设计策略也分为两类: (1)由原料而定的合成策略:在由天然产物出发进行半合成或合成某些化合物的衍生物时, 通常根据原料来制定合成路线。 (2)由产物而定的合成策略:有目标分子作为设计工作的出发点,通过逆向变换,直到找 到合适的原料、试剂以及反应为止,是合成中最为常见的策略。 这种逆合成(retrosynthesis)方法,由E.J.Corey于1964年正 式提出。 逆合成(retrosynthesis)的过程是对目标分子进行切断(disconnection),寻找合成子(synthon)及其合成等价物(synthetic equivalent)的过程。 切断(disconnection):目标化合物结构剖析的一种处理方法,想象在目标分子中有价键被 打断,形成碎片,进而推出合成所需要的原料。 切断的方式有均裂和异裂两种,即切成自由基形式或电正性、电负 性形式,后者更为常用。 切断的部位极为重要,原则是“能合的地方才能切”,合是目的,切 是手段,与200余种常用的有机反应相对应。 合成子(synthon):已切断的分子的各个组成单元,包括电正性、电负性和自由基形式。 合成等价物(synthetic equivalent):具有合成子功能的化学试剂,包括亲电物种和亲核物 种两类。 逆合成方法的基本过程: (1)化合物结构的宏观判断:找出基本结构特征,确定采用全合成或半合成策略。 例:头孢拉定(p17)

相关文档
最新文档