江苏省盐城中学高二数学10月阶段性考试试题

江苏省盐城中学高二数学10月阶段性考试试题
江苏省盐城中学高二数学10月阶段性考试试题

江苏省盐城中学高二数学10月阶段性考试试题

命题人: 审核人:

一、选择题:(本大题共10小题,每小题5分,计50分.) 1.若

22a b

c c

>,则下列描述,a b 的大小关系正确的为 ( ) A. b a >

B. b a =

C. b a <

D.无法确定

2.已知等比数列{}n a 中,684,8a a ==,则10a 的值是 ( )

A. 5

B. 6

C. 14

D. 16

3.数列1,2,2,3,3,3,4,4,4,4,...的第15项是 ( )

A .5

B .6

C .7

D .8

4.已知ABC ?的内角060=B ,且,

,41==BC AB 则边BC 上的中线AD 的长为 ( ) A .1

B .13

C .3

D .2

5.已知一个正三棱柱的底面边长为3,且侧棱长为底面边长的2倍,则该正三棱柱的体积为 ( )

A .

2

5

B .

27 C .233 D .2

9

6.直线01443=-+y x 与圆()4)1(12

2

=++-y x 的位置关系为 ( )

A .相离

B .相交

C .相切

D .相交或相切

7.《九章算术》是我国古代内容极丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,前七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( )

A .6

B .7

C .8

D .9

8.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且

35

3

n n A n B n +=+,则55a b = ( )

A .

52 B. 133 C. 3513 D. 8

3

9.已知关于x 的一元二次不等式2

0ax bx c ++>的解集为()2,3,则不等式2

0bx ax c -+<的 解集为 ( )

A .11,

32??

???

B .6,15??

-

???

C .()6-15??

∞-?+∞ ???

D .11,23??

-

- ??

? 10.已知等差数列{}n a 满足212=9n n n a a a ++-+(n N *

∈),若存在两项s a , t a 使得

1=212s t a a a ++,则14

s t

+的最小值为 ( )

A.

9

4

B.

3

2

C. 3

D. 9

二、填空题:(本大题共4小题,每小题5分,计20分.)

11.若直线1+=kx y 与直线042=-+y x 垂直,则k 的值为 .

12.已知不等式240x mx ++>对一切[]3,1∈x 恒成立,则实数m 的取值范围为 . 13.已知0,0,2=32,x y x y xy >>+-,则2x y +的最小值为 .

14.设数列{}n a 满足*

132131923n n n a a a a a n N ++===+∈,,,,则数列{}n a 的前2020项之和

为 .

三、解答题:(本大题共6小题,计80分.) 15.解下列关于x 的不等式. (1)3

21

x x ->-+

(2)22

(21)0x a x a a -+++≤.

16.已知3sin 5

α=,(0,)2

π

α∈.

(1)求sin()6

π

α-的值;

(2)求tan2α的值.

17.设数列{}n a 的前n 项和为n S ,对任意n *∈N ,都有(1)n n S na n n =--. (1)求证:数列{}n a 为等差数列;

(2)若116a =-,求满足0n S <的最大正整数n .

18.如图(示意),公路AM 、AN 围成的是一块顶角为钝角α的角形耕地,其中2

sin 5

α=

.在该块土地中P 处有一小型建筑,经测量,它到公路AM 、AN 的距离PE 、PF 分别为3km ,2km .现要过点P 修建一条直线公路BC ,将三条公路围成的区域ABC 建成一个工业园.设AB xkm =,

AC ykm =,其中0,0x y >>.

(1)试建立,x y 间的等量关系;

(2)为尽量减少耕地占用,问如何确定B 点的位置,使得该工业园区的面积最小?并求最小面积.

19.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,

. (1)求数列{}n a 和{}n b 的通项公式;

(2)设数列{}n c 满足1

11,2,22

1,k k n k

k n c c b n +?<<===??, 其中*

k ∈N . (i )求数列(){}

22

1n

n

a c

-的通项公式; (ii )求()2*

1

n

i i

i a c n =∈∑N .

20.已知数列{}n a 满足112a =

,

121

1n n

a a n +=+. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;

·

A M

N

P

B

C

(第18题)

E

F

(3)设数列{}n b 满足210,2,21n n

n n k b n n k a --=??

=?=-??,其中*k ∈N .记{}n b 的前n 项和为n S .

是否存在正整

数,m n ()m n <,使得m n S S =成立?若存在,请求出所有满足条件的,m n ;若不存在,请说明理由.

江苏省盐城中学高二年级阶段性考试

数学试卷(2019.10)

命题人: 审核人:

一、选择题:(本大题共10小题,每小题5分,计50分.) 1.若

22a b

c c

>,则下列描述,a b 的大小关系正确的为 ( A ) A. b a >

B. b a =

C. b a <

D.无法确定

2.已知等比数列{}n a 中,684,8a a ==,则10a 的值是 ( D )

A. 5

B. 6

C. 14

D. 16

3.数列1,2,2,3,3,3,4,4,4,4,...的第15项是 ( A )

A .5

B .6

C .7

D .8

4.已知ABC ?的内角060=B ,且,

,41==BC AB 则边BC 上的中线AD 的长为 ( C ) A .1

B .13

C .3

D .2

5.已知一个正三棱柱的底面边长为3,且侧棱长为底面边长的2倍,则该正三棱柱的体积为 ( D )

A .

2

5

B .

27 C .233 D .2

9

6.直线01443=-+y x 与圆()4)1(12

2

=++-y x 的位置关系为 (A )

A .相离

B .相交

C .相切

D .相交或相切

7.《九章算术》是我国古代内容极丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,前七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第九日所织尺数为( D )

A .6

B .7

C .8

D .9

8.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且

35

3

n n A n B n +=+,则55a b = ( D )

A .

52 B. 133 C. 3513 D. 8

3

9.已知关于x 的一元二次不等式2

0ax bx c ++>的解集为()2,3,则不等式2

0bx ax c -+<的

解集为 ( B )

A .11,

32??

???

B .6,15??

-

??? C .()6-15?

?

∞-?+∞ ???

D .11,23??

-

- ??

? 10.已知等差数列{}n a 满足212=9n n n a a a ++-+(n N *

∈),若存在两项s a , t a 使得

1=212s t a a a ++,则14

s t

+的最小值为 ( B )

A.

9

4

B.

3

2

C. 3

D. 9

二、填空题:(本大题共4小题,每小题5分,计20分.) 11.若直线1+=kx y 与直线042=-+y x 垂直,则k 的值为

2

1

. 12.已知不等式240x mx ++>对一切[]3,1∈x 恒成立,则实数m 的取值范围为 4->m . 13.已知0,0,2=32,x y x y xy >>+-,则2x y +的最小值为 4 .

14.设数列{}n a 满足*

132131923n n n a a a a a n N ++===+∈,,,,则数列{}n a 的前2020项之和

为 1010

9

1- .

三、解答题:(本大题共6小题,计80分.) 15.解下列关于x 的不等式.

(1)

3

21

x x ->-+ (2)22(21)0x a x a a -+++≤. 解:(1) 1x <-或1

3

x >; (2)1a x a ≤≤+.

16.已知3

sin 5

α=,(0,)2

π

α∈.

(1)求sin(

)6

π

α-的值;

(2)求tan2α的值.

解:∵ sin α=35,(0,)2

π

α∈

∴ cos α=1-sin 2

α=45,可得tan α=sin αcos α=34

.

(1) sin ? ????π6-α=sin π6cos α-cos π6sin α=12×45-32×35=.

(2) tan 2α=2tan α1-tan 2

α=24

7

. 17.设数列{}n a 的前n 项和为n S ,对任意n *∈N ,都有(1)n n S na n n =--. (1)求证:数列{}n a 为等差数列;

(2)若116a =-,求满足0n S <的最大正整数n .

证明:(1)∵(1)n n S na n n =--,∴2n ≥时,11(1)(2),n n S na n n --=---. ∴1(1)(1)(1)(2)n n n a na n n n a n n -=----+--. ∴1(1)(1)2(1)0,(2)n n n a n a n n ------=≥.

∴12,(2)n n a a n --=≥.∴{}n a 是1

a 以为首项,2为公差的等差数列.

(2)16n =.

18.如图(示意),公路AM 、AN 围成的是一块顶角为钝角α的角形耕地,其中2

sin 5

α=

.在该块土地中P 处有一小型建筑,经测量,它到公路AM 、AN 的距离PE 、PF 分别为3km ,2km .现要过点P 修建一条直线公路BC ,将三条公路围成的区域ABC 建成一个工业园.设AB xkm =,

AC ykm =,其中0,0x y >>.

(1)试建立,x y 间的等量关系;

(2)为尽量减少耕地占用,问如何确定B 点的位置,使得该工业园区的面积最小?并求最小面积.

解:过点P 作PE ⊥AM ,PF ⊥AN ,垂足为E 、F .

因为P 到AM ,AN 的距离分别为3,2, 即PE =3,PF =2.

由S △ABC =S △ABP +S △APC =12?x ?3+12?y ?2 =1

2

(3x +2y ). ①

所以S △ABC =12?x ?y ?25. ② 即3x +2y =2

5xy . ③

(2)因为3x +2y ≥

2

5

xy ≥

·

A M

N

P

B

C

(第18题)

E

F

解得xy ≥150.

当且仅当3x =2y 取“=”,结合③解得x =10,y =15. 所以S △ABC =12?x ?y ?2

5

有最小值30.

答:当AB =10km 时,该工业园区的面积最小,最小面积为30km 2

19.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,

. (1)求数列{}n a 和{}n b 的通项公式;

(2)设数列{}n c 满足1

11,2,22

1,k k n k

k n c c b n +?<<===??, 其中*

k ∈N . (i )求数列(){}

22

1n

n

a c

-的通项公式; (ii )求()2*

1

n

i i

i a c n =∈∑N .

解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2

662,

6124,

q d q d =+??

=+?解得3,2,

d q =??

=?故14(1)331,6232n n

n n a n n b -=+-?=+=?=?.

所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =?.

(2)(i )()()()()

22211321321941n n x n n n n a c a b -=-=?+?-=?-. 所以,数列(){}

221n n a c -的通项公式为()

221941n n n a c -=?-. (ii )

()()22221

1

1

1

211n n n

i

i

n

i i

i

i

i

i

i i i i a c a a c a a c

====??=+-=+??-∑∑∑∑

()

()

12212439412n n

n n

i i =??- ?=?+?+?- ???

(

)(

)21

2

41432

52

914

n n n n ---=?+?+?

--

()211*

2725212n n n n --=?+?--∈N .

20.已知数列{}n a 满足112a =

,

121

1n n

a a n +=+.

(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;

(3)设数列{}n b 满足210,2,21n n

n n k b n n k a --=??

=?=-??,其中*k ∈N .记{}n b 的前n 项和为n S .

是否存在正整

数,m n ()m n <,使得m n S S =成立?若存在,请求出所有满足条件的,m n ;若不存在,请说明理由. 解:(1)数列{

}n a n 是等比数列,其中首项为12,公比为12,所以1(),22

n n n n a n

a n ==即.

注:也可累乘求{}n b 的通项

(2) 12(2)2n

n T n ??

=-+? ???

(3)112S a ==,212S =-,3231284S S a =+=-+=-,422S =-,

545223210S S a =+=-+=,612S =-,76712128116S S a =+=-+=,890S =.

1°当,m n 同时为偶数时,可知2,6m n ==;设22(1)n n n t S S -=-,则21

2

410n n t n -=--,因为 ()()()211

21211241102410324n n n n n t t n n +---+??-=-+----=?-??

13240≥?->, 所以数列{}n t 单调递增,则n ≥5时,9

52300n t t ≥=->,m n S S =不成立;

故当,m n 同时为偶数时,可知2,6m n ==; 2°当,m n 同时为奇数时,设2121n n n t S S +-=-,则

214102n n t n +=--+,因为

()()232121

1411024102324n n n n n t t n n ++++??-=-+-+---+=?-??33240≥?->, 所以数列{}n r 单调递增,则当n ≥2时,5

22180n r r ≥=->,

即n ≥2时,2121n n S S +->,数列{}21n S -在n ≥2时单调递增,

而12S =,34S =-,510S =,故当,m n 同时为奇数时,m n S S =不成立; 3°当m 为偶数,n 为奇数时,显然6m ≤时,m n S S =不成立,

若8m ≥,则1

11112

m m m m m m S S b S S +++++=-=-<,

∵m n <,∴1m n +≤,由2°可知1m n S S +≤,∴1m m n S S S +<≤, ∴当m 为偶数,n 为奇数时,m n S S =不成立; 4°当m 为奇数,n 为偶数时,显然5m ≤时,m n S S =不成立,

若7m ≥,则1n m ≥+,

若1n m =+,则()11112110m m m m m n S S b S m S S ++++=-=--+->=????, 即m n S S >,∴1n m =+时,m n S S =不成立; 若3n m ≥+,由

1°知3n m S S +≥,又记2

32

428m m m m u S S m ++=-=--满足

21240m m m u u ++-=->,所以{}m u 单调递增,70m u u ≥>,所以3n m ≥+时,m n S S =不成

立;

综上:存在2,6m n ==.

高二数学第一次月考试卷(文科)

高二数学第一次月考试卷 (文科) (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分) 12道小题,每题5分,共60分) 、已知函数f(x)=a x 2+c,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 、 0'() f x =0是可导函数y=f(x)在点x=0x 处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 、函数 3 y x x =+的递增区间是( ) A )1,(-∞ B )1,1(- C ),1(+∞ D ),(+∞-∞ 、.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 、已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) A.y ∧ =1.23x +4 B. y ∧=1.23x+5 C. y ∧=1.23x+0.08 D. y ∧ =0.08x+1.23 6、.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =L '1()()n n f x f x +=,n ∈N ,则2007()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 、用火柴棒摆“金鱼”,如图所示: 按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为 ( ) A .62n - B .62n + C .82n - D .82n +\ 、若a b c ,,是不全相等的实数,求证:222 a b c ab bc ca ++>++. a b c ∈R ,,∵,2 2 2a b ab +∴≥,2 2 2b c bc +≥,2 2 2c a ac +≥, a b c ,,∵不全相等,∴以上三式至少有一个“=”不成立, ∴将以上三式相加得2222()2()a b c ab b c ac ++>+++,222 a b c ab bc ca ++>++∴. 此证法是( ) A.分析法 B.综合法 C.分析法与综合法并用 D.反证法 9、.从推理形式上看,由特殊到特殊的推理,由部分到整体、个别到一般的推理,由一般到特殊的推理依次是( ) A .归纳推理、演绎推理、类比推理 B .归纳推理、类比推理、演绎推理 C .类比推理、归纳推理、演绎推理 D .演绎推理、归纳推理、类比推理 10、计算1i 1i -+的结果是( ) A .i - B .i C .2 D .2- 11、复数z=-1+2i ,则 z 的虚部为( ) A .1 B .-1 C .2 D .-2 12、若复数 1 2z i = +,则z 在复平面内对应的点位于( ) 第Ⅱ卷 (非选择题 共90分) 二、填空题(4道小题,每题5分,共20分) 13、与直线 2 240x y y x --==平行且与曲线相切的直线方程为_____________ 14、有下列关系: (1)曲线上的点与该点的坐标之间的关系; (2)苹果的产量与气候之间的关系; (3)森林中的同一种树木,其断面直径与高度之间的关系; (4)学生与他(她)的学号之间的关系, 其中有相关关系的是_________ 15 . 16、实数x 、y 满足(1–i )x+(1+i)y=2,则xy 的值是_________ … ① ② ③

数学江苏省启东中学2017高二下学期期中考试数学理试题Word版含答案

江苏省启东中学2017-2018学年度第二学期期中考试 高二理科数学试卷 (满分160分,考试时间120分钟) 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数()sin f x x x =的导数是 ▲ . 2.若56 n n C C =,则9 n C = ▲ .(用数字作答) 3.设曲线3 y ax x =+在(1,)a 处的切线与直线260x y --=平行,则实数a 的值为 ▲ . 4.人民路华石路口一红绿灯东西方向的红灯时间为37 s ,黄灯时间为3 s ,绿灯时间为60 s .从西向东行驶的一辆公交车通过该路口,遇到绿灯的概率为 ▲ . 5.函数()ln f x x x =的单调减区间是 ▲ . 6.函数311 ()433 f x x x = -+的极大值是 ▲ . 7.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为 ▲ . 8.设函数()f x 的导函数为' ()f x ,若3 ' ()52(1)f x x xf =+,则' (3)f = ▲ . 9.用数字1到9组成没有重复数字的三位数,且至多有一个数字是偶数,这样的四位数一共有 ▲ 个.(用数字作答) 10.已知函数3 ()27f x x x =-在区间[,1]a a +上不是单调函数,则实数a 的取值范围是 ▲ . 11.已知两曲线()sin f x a x =,()2cos ,(,)2 g x x x π π=∈相交于点P ,若两曲线在点P 处的切线互相垂 直,则实数a 的值是 ▲ . 12.某种圆柱形的饮料罐的容积为V ,为了使得它的制作用料最省(即表面积最小),则饮料罐的底面半 径为(用含V 的代数式表示) ▲ . 13. 已知直线y m =,分别与直线55y x =-和曲线2x y e x =+交于点M,N 两点,则线段MN 长度的最小值是 ▲ . 14. 已知a 为常数,函数2 (0)()1ln (0)x x f x x x x +?≤? =+??>? ,若关于x 的方程()2f x ax =+有且只有四个不同的解, 则实数a 的取值所构成的集合为 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在班级活动中,4 名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

江苏省盐城中学高二数学下学期期末考试【会员独享】

江苏省盐城中学09-10学年高二下学期期末考试 数学试题 试卷说明: 答卷时间为120分钟,满分150分.填空题将正确答案填入答题纸的相应横线上.........,.解答题请在答题纸...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤. 一、填空题(共14小题,每小题5分,共计70分) 1.已知数列{}n a 是等差数列,且22a =,416a =,则该数列的通项公式n a =__ ▲ __. 2.已知3 sin 5 θ= ,且角θ是锐角,则sin 2θ=__ ▲ __. 3.数列{}n a 的前n 项和2 n S n =,则678a a a ++=__ ▲ __. 4.一个三角形的两个内角分别为30和45,如果45所对的边长为6,则30角所对的边长是__ ▲ __. 5.不等式 211 x x <-的解集是__ ▲ __. 6.设,x y 满足线性约束条件021x x y x y ≥?? ≥??-≤? ,则32z x y =+的最大值是__ ▲ __. 7.已知 23 2(0,0)x y x y +=>>,则xy 的最小值是__ ▲ __. 8.已知3,2==a b ,若3?-a b =,则a 和b 的夹角为__ ▲ __. 9.已知(0,),(,)22π παβπ∈∈,且33sin()65αβ+= ,5 cos 13 β=-,则sin α=__ ▲ __. 10.在4和67之间插入一个n 项等差数列后,仍构成一个等差数列,且新等差数列的所有项的和是781,则n 的值为__ ▲ __. 11.在等比数列{}n a 中,已知1231a a a ++=,4562a a a ++=-,则该数列的前15项的和 15=S __ ▲ __.

安徽省舒城中学高二数学寒假作业第12天抛物线文

【课标导 航】 1.掌握抛物线的定义, 2.抛物线的标准方程和几何性质 、选择题 1 .过抛物线 AB =( A. 10 2.过抛物线 AOB (第12天抛物线 2 y = 4x的焦点作直线交抛物线于 A. 小于90° 3.若抛物线 B. 8 =2px(p> 0)的焦点且垂直于 B. 等于90o 2px的焦点与椭圆 X2 A(X i,yJ、 C. 6 x轴的弦长为 C.大于90° 1的右焦点重 合, B(X i,yJ ,若X i+ X2 = 6 ,则 D. 4 AB , O为抛物线顶点,则 D.不确定 则p的值为 A.—2 B.2 C. D.4 4.过抛物线ax2(a> 0)的焦点F作一直线交抛物线于P 、 Q两点,若线段PF与FQ的长分别是 A. 2a B.丄2a C. 4a D. 5 . 抛物线X2上到直线2X - y - 4= 0距离最短的点的坐标为 代(J) B. (3 9) (2'4) C. (2,4) D. (1,1) 6 . 已知点P是抛物线y2 4x上的一个动点,则点P到点(0, 2)的距离与点P到该抛物线准线的距离之和的最小值为

则m 等于 中O 为坐标原点),贝U ABO 与 AFO 面积之和的最小值是 17 2 8 二、填空题 9. 一动圆M 和直线l : x= - 2相切,且经过点F(2,0),则圆心的轨迹方程是 10.已知点P 是抛物线y 2 4x 上任意一点,P 点到y 轴的距离为d ,对于给定的点A (4, 5), PA + d 的最小值是 ________ . ______ 2 11.设F 为抛物线C : y =3x 的焦点,过F 且倾斜角为30的直线交C 于A , B 两点,则 AB 12.若抛物线y 2 = 4x 截直线y = 2x+ m 所得弦长 AB = 3/5.以AB 为底边,以x 轴上点 P 为顶点组 成 PAB 的面积为39,则点P 的坐标为 _____________________ 三、解答题 13.已知抛物线y 2 2x 的焦点是F,点P 是抛物线上的动点,又有点A(3,2),求PA PF 的 最小值,并求出 取最小值时P 点的坐标. A .¥ B . ,5 C . 2 2 D .3 7?抛物线y 2x 2上两点 A(X i ,yJ 、B(X 2,y 2)关于直线 y m 对称,且x 1 x 2 A. 3 2 8.已知F 是抛物线y 2 C.5 2 x 的焦点,点A , B 在该抛物线上且位于 B. 2 D. 3 uuu uLur x 轴的两侧,OA OB 2(其 ? . 10

高二数学下学期第一次月考题及答案

高二数学下学期第一次月考 (选修2-2第一、二、三章) 一:选择题(共12题,每小题5分,共60分) 1. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 3.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 4. 与直线042=+-y x 平行且与抛物线2x y =相切的直线方程是( D ) A. 032=+-y x B. 032=--y x C. 012=+-y x D. 012=--y x 5. 下列求导数运算正确的是 (B) A.(x +x 1)′=1+ 2 1x B. (log 2x )′= 2 ln 1x C. (3x )′=3x log 3e D. (x 2cos x )′= -2x sin x 6. 曲线5 5 1x y = 上点M 处的切线与直线x y -=3垂直,则切线方程为( D ) A. 0455=--y x B. 0455=-+y x C. 0455=-+y x 或0455=++y x D. 0455=--y x 或0455=+-y x

8. 函数)4 3(sin 3π + =x y 的导数为 ( B ) A. )4 3cos()4 3(sin 32π π + +x x B. )4 3cos()4 3(sin 92 π π + + x x C. )4 3(sin 92π + x D. )4 3cos()4 3(sin 92 π π + + -x x 9. 使函数13)(23+-=x x x f 是减函数的区间为 D A .()+∞,2 B . ()2,∞- C . ()0,∞- D . ()2,0 10. 若函数)(3x x a y -=的减区间为)3 3,3 3(- ,则a 的范围是 A A .0>a B .01<<-a C . 1->a D . 1<<-a 1 11. 函数223+--=x x y 的极值情况是( D ) A. 有极大值,无极小值 B. 有极小值,无极大值 C. 既无极大值也无极小值 D. 既有极大值又有极小值 12. 三次函数当1=x 时有极大值4,当3=x 时有极小值0,且函数过原点,则此函数是(B ) A. x x x y 9623++= B. x x x y 9623+-= C. x x x y 9623--= D. x x x y 9623-+= 二:填空题(共6题,每题5分,共30分) 13. 函数2 100x y -= ,当86≤≤-x 时的最大值为____10_______,最小值为_____6__。 14. 从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为 _________________________. 15. 曲线y =sin3x 在点P (3 π ,0)处切线的斜率为___3)3 ( ,3cos 3-='='π f x y ________。 16. 函数)2 2cos()2 2sin(π π +- =x x x y 的导数是 x x x y x x x x x y 4cos 24sin 2 1,4sin 2 12cos 2sin += '==。 三:简答题(共60分) 17、(15分) (1)求与曲线122 -=x y 相切且与014=++y x 垂直的切线方程。 (2) 求曲线x y cos =在点)2 1,34( -πA 处的切线方程。

江苏省南通市启东中学2017-2018学年高二下学期期中考试数学(理)试题

江苏省南通市启东中学2017-2018学年高二下学期 期中考试数学(理)试题 学校_________ 班级__________ 姓名__________ 学号__________ 一、填空题 1. 函数的导数为_____________ . 2. 若,则=______.(用数字作答) 3. 设曲线在处的切线与直线平行,则实数 的值为______. 4. 人民路华石路口一红绿灯东西方向的红灯时间为37 s,黄灯时间为3 s,绿灯时间为60 s.从西向东行驶的一辆公交车通过该路口,遇到绿灯的概率为 ______. 5. 函数的单调减区间是______. 6. 函数的极大值是______. 7. 设函数的导函数为,若,则=______. 8. 用数字1到9组成没有重复数字的三位数,且至多有一个数字是偶数,这样的四位数一共有______个.(用数字作答) 9. 已知函数在区间上不是单调函数,则实数的取值 范围是______.

10. 已知两曲线,相交于点P,若两曲线在点P处的切线互相垂直,则实数的值是______. 11. 某种圆柱形的饮料罐的容积为,为了使得它的制作用料最少(即表面积最小),则饮料罐的底面半径为(用含的代数式表示)______. 12. 已知直线,分别与直线和曲线交于点M,N两点,则线段MN长度的最小值是______. 13. 已知为常数,函数,若关于的方程有且只有四个不同的解,则实数的取值所构成的集合为______. 二、解答题 14. 在班级活动中,4 名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答) (1)三名女生互不相邻,有多少种不同的站法? (2)四名男生相邻有多少种不同的排法? (3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等) 15. 设关于x的一元二次方程x2+2ax+b2=0,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率. (1)若随机数a,b∈{1,2,3,4,5}; (2)若a是从区间[0,5]中任取的一个数,b是从区间[0,4]中任取的一个数. 16. 已知曲线在点(0,)处的切线斜率为. (1) 求的极值; (2) 设,若在(-∞,1]上是增函数,求实数k的取值范围.

江苏省盐城中学高二数学暑假作业:集合与命题教师

盐城中学高二数学暑假作业(1) -----集合与命题 姓名 学号 班级 一、填空题 1. 已知集合{2,3},{1,},{2},A B a A B A B === =若则 . {}1,2,3 2. 集合{}1,0,1-共有 个子集.8 3. 已知集合已知集合? ?? ???∈= =R x y y A x ,21 |,{}2 |log (1),B x y x x R ==-∈,则 =?B A .(1,)+∞ 4. 已知集合{}274(2)i A m m =-++,,(其中i 为虚数单位,m ∈R ),{83}B =,,且A B ≠?,则m 的值为 . -2 5.命题:“(0,),sin 2 x x x π ?∈≥”的否定是 , 否定形式是 命题(填“真或假”)(0,),sin 2 x x x π ?∈<真 6. 已知集合P={x ︱x 2≤1},M={a }.若 P ∪M=P,则a 的取值范围是 . [-1,1] 7. “1x >”是“ 1 1x <”的 条件.充分不必要 8.若集合()() +∞-=∞-=,3,2,2 a B a A ,φ=?B A ,则实数a 的取值范围是 ________.[3,1]- 9.有下列四个命题,其中真命题的序号为 .①③ ①“若x +y =0,则x 、y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若q ≤1,则x 2+2x +q =0有实根”的逆命题; ④“不等边三角形的三个内角相等”的逆否命题. 10. 已知集合{} {},,03|,,012|2 R x ax x B R x x x x A ∈=+=∈=+-=若A B ?,则 二.解答题 15. 已知R 为实数集,集合A ={x |232x x -+≤0},若B R A =R ,B R A ={x |0 <x <1或2<x <3},求集合B . A ={x |1≤x ≤2},R A ={x |x <1或x >2} A R A =R ,∵B R A =R ,B R A ={x |0<x <1或2<x <3} ∴ {x |0<x <1或2<x <3} B ,故B ={x |0<x <3} 16.已知 ]4,2[,2∈=x y x 的值域为集合A ,)]1(2)3([log 2 2+-++-=m x m x y 定义域为集合B ,其中1≠m . (Ⅰ)当4=m ,求B A ?; (Ⅱ)设全集为R ,若B C A R ?,求实数m 的取值范围.

安徽省舒城中学高二数学寒假作业第17天选修1文

2 第17天选修1-1综合测试题 、选择题 1. “ab<0”是“方程 ax 2+ by 2= 1表示双曲线”的 ( ) A .充分非必要条件 B .必要非充分条件 C.充要条件 D.既不充分也不必要条件 2 . 椭圆x 2+ my = 1的焦点在y 轴上,长轴长是短轴长的 2倍,贝U m 的值是 ( ) 1 1 代4 B. 2 C. 2 D .4 3. f '(x 0) 0是函数f (x)在点x 0处取极值的 A.充分不必要条件 D.既不充分也不必要条件 2 线相切;命题q :过双曲线x 2 ' 1右焦点F 的最短弦长是8。则 4 A . q 为真命题 C." p 且q ”为真命题 B . “ p 或q ”为假命 题 D." p 或q ”为真命题 是底角为30°的等腰三角形,则 E 的离心率为 5.若函数f(x) 3 2 ax bx cx d 有极值,则导函数 f (x)的图象不可能是 () 2 2 6.设F , F 2是椭圆E : ^2 与 1(a a b b 0)的左、右焦点,P 为直线x 3a 上-一 ?占 —I~*■ 八 '、: F 2PF 1 4 ?给出两个命题: P :平面内直线I 与抛物线y 2 2x 有且只有一个交点,则直线 I 与该抛物 B 必要不充分条件 C.充要条件

与双曲线左、 A. 1 2 B. C. D. 7 ?已知点P 在曲线 -上, 为曲线在点P 处的切线的倾斜角, 1 的取值范围是 A.[0, ) 4 D.[3 4 C. (-,^-] 2 4 8?设F 为双曲线 x 2 16 1的左焦点,在 x 轴上F 点的右侧有一点 FA 为直径的圆 右两支在x 轴上方的交点分别为 FN 1 FM 1 FA \17 2 一 5 空 代 填 、 二 5 一 4 D 9?已知椭圆 2 X 16 2 弋 1 的左、右焦点分别为F 1,F 2,点P 在椭圆上,若PEL 是一个直 角三角形的三个顶点,则点 P 到X 轴的距离为 ________ ? 2 2 10.椭圆 冷 占 1的长轴长为6,右焦点F 是抛物线x 2 8y 的焦点,则该椭圆的离心率等 a 2 b 2 于 _______ . 11.设函数 f (x)的导数为 f(x),且 f(x) 2X f (1)1 nx 12.右图是抛物线形拱桥,当水面在 l 时,拱顶离水面2米, 降 1米后,水面宽 _________ 米. 三、解答题 13?已知命题 p : X 2 7x 10 0,命题 q : X 2 2x 1 a 1 a 0,(a 0),若 是“ 的必要而不充分条件,求 a 的取值范围 的值为 则 M 、 N , f (2),则f (2)的值是 水面宽4米,水位下

高二(上)第一次月考数学题

高2014届天府名校月考(一) 高二·数学试题 命题人:王红 黄丽 审题人:周迎新 刘志明 一、选择题(本大题共12道小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知A (-1,0),B (-2,-3),则直线AB 的斜率为( ) A 31 B 1 C 2 1 D 3 2.直线x - y + 3 = 0的倾斜角是( ) (A )30° (B )45° (C )60° (D )90° 3.直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=-5; C.a=-2,b=5 D.a=-2,b=-5 4. 已知圆的方程为x 2+y 2-6x=0.则该圆的圆心和半径分别是( ) A (0,0),r=3 B (3,0),r=3 C (-3,0),r=3 D (3,0),r=9 5.球面面积等于它的大圆面积的( )倍 A 1 B 2 C 3 D 4 6.直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 8.若变量x 、y 满足约束条件6321x y x y x +≤??-≤??≥? ,则23z x y =+的最大值为( ) (A )17 (B )14 (C )5 (D )3 9.直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ) A. 相离; B. 相交; C. 相切; D. 无法判定.

开封高中2014届第一次月考数学试题(正式)

开封高中2014届第一次月考数学试题 命题人:闫霄 审题人:宁宁 注意:(1)本试卷满分150分,时间120分钟; (2)所有试题的答案均须写在答题卷上,写在试题卷上无效。 一.选择题 1.函数1 (01)x y a a a +=>≠且的图像恒过点 ( ) .A (1,1) .B (0,1) .C (1,1)- .D (2,1) 2. 函数y = ( ) .A 13(,)24- .B 13[,]24- .C 1(,]2-∞ .D 1 (,0)(0,)2 -+∞ 3.下列函数的图像与函数3x y =的图像关于y 轴对称的是 ( ) .A 3x y =- .B 3x y -=- .C 13y x = .D 1 ()3 x y = 4.设2,4(),1,4 x x f x x x ? ≥=? + .C 1.86273> .D 1.860.210.21> 7.已知(1)1f x x -=+,则()f x = ( ) .A 2x -+ .B 2x + .C 2x - .D 1x + 8.设集合{|2},{|}A x x B x x a =<=<,若A B ?≠ ,则实数a 的取值范围是 ( ) .A {|2}a a < .B {|2}a a ≤ .C {|2}a a ≥ .D {|2}a a > 9. 若{0,1},{1,0,1},A B f ==-是从A 到B 映射的对应关系,则满足(0)(1)f f >的映射有( ) .A 3个 .B 4个 .C 5个 .D 2个 10.设()f x 是奇函数,且在(0,)+∞上是增函数,又(2)0f -=,则()0x f x <的解集是 ( ) .A {|20,2}x x x -<<>或 .B {|20,2}x x x -<<<<或0 .C {|22}x x -<< .D {|2,02}x x x <-<<或 11. 2 1 2 10328()(0.002)2)27 - --+-+= ( ) .A 39-- .B 0 .C 1 .D 39- 12.若偶函数()f x 在区间(,0)-∞上是单调函数,则满足2 ()( )4 x f x f x +=+的所有x 之和为 ( ) .A 3- .B 3 .C 8- .D 8 二.填空题 13.函数1()=13 x f x -()的值域是___ ____。 14.已知2 ()(2)(3)3f x k x k x =-+-+是偶函数,则实数k 的值为____ ___。 15.已知二次函数()y f x =图像的顶点坐标为(1,9)-,与x 轴的两个交点间的距离为6,那么这个二次函数的解析式为 。 16.有下列四个命题: ①函数1 ()f x x x =+ 为奇函数;

2019届江苏天一中学语文练习

江苏省天一中学2019届高三语文练习卷 一、语言文字运用(12分) 1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分) 不知从何时起,我们的话剧从内容到形式都变得越来越奢华和臃肿。影视和多媒体固然值得,但话剧为迎合当下审美口味而一味向它们靠拢,,只会变成可以肆意摆弄的魔方或令人的万花筒。 A.借鉴削足适履眼花缭乱B.鉴戒削足适履头晕目眩 C.鉴戒生搬硬套眼花缭乱D.借鉴生搬硬套头晕目眩 2.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分) 悲剧,。。,,这样的情绪一般隐藏在人的内心,并且不断地积聚变化,在某个时机便会爆发出来。 ①通过情绪的放纵和宣泄最终使人达到心灵的净化 ②欣赏者在现实生活中往往会产生一些压抑或是恐惧的心情 ③但是并不代表这样的情绪就是不存在的 ④虽然欣赏者并不是时时都在感受这样的情绪 ⑤使人产生怜悯和恐惧的心情并让压抑的心情得到疏通 A.⑤①②④③B.①⑤④③② C.⑤①④②③D.①⑤③④② 3.“雨意欲晴山鸟乐”“浮萍破处见山影”“黄叶拥篱埋药草”“声拂琴床生雅趣”分别为四首律诗的颔联或颈联的上句。依次对应下句,排序正确的一项是(3分) ①影侵棋局助清欢②青灯煨芋话桑麻③寒声初到井梧知④小艇归时闻棹声 A.①③②④ B.③④②① C. ③②①④D.④①③② 4.下列各项中所使用的修辞手法与其它三项不同的一项是(3分) A.山很高,山顶没有树,只有青灰色冰冷的岩石和一根巨大的木杆,从山下遥望犹如一枚羽箭。 B.登上土坛,只见两棵二百年的槐树,正是枝叶葱茏。远望四围一片苍翠,仿佛是绿色屏障。 C.我的心沉重得很,也轻松得很。我像在两小时里经历了一世纪。感谢上帝降福于我不幸的母亲! D.两个人在一起,人家就要造谣言,正如两根树枝相接近,蜘蛛就要挂网。 二、文言文阅读(21分) 阅读下面的文言文,完成5~8题。 书姜次生印章前 周亮工 姜次生正学,浙兰溪人,性孤介,然于物无所忤.。食饩于邑,甲申①后弃去,一纵于酒,酒外惟寄意图章。得酒辄醉,醉辄呜呜歌元人《会稽太守词》。又好于长桥上鼓腹歌,众环听,生目不见,向人声乃益高。每醉辄歌,歌文必《会稽太守词》,不屑他调也。 方邵村侍御为丽水令,生来见,谓侍御曰:“公嗜图章,我制固佳,愿为公制数章。正学生平不知干谒,但嗜饮耳。公醉我,我为公制印。公意得,正学意得矣。”侍御乃与饮,醉即歌《会稽太守词》。于是侍御得生印最多,侍御署中酿亦为生罄.矣。 一夕,漏下数十刻,署中尽熟寐,忽剥啄甚。侍御惊起,以为寇且发,不则御史台霹雳符也。惊起询,则报曰:“姜生见。”侍御遣人谢曰:“夜分矣,请以昧爽。”生砰訇曰:“事

江苏省启东中学2014-2015学年高二上学期第一次月考数学试题 Word版无答案

一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上........ . 1.命题:p x ?∈R ,方程310x x ++=的否定是 ▲ . 2.已知椭圆22110064 y x +=上一点P 到一个焦点的距离为8,则点P 到另一焦点的距离 是 ▲ . 3.命题“若α为锐角,则sin 0α>”的否命题是 ▲ . 4.设双曲线的渐近线方程为3y x =±,它的一个焦点是,则双曲线的方程 为 ▲ . 5.以点(1,2)为圆心,且与直线43150x y +-=相切的圆方程是 ▲ . 6.已知12,F F 是双曲线2 2 1y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =,则12PF F ?的面积为 ▲ . 7.若圆锥曲线2 2151y x k k +=--的焦距为k = ▲ . 8.与圆22(3)9x y ++=外切且与圆22(3)1x y -+=内切的动圆圆心的轨迹方程为 ▲ . 9.已知椭圆C 的中心在原点,焦点12,F F 在y ,过1F 的直线交椭圆于,A B ,且2ABF ? 的周长为16,则椭圆C 的方程为 ▲ . 10.将一个半径为R 的蓝球放在地面上,被阳光斜照留下的影子是椭圆.若阳光与地面成60角,则椭圆的离心率为 ▲ . 11.若直线1ax by +=与圆221x y +=相切,则实数ab 的最大值与最小值之差为 ▲ . 12.已知命题4:11 p x --≤,命题22:q x x a a -<-,且q ?的一个充分不必要条件是p ?,则实数a 的取值范围是 ▲ . 13.已知22:4O x y +=的两条弦,A B C D 互相垂直,且交于点M ,则A B C D +的最小值为 ▲ . 14.已知直线3y kx =+与曲线222cos 2(1sin )(1)0x y x y αα+-++-=有且只有一个公共点,则实数k 的值 为 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域....... 内作答. 解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分) 已知命题:[0,1],e x p x a ?∈≥;命题:q x ?∈R ,使得240x x a ++=;若命题p q ∧是真命题,求实数a 的取值范围.

安徽省舒城中学高二数学寒假作业第12天椭圆理

第12天 椭圆 【课标导航】 1.理解椭圆的概念, 2.掌握椭圆的标准方程和几何性质. 一、选择题 1.已知椭圆C 的左、右焦点坐标分别是(,0),,0)C 的方程为 ( ) A.x 2 3+y 2 =1 B .x 2 +y 23=1 C.x 23+y 2 2 =1 D.x 22+y 2 3 =1 2.线段AB 长为4,6PA PB ,M 是线段AB 的中点,当P 点在同一平面内运动 时,PM 的长度的最小值 ( ) D.5 3离心率2 3 e 的椭圆两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则△2ABF 的周长为 ( ) A. 3 B. 6 C. 12 D.24 4.已知()4,0-是椭圆2231kx ky 的一个焦点,则实数k 的值是 ( ) A. 124 B. 24 C. 1 6 D. 6 5.6m 是方程22 (2)(6)m x m y m 的图形为椭圆的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 6.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是 ( ) A. 2 218136 x y B. 221819 x y C. 2218145x y D. 2 218172 x y 7.已知点P 在椭圆)0(122 22>>=+b a b y a x 上,点F 为椭圆的右焦点,PF 的最大值与最 小值的比为2,则这个椭圆的离心率为 ( )

A. 1 2 B . 1 3 C. 1 4 D 8.正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则 该椭圆的离心率的值是 ( ) .A .13- .B 12- 215. -C 2 1 3.-D 二、填空题 9. △ABC 的两个顶点的坐标分别是(5,0)、(5,0),若AC 、BC 所在直线的斜率之积为 1 2 -, 则顶点C 的轨迹方程为 10.一束光线从点(0,1)出发,经过直线20x y +-=反射后,恰好与椭圆2 2 12 y x +=相切,则反射光 线所在的直线方程为 . 11.M 是椭圆 2 21259 x y 上一点, 1F 、2F 为左右两个焦点,I 是△21F MF 的内心,直线 MI 交x 轴于N ,则 MI IN = 12.在平面直角坐标系中,椭圆22 22x y a b +=1( a b >>0)的焦距为2,以O 为圆心,a 为半 径的圆,过点2,0a c ?? ??? 作圆的两切线互相垂直,则离心率e = . 三、解答题 13.点A 、B 分别是椭圆120 362 2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭 圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标. 14.中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为 2 ,与直线10x y 相交于

2014-2015学年江苏省南通市启东中学高二(上)期末数学试卷解析

2014-2015学年江苏省南通市启东中学高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分) 1.(5分)(2012?江苏模拟)命题p:?x∈R,x2+1>0的否定是. 2.(5分)(2013?南通三模)设复数z满足(3+4i)z+5=0(i是虚数单位),则复数z的模为. 3.(5分)(2014秋?启东市校级期末)“直线l∥平面α”是“直线l?平面α”成立的 条件(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个). 4.(5分)(2014秋?启东市校级期末)抛物线y=ax2的焦点坐标为.5.(5分)(2013秋?仪征市期末)函数y=+2lnx的单调减区间为. 6.(5分)(2014?镇江一模)已知双曲线﹣=1的离心率为,则实数m的值 为. 7.(5分)(2012?陕西)观察下列不等式: , , … 照此规律,第五个不等式为. 8.(5分)(2014秋?启东市校级期末)若“任意x∈R,不等式|x﹣1|﹣|x+1|>a”为假命题,则实数a的取值范围为. 9.(5分)(2013秋?金台区期末)以直线3x﹣4y+12=0夹在两坐标轴间的线段为直径的圆的方程为. 10.(5分)(2014秋?启东市校级期末)在Rt△ABC中,AC⊥BC,AC=a,BC=b,则△ABC 的外接圆半径r=;类比到空间,若三棱锥S﹣ABC的三条侧棱SA、SB、SC两两 互相垂直,且长度分别为a、b、c,则三棱锥S﹣ABC的外接球的半径R=.11.(5分)(2014秋?启东市校级期末)若直线l与曲线C满足下列两个条件:(ⅰ)直线l 在点P(x0,y0)处与曲线C相切;(ⅱ)曲线C在点P附近位于直线l的两侧,则称直线l 在点P处“切过”曲线C.下列命题正确的是. ①直线l:x=﹣1在点P(﹣1,0)处“切过”曲线C:y=(x+1)2; ②直线l:y=0在点P(0,0)处“切过”曲线C:y=x3; ③直线l:y=x﹣1在点P(1,0)处“切过”曲线C:y=lnx; ④直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx; ⑤直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx. 12.(5分)(2010?绍兴县校级模拟)若曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,则a的取值范围为.

安徽省舒城中学高二数学寒假作业第18天模拟测试文

、填空题 1 . 两直线3x 2. 3 . A. 4 双曲线 x2 A. (0, 4) 第18天模拟测试 3 0与6x my 1 0平行,则它们之间的距离为 在空间直角坐标系中满足线性约束条件 A . 1. 已知l,m是直线, 1的离心率e (1,2),则实数k的取值范围是 B . (-12 , 0) ,点A(1,0,1)与点 2x y 2y 0, B(2,1,-1) 3, 3,的目标函数z 是平面,且m a,则“ A .必要不充分条件B.充分不必要条件必要条件 .(0,2.3) 之间的距离是 .3 D. ( 0, 12) x y的最大值是 C . 2. D . 3. l m”是“I C .充要条件既不充分也不 已知三点A(1,0), B(0, -、3), C(2八3),则厶ABC外接圆的圆心到原点的距离为 A.5 3 .21 B.- 3 D.- 3 2 2 过点(0, 1)引x+y—4x+3=0的两条切线,这两条切线夹角的余弦值为

A . 2 3 B . 1 C . 4 D. ? 3 5 5 &已知1 F2是椭圆的两个焦点,若满足MF1 MF2的点M总在椭圆的内部,则椭圆离心率的取值 范围是 ( ) A ? (0, 1) B ?(o/) C ? (0,-] 2 2 D【訂) 二、填空题 9?已知函数f x ax3 2x的图像过点(-1,4 ),则a= _______________ . 10?如果直线ax 2y 1 0与直线3x y 2 0垂直,那么实数a _________________ . 11.已知双曲线过点4八3 ,且渐近线方程为y 丄x,则该双曲线的标准方程为2 2 2 12. 已知椭圆25七1内有一点M (2'2),F是椭圆的左焦点,P为椭圆上一动点,则 PM PF的最大值为________________ 三、解答题 13 . △ ABC中D是BC上的点,AD平分BACBB2DC (I)求Sin B ; (n )若BAC 60o,求B. sin C 14 .已知圆C过点A( 2,3),且与直线4x 3y 26 (I)求圆C的方程;(n)求圆C关于直线x y 10相切于点B(5,2). 0对称的圆C'的方程.

高二数学第一次月考试卷

第6题 第13题 第14题 新农大附中2020—2021学年度第一学期第一次月考 高二年级 数学 试卷 (卷面分值:100分;考试时间:100分钟) 一、选择题:(每题3分,共16*3=48分) 1.某企业用自动化流水线生产统一规格的产品,每天上午的四个小时开工期间,每隔10分钟抽取一件产品作为样本,则这样的抽样方法是( ) A .简单随机抽样 B .系统抽样 C .分层抽样 D .以上三种方法都有 2.总体由编号01,02,,19,20的20个个体组成.利用下面的随机数表选取6个个体,选取 方法是随机数表从第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6 个个体的编号为( ) 7806 6512 0802 6314 0702 4312 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A .12 B .04 C .02 D .01 3.已知直线l 过()1,1A 、()1,3B -两点,则直线l 的斜率为( ) A .2- B .2 C .1- D .1 4.在区间[3,2]-上随机取一个数x ,则||1x ≥的概率为( ) A .15 B .25 C .35 D .4 5 5.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A .至少有一个黑球与都是黑球 B .至少有一个黑球与至少有一个红球 C .恰好有一个黑球与恰好有两个黑球 D .至少有一个黑球与都是红球 6.以下给出的是计算111 2420 +++的值的一个程序框图(如图所示), 其中判断框内应填入的条件是( ) A .i >10? B .i <10? C .i <20? D .i >20? 7.将二进制数()211100化为十进制数,正确的是( ) A .14 B .16 C .28 D .56 8.用秦九韶算法计算多项式65432()126016024019264f x x x x x x x =-+-+-+,当2x = 时3v 的值为( ) A .40 B .-40 C .80 D .-80 9.已知A 、B 、C 三个社区的居民人数分别为600、1200、1500,现从中抽取一个容量为n 的样本,若从C 社区抽取了15人,则n =( ) A .33 B .18 C .27 D .21 x y x 2 4 5 6 8 y 30 40 50 70 根据表提供的数据,求得y 关于x 的线性回归方程为? 6.515.5y x =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A .45 B .55 C .50 D .60 11.连接正方体各表面的中心构成一个正八面体,则正八面体的体积和正方体的体积之比为( ) A .1 12 B .16 C .14 D .13 12.设m ,n 是两条不同直线,α,β是两个不同平面,则下列说法错误..的是( ) A .若m α⊥,n α⊥,则//m n ; B .若//αβ,m α⊥,则m β⊥; C .若//m α,//n α,则//m n ; D .若m α⊥,//m β,则αβ⊥. 13.已知几何体三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则 该几何体表面积...为 ( ) A .6π B .5π C .4π D .3π 14.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,点,,E F G 分别是 1DD , AB ,1CC 的中点,则异面直线1A E 与GF 所成的角是( ) A .90 B .60 C .45 D .30 15.若直线()130a x ay -+-=与()3120x a y --+=互相垂直,则a 等于( ) A .3- B .1 C .0或3- D .1或3- 16.某校早读从7点30分开始,若张认和钱真两位同学均在早晨7点至7点30分之间到校,且二人在该时段的任何时刻都到校都是等可能的,则张认比钱真至少早到10分钟的概率为( ) A .112 B .19 C .16 D .2 9 二、填空题(每题3分,共18分) 17.圆()2 211x y -+=的圆心到直线310x y ++=的距离为______. 18.直线l 1:2x +y +1=0与直线l 2:4x +2y ﹣3=0之间的距离为_______. 19.已知球的体积是32 3 π,则球的表面积为_________. 20.888与1147的最大公约数为_____________. 21.若一组样本数据21,19,x ,20,18的平均数为20,则该组样本数据的方差为________ 22..从某小学随机抽取100名学生,将他们的身高(单位:cm )数据绘制成如图所示的频率分布 第22题

相关文档
最新文档