高考物理复习知识点复习卷:光电效应波粒二象性

高考物理复习知识点复习卷:光电效应波粒二象性
高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性

1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( )

A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性

B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道

C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的

D .实物的运动有特定的轨道,所以实物不具有波粒二象性

2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( )

A .遏止电压

B .饱和光电流

C .光电子的最大初动能

D .逸出功

3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( )

甲 乙 丙

A .单个光子的运动没有确定的轨道

B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子

C .干涉条纹中明亮的部分是光子到达机会较多的地方

D .大量光子的行为表现为波动性

4.(多选)下列说法正确的是( )

A .光子不仅具有能量,也具有动量

B .光有时表现为波动性,有时表现为粒子性

C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h

D .光波和物质波,本质上都是概率波

5.(多选)已知某金属发生光电效应的截止频率为νc ,则( )

A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子

B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc

C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大

D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

6.(2019·河南中原名校联考)下列描绘两种温度下黑体辐射强度与频率关系的图中,符合黑体辐射实验规律的是()

A B

C D

7.已知钙和钾的截止频率分别为7.73×1014 Hz和5.44×1014 Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的()

A.波长B.频率C.能量D.动量

8.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则()

A.逸出的光电子数减少,光电子的最大初动能不变

B.逸出的光电子数减少,光电子的最大初动能减小

C.逸出的光电子数不变,光电子的最大初动能减小

D.光的强度减弱到某一数值,就没有光电子逸出了

9.某光源发出的光由不同波长的光组成,不同波长的光的强度如图所示,表中给出了一些材料的极限波长,用该光源发出的光照射表中材料()

材料钠铜铂

极限波长(nm)541268196

B.仅钠、铜能产生光电子

C.仅铜、铂能产生光电子

D.都能产生光电子

10.(多选)如图甲所示为实验小组利用100多个电子通过双缝后的干涉图样,可以看出

每一个电子都是一个点;如图乙所示为该小组利用70 000多个电子通过双缝后的干涉图样,为明暗相间的条纹。则对本实验的理解正确的是()

甲乙

A.图甲体现了电子的粒子性

B.图乙体现了电子的粒子性

C.单个电子运动轨道是确定的

D.图乙中暗条纹处仍有电子到达,只不过到达的概率小

11.美国物理学家密立根通过测量金属的遏止电压U c与入射光频率ν,算出普朗克常量h,并与普朗克根据黑体辐射得出的h相比较,以验证爱因斯坦光电效应方程的正确性。下图是某次试验中得到的两种金属的遏止电压U c与入射光须率ν关系图象,两金属的逸出功分别为W甲、W乙,如果用ν0频率的光照射两种金属,光电子的最大初动能分别为E甲、E乙,则下列关系正确的是()

A.W甲E乙

B.W甲>W乙,E甲

C.W甲>W乙,E甲>E乙

D.W甲

12.(2019·濮阳市第三次模拟)用如图甲所示的电路研究光电效应中光电流与照射光的强弱、频率等物理量的关系。图中A、K两极间的电压大小可调,电源的正负极也可以对调,分别用a、b、c三束单色光照射,调节A、K间的电压U,得到光电流I与电压U的关系如图乙所示,由图可知()

甲乙

A.单色光a和c的频率相同,且a光更弱些,b光频率最大

B .单色光a 和c 的频率相同,且a 光更强些,b 光频率最大

C .单色光a 和c 的频率相同,且a 光更弱些,b 光频率最小

D .单色光a 和c 的频率不同,且a 光更强些,b 光频率最小

13.(2019·邢台市调研)如图所示是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转。则以下说法正确的是( )

A .将滑动变阻器滑片向右移动,电流表的示数一定增大

B .如果改用紫光照射该金属时,电流表无示数

C .将K 极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大

D .将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑片向右移动一些,电流表的读数可能不为零

14.(2019·四川省第二次“联测促改”)如图所示,用波长为λ0的单色光照射某金属,调节滑动变阻器,当电压表的示数为某值时,电流表的示数恰好减小为零;再用波长为4λ05

的单色光重复上述实验,当电压表的示数增加到原来的3倍时,电流表的示数又恰好减小为零。已知普朗克常量为h ,真空中光速为c 。该金属的逸出功为( )

A.5hc 4λ0

B.hc λ0

C.7hc 8λ0

D.7hc 4λ0

15.(2019·孝义市第一次模拟)从1907年起,美国物理学家密立根就开始以精湛的技术测量光电效应中几个重要的物理量。他通过如图甲所示的实验装置测量某金属的遏止电压U c 与入射光频率ν,作出图乙所示的U c -ν的图象,由此算出普朗克常量h ,并与普朗克根据黑体辐射测出的h 相比较,以检验爱因斯坦光电效应方程的正确性。已知电子的电荷量为e ,则下列普朗克常量h 的表达式正确的是( )

甲 乙

A .h =e (U c2-U c1)

ν2-ν1

B .h =U c2-U c1e (ν2-ν1)

C .h =ν2-ν1

e (U c2-U c1) D .h =e (ν2-ν1)

U c2-U c1

答案

1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是()

A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性

B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道

C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的

D.实物的运动有特定的轨道,所以实物不具有波粒二象性

ABC[波粒二象性是微观世界特有的规律,一切运动的微粒都具有波粒二象性,A正确。由于微观粒子的运动遵守不确定关系,所以运动的微观粒子与光子一样,当它们通过一个小孔发生衍射时,都没有特定的运动轨道,B正确。波粒二象性适用于微观高速领域,C 正确。宏观物体运动形成的德布罗意波的波长很小,很难被观察到,但它仍有波粒二象性,D错误。]

2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是()

A.遏止电压B.饱和光电流

C.光电子的最大初动能D.逸出功

B[同一种单色光照射不同的金属,入射光的频率和光子能量一定相同,金属逸出功不同,根据光电效应方程E km=hν-W0知,最大初动能不同,则遏止电压不同;同一种单色光照射,入射光的强度相同,所以饱和光电流相同。故选项B正确。]

3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是()

甲乙丙

A.单个光子的运动没有确定的轨道

B.曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子C.干涉条纹中明亮的部分是光子到达机会较多的地方

D.大量光子的行为表现为波动性

ACD[由于光的传播不是连续的而是一份一份的,每一份就是一个光子,所以每次通过狭缝只有一个光子,当一个光子到达某一位置时该位置感光而留下痕迹,由于单个光子表现粒子性,即每一个光子所到达的区域是不确定的,但是大量光子表现出波动性,所以长时

间曝光后最终形成了图丙中明暗相间的条纹,干涉条纹中明亮的部分是光子到达机会较多的地方,该实验说明了光具有波粒二象性,所以A 、C 、D 项正确,B 项错误。]

4.(多选)下列说法正确的是( )

A .光子不仅具有能量,也具有动量

B .光有时表现为波动性,有时表现为粒子性

C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h

D .光波和物质波,本质上都是概率波

ABD [光电效应表明光子具有能量,康普顿效应表明光子除了具有能量之外还具有动量,选项A 正确;波粒二象性指光同时具有波和粒子的双重性质,有时表现为波动性,有

时表现为粒子性,选项B 正确;物质波的波长与粒子动量的关系应为λ=h p

,选项C 错误;光波中的光子和物质波中的实物粒子在空间出现的概率满足波动规律,因此二者均为概率波,选项D 正确。]

5.(多选)已知某金属发生光电效应的截止频率为νc ,则( )

A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子

B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc

C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大

D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍 AB [该金属的截止频率为νc ,则可知逸出功W 0=hνc ,逸出功由金属材料的性质决定,与照射光的频率无关,因此C 错误;由光电效应的实验规律可知A 正确;由爱因斯坦光电效应方程

E k =hν-W 0,将W 0=hνc 代入可知B 正确,D 错误。]

6.(2019·河南中原名校联考)下列描绘两种温度下黑体辐射强度与频率关系的图中,符合黑体辐射实验规律的是( )

A B

C D

B [根据黑体辐射实验规律,黑体热辐射的强度与波长的关系为:随着温度的升高,一方面,各种波长的辐射强度都有增加,则各种频率的辐射强度也都增加,另一方面,辐射强度的极大值向波长较短的方向移动,即向频率较大的方向移动,分析图象,只有B 项符合黑体辐射实验规律,故B 项正确。]

7.已知钙和钾的截止频率分别为7.73×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )

A .波长

B .频率

C .能量

D .动量

A [由爱因斯坦光电效应方程hν=W 0+12mv 2m

,又由W 0=hν0,可得光电子的最大初动能12mv 2m

=hν-hν0,由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,选项B 、C 、D 错误;又由c =λν可知光电子频率较小时,波长较大,选项A 正确。]

8.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则 ( )

A .逸出的光电子数减少,光电子的最大初动能不变

B .逸出的光电子数减少,光电子的最大初动能减小

C .逸出的光电子数不变,光电子的最大初动能减小

D .光的强度减弱到某一数值,就没有光电子逸出了

A [光的频率不变,表示光子能量不变,光的强度减弱,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A 正确。]

9.某光源发出的光由不同波长的光组成,不同波长的光的强度如图所示,表中给出了一些材料的极限波长,用该光源发出的光照射表中材料( )

材料

钠 铜 铂 极限波长(nm)

541 268 196 B .仅钠、铜能产生光电子

C .仅铜、铂能产生光电子

D .都能产生光电子

D [根据爱因斯坦光电效应方程可知,只要光源的波长小于某金属的极限波长,就有

光电子逸出,该光源发出的光的波长最小的小于100 nm ,小于钠、铜、铂三个的极限波长,都能产生光电子,故D 正确,A 、B 、C 错误。]

10.(多选)如图甲所示为实验小组利用100多个电子通过双缝后的干涉图样,可以看出每一个电子都是一个点;如图乙所示为该小组利用70 000多个电子通过双缝后的干涉图样,为明暗相间的条纹。则对本实验的理解正确的是( )

甲 乙

A .图甲体现了电子的粒子性

B .图乙体现了电子的粒子性

C .单个电子运动轨道是确定的

D .图乙中暗条纹处仍有电子到达,只不过到达的概率小

AD [题图甲中的每一个电子都是一个点,说明少数电子体现粒子性。每个电子到达的位置不同,说明单个电子的运动轨道不确定,A 正确,C 错误;题图乙中明暗相间的条纹说明大量的电子表现为波动性,B 错误;题图乙中暗条纹处仍有电子到达,只不过到达的概率小,D 正确。]

11.美国物理学家密立根通过测量金属的遏止电压U c 与入射光频率ν,算出普朗克常量h ,并与普朗克根据黑体辐射得出的h 相比较,以验证爱因斯坦光电效应方程的正确性。下图是某次试验中得到的两种金属的遏止电压U c 与入射光须率ν关系图象,两金属的逸出功分别为W 甲、W 乙,如果用ν0频率的光照射两种金属,光电子的最大初动能分别为E 甲、E 乙,则下列关系正确的是( )

A .W 甲E 乙

B .W 甲>W 乙,E 甲

C .W 甲>W 乙,E 甲>E 乙

D .W 甲

E 甲

A [根据光电效应方程得: E km =hν-W 0=hν-hν0,又E km =qU c ,解得:U c =h q ν-h q

ν0,知U c -ν图线中:当U c =0,ν=ν0;由图象可知, 金属甲的极限频率小于金属乙, 则金属甲的逸出功小于乙的, 即W 甲

当入射光频率相同时,则逸出功越大的,其光电子的最大初动能越小,因此E甲>E乙,A正确。]

12.(2019·濮阳市第三次模拟)用如图甲所示的电路研究光电效应中光电流与照射光的强弱、频率等物理量的关系。图中A、K两极间的电压大小可调,电源的正负极也可以对调,分别用a、b、c三束单色光照射,调节A、K间的电压U,得到光电流I与电压U的关系如图乙所示,由图可知()

甲乙

A.单色光a和c的频率相同,且a光更弱些,b光频率最大

B.单色光a和c的频率相同,且a光更强些,b光频率最大

C.单色光a和c的频率相同,且a光更弱些,b光频率最小

D.单色光a和c的频率不同,且a光更强些,b光频率最小

B[a、c两单色光照射后遏止电压相同,根据E km=eU c,可知产生的光电子最大初动能相等,则a、c两单色光的频率相等,光子能量相等,由于a光的饱和光电流较大,则a 光的强度较大,单色光b照射后遏止电压较大,根据E km=eU c,可知b光照射后产生的光电子最大初动能较大,根据光电效应方程E km=hν-W0得,b光的频率大于a光的频率,故

A、C、D错误,B正确。]

13.(2019·邢台市调研)如图所示是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转。则以下说法正确的是()

A.将滑动变阻器滑片向右移动,电流表的示数一定增大

B.如果改用紫光照射该金属时,电流表无示数

C.将K极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大D.将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑片向右移动一些,电流表的读数可能不为零

D [将滑动变阻器滑片向右移动,电压虽然增大,但若已达到饱和光电流,则电流表的示数可能不变,故A 错误。紫光的频率比绿光频率大,则改用紫光照射该金属时一定能发生光电效应,则电流表一定有示数,故B 错误。将K 极换成逸出功小的金属板,仍用相同的绿光照射时,则光电子的最大初动能增加,但单位时间内通过金属表面的光子数没有变化,因而单位时间内从金属表面逸出的光电子数不变,饱和光电流不会变化,则电流表的示数不一定增大,故C 错误。将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑片向右移动一些,若此时的电压仍小于遏止电压,则电流表有示数,故D 正确。]

14.(2019·四川省第二次“联测促改”)如图所示,用波长为λ0的单色光照射某金属,调节滑动变阻器,当电压表的示数为某值时,电流表的示数恰好减小为零;再用波长为4λ05的单色光重复上述实验,当电压表的示数增加到原来的3倍时,电流表的示数又恰好减小为零。已知普朗克常量为h ,真空中光速为c 。该金属的逸出功为( )

A.5hc 4λ0

B.hc λ0

C.7hc 8λ0

D.7hc 4λ0

C [当电压表读数大于或等于U 时,电流表读数为零,则遏止电压为U 。根据光电效应方程,则光电子的最大初动能为:E km =eU =h c λ0-W 0;用波长为4λ05

的单色光照射时,E km =3eU =h c 45

λ0-W 0;联立解得:W 0=7hc 8λ0,故C 正确,A 、B 、D 错误。] 15.(2019·孝义市第一次模拟)从1907年起,美国物理学家密立根就开始以精湛的技术测量光电效应中几个重要的物理量。他通过如图甲所示的实验装置测量某金属的遏止电压U c 与入射光频率ν,作出图乙所示的U c -ν的图象,由此算出普朗克常量h ,并与普朗克根据黑体辐射测出的h 相比较,以检验爱因斯坦光电效应方程的正确性。已知电子的电荷量为e ,则下列普朗克常量h 的表达式正确的是( )

甲 乙

A .h =e (U c2-U c1)ν2-ν1

B .h =U c2-U c1e (ν2-ν1)

C .h =ν2-ν1e (U c2-U c1)

D .h =e (ν2-ν1)U c2-U c1

A [根据爱因斯坦光电效应方程E k =hν-W 0及动能定理eU c =E k ,得U c =h e ν-W 0e

,所以图象的斜率k =U c2-U c1ν2-ν1=h e ,则h =e (U c2-U c1)ν2-ν1

,故A 项正确。]

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

高考物理近代物理知识点之波粒二象性真题汇编含答案解析

高考物理近代物理知识点之波粒二象性真题汇编含答案解析 一、选择题 1.如图所示,一束光射向半圆形玻璃砖的圆心O ,经折射后分为两束单色光a 和b 。下列判断不正确的是 A .a 光的频率小于b 光的频率 B .a 光光子能量小于b 光光子能量 C .玻璃砖对a 光的折射率大于对b 光的折射率 D .a 光在玻璃砖中的速度大于b 光在玻璃砖中的速度 2.下列说法正确的是( ) A .只要光照射的时间足够长,任何金属都能发生光电效应 B .一群氢原子从4n =能级跃迁到基态时,能发出6种频率的光子 C .比结合能越大,原子核越不稳定 D .核反应 238234 492 902U Th He →+为重核裂变 3.下列说法中正确的是 A .钍的半衰期为24天,1g 针经过120天后还剩0.2g B .发生光电效应时,入射光越强,光电子的最大初动能就越大 C .原子核内的中子转化成一个质子和电子,产生的电子发射到核外,就是β粒子 D .根据玻尔的原子理论,氢原子从n=5的激发态跃迁到n=2的激发态时,核外电子动能减小 4.如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5V 。若光的波长约为6× 10-7m ,普朗克常量为h ,光在真空中的传播速度为c ,取hc=2×10-25J·m ,电子的电荷量为1.6× 10-19C ,则下列判断正确的是 A .该光电管K 极的逸出功大约为2.53×10-19J B .当光照强度增大时,极板间的电压会增大 C .当光照强度增大时,光电管的逸出功会减小 D .若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小 5.如图是 a 、b 两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则

高考物理一轮复习 专题60 光电效应 波粒二象性(练)(含解析)1

专题60 光电效应波粒二象性(练) 1.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加 电压U的关系如图.下列说法中正确 ..的是:() U I a b A.a光光子的频率大于b光光子的频率,a光的强度小于b光的强度; B.a光光子的频率小于b光光子的频率,a光的强度小于b光的强度; C.如果使b光的强度减半,则在任何电压下,b光产生的光电流强度一定比a光产生的光电流强度小; D.另一个光电管加一定的正向电压,如果a光能使该光电管产生光电流,则b光一定能使该光电管产生光电流。 【答案】D 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关;对于本题解题的关键是通过图象判定a、b两种单色光谁的频率大,反向截止电压大的则初动能大,初动能大的则频率高,故b光频率高于a 光的.逸出功由金属本身决定。 2.(多选)已知钙和钾的截止频率分别为14 7.7310Hz ?和14 5.4410H ?z,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钾逸出的光电子具有较大的:() A.波长 B.频率 C.能量 D.动量 【答案】BCD 【解析】根据爱因斯坦光电效应方程得:E k=hγ-W0,又 W0=hγc;联立得:E k=hγ-hγc,据题钙的截止频率比钾的截止频率大,由上式可知:从钾表面逸出的光电子最大初动能较大,

由2 k P mE =,可知钾光电子的动量较大,根据 h P λ= 可知,波长较小,则频率较大.故A 错误,BCD正确.故选BCD. 【名师点睛】解决本题的关键要掌握光电效应方程E k=hγ-W0,明确光电子的动量与动能的关 系、物质波的波长与动量的关系 h P λ= . 3.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加电压U的关系如图所示.则这两种光:() A.照射该光电管时a光使其逸出的光电子最大初动能大 B.从同种玻璃射入空气发生全反射时,b光的临界角大 C.通过同一装置发生双缝干涉,a光的相邻条纹间距大 D.通过同一玻璃三棱镜时,a光的偏折程度大 【答案】C 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关。 4.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5×10- 7 m的紫外线照射阴极,已知真空中的光速为3.0×108 m/s,元电荷为1.6×10-19 C,普朗克常量为6.63×10-34 J·s。则钾的极限频率是Hz,该光电管发射的光电子的最大初动能是J。(保留二位有效数字) 【答案】5.3×1014 ,4.4×10-19 【解析】(1)根据据逸出功W0=hγ0,得: 19 14 034 2.21 1.610 5.310 6.6310 W Hz h γ - - ?? ===? ? ; (2)根据光电效应方程:E k=hγ-W0…①

2019届高中物理第十七章波粒二象性第3节粒子的波动性讲义含解析

粒子的波动性 1.光的波粒二象性 光既具有波动性,又具有粒子性,即光具有波粒二象性。2.光子的能量和动量 (1)能量:ε=hν。 (2)动量:p=h λ 。 (3)意义:能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描 述物质的波动性的典型物理量。因此ε=hν和p=h λ 揭示了光的粒子性和波动性之间的密切 关系,普朗克常量h架起了粒子性与波动性之间的桥梁。 [辨是非](对的划“√”,错的划“×”) 1.光既具有粒子性,又具有波动性。(√) 2.光的干涉说明光具有波动性,光的多普勒效应说明光具有粒子性。(√) [释疑难·对点练] 对光的波粒二象性的理解 (1)光既表现出波动性又表现出粒子性,要从微观的角度建立光的行为图案,认识光的波粒二象性。

(2)大量光子易显示波动性,而少量光子易显示出粒子性;波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。 (3)要明确光的波动性和粒子性在不同现象中的分析方法。 [试身手] 1.(多选)对光的认识,以下说法中正确的是( ) A .个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性 B .光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C .光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了 D .光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显 解析:选ABD 个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性。光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,故A 、B 、D 正确。 1.粒子的波动性 (1)德布罗意波: 每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。 (2)物质波的波长、频率关系式: 波长:λ=h p ;频率:ν=ε h 。 2.物质波的实验验证 (1)实验探究思路: 干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。 (2)实验验证: 1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性。 (3)说明: ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=h p 关系同样正确; ②宏观物体的质量比微观粒子的质量大得多,运动时的动量很大,对应的德布罗意波的

第十三章第三节 光电效应 波粒二象性

第三节光电效应波粒二象性 [学生用书P243]) 一、黑体和黑体辐射 任何物体都具有不断辐射、吸收、发射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射.为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体,以此作为热辐射研究的标准物体. 二、光电效应 1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子). 2.产生条件:入射光的频率大于极限频率. 3.光电效应规律 (1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多. (2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应. (3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s. 1.判断正误 (1)我们周围的一切物体都在辐射电磁波.() (2)光子和光电子都是实物粒子.() (3)能否发生光电效应取决于光的强度.() (4)光电效应说明了光具有粒子性,证明光的波动说是错误的.() (5)光电子的最大初动能与入射光的频率有关.() (6)逸出功的大小与入射光无关.() 答案:(1)√(2)×(3)×(4)×(5)√(6)√ 三、光电效应方程 1.基本物理量 (1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量). (2)逸出功:使电子脱离某种金属所做功的最小值. (3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸

波粒二象性试卷(含答案)

第十七章波粒二象性(重点) 1、关于光的波粒二象性的理解正确的是() A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 2、关于光的本性,下列说法中正确的是() A.光电效应反映光的粒子性 B.光子的能量由光的强度所决定 C.光子的能量与光的频率成正比 D.光在空间传播时,是不连续的,是一份一份的,每一份光叫做一个光子 4、关于物质波的认识,下列说法中正确的是() A.电子的衍射实验证实了物质波的假设是正确的。 B.物质波也是一种概率波。 C.任一运动的物体都有一种波和它对应,这就是物质波。 D.宏观物体尽管可以看作物质波,但他们不具有干涉、衍射等现象。 5、下列关于光电效应的说法正确的是() A.若某材料的逸出功是W,则它的极限频率 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 6、一金属表面,爱绿光照射时发射出电子,受黄光照射时无电子发射.下列有色光照射到这金属表面上 时会引起光电子发射的是() A.紫光B.橙光C.蓝光D.红光 7、用绿光照射一光电管能产生光电效应,欲使光电子从阴极逸出时的最大初动能增大就应() A.改用红光照射B.增大绿光的强度 C.增大光电管上的加速电压D.改用紫光照射 8、用一束绿光照射某金属,能产生光电效应,现在把入射光的条件改变,再照射这种金属.下列说法正确的是() A.把这束绿光遮住一半,则可能不产生光电效应 B.把这束绿光遮住一半,则逸出的光电子数将减少 C.若改用一束红光照射,则可能不产生光电效应 D.若改用一束蓝光照射,则逸出光电子的最大初动能将增大

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

【高中物理】《波粒二象性》测试题

《波粒二象性》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟. 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分.) 1.在下列各组的两个现象中都表现出光具有波动性的是() A.光的折射现象、色散现象 B.光的反射现象、干涉现象 C.光的衍射现象、偏振现象 D.光的直线传播现象、光电效应现象 解析:因为色散现象说明的是白光是由各种单色光组成的复色光,故A错;由于反射现象并非波动所独有的性质,故B错;直线传播并非波动所独有,且光电效应说明光具有粒子性,故D错;只有衍射现象和偏振现象为波动所独有的性质,所以C正确. 答案:C 2.下列说法中正确的是() A.光的干涉和衍射现象说明光具有波动性 B.光的频率越大,波长越长 C.光的波长越大,光子的能量越大 D.光在真空中的传播速度为3.0×108 m/s 解析:干涉和衍射现象是波的特性,说明光具有波动性,A对;光的频率越大,波长越短,光子能量越大,故B、C错;光真空中的速度为3.0×108 m/s,故D对. 答案:A、D 3.现代科技中常利用中子衍射技术研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距相近.已知中子质量m=1.67×10-27 kg,可以估算德布罗意波长λ=1.82×10-10 m 的热中子动能的数量级为() A.10-17 J B.10-19 J C.10-21 J D.10-24 J

解析:由p =h λ及E k =p 22m 得,E k =h 2 2mλ2= 6.6262×10-682×1.67×10-27×1.822×10-20 J ≈4×10-21 J,C 正确. 答案:C 4.下列关于光电效应的说法中,正确的是( ) A .金属的逸出功与入射光的频率成正比 B .光电流的大小与入射光的强度无关 C .用不可见光照射金属一定比用可见光照射同种金属产生的光电子的最大初动能大 D .对于任何一种金属都存在一个“最大波长”,入射光的波长大于此波长时,就不能产生光电效应 解析:逸出功与入射光无关,反映的是金属材料对电子的束缚能力;A 错误;光强越大,单位时间内入射的光子数越多,逸出的电子数也越多,光电流越大,B 错误;红外线的频率比可见光小,紫外线的频率比可见光大,由E k =hν-W 0知,C 错误;由产生光电效应的条件知,D 正确. 答案:D 5.下列有关光的说法中正确的是( ) A .光电效应表明在一定条件下,光子可以转化为电子 B .大量光子易表现出波动性,少量光子易表现出粒子性 C .光有时是波,有时是粒子 D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 解析:光电效应中,光子把能量转移给电子,而不是转化为电子,A 错误;由光的性质可知,B 正确;波动性和粒子性是光的两个固有属性,只是在不同情况下一种属性起主要作用,C 错误;康普顿效应表明光具有能量和动量,能量ε=hν,动量p =h λ ,D 正确. 答案:B 、D 6.一激光器发光功率为P ,发出的激光在折射率为n 的介质中波长为λ,若在真空中速度为c ,普朗克常量为h ,则下列叙述正确的是( ) A .该激光在真空中的波长为nλ B .该激光的频率为c λ C .该激光器在t s 内辐射的能量子数为Ptnλ hc

高二物理讲义7波粒二象性(学生版)

波粒二象性 18年高考考纲要求: 主题内容要求说明 光电效应Ⅰ 波粒二象性 爱因斯坦光电效应方程Ⅰ Ⅰ.对所列知识要知道其内容及含义,并 能在有关问题中识别和直接使用。与课 程标准中的“了解” 和“认识”相当。 一、能量量子化 1.黑体和黑体辐射 1.热辐射:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。eg:太阳、白炽灯中光的发射 注:物体在吸收电磁波的同时会反射电磁波,另外还会向外辐射电磁波。(除光源外,我们所看到的物体的颜色就是反射光所致) 2.黑体:物体可以完全吸收入射到其表面的各种波长的电磁波而不发生反射,这种物体就叫做绝对黑体,简称黑体。 3.理解: (1)热辐射除了与温度有关之外,还与材料的种类以及表面状况有关;黑体的辐射只温度有关。(2)黑体是一个理想模型。比如,在空腔壁上开一个小孔,射入小孔的电磁波在空腔内发生多次反射和吸收,最终不能射出空腔,这个小孔就视为绝对黑体。 (3)黑体不一定是黑色的,黑体自身可以有较强的辐射,看起来还会很明亮,如炼 钢炉上的小孔。另,太阳、白炽灯丝也可以视为黑体来处理。 4.黑体辐射的实验规律 实验装置

实验中将开有小孔的空腔视为黑体,使其恒温,测量从小孔中辐射出来的电磁波强度按波长的分布情 况。 实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2 )随着温度的升高,辐射强度的极大值向波长较短方向移动。实验经历: 1 )维恩根据经典热力学得出一个半经验公式:维恩公式 维恩公式在短波部分与实验结果吻合得很好,但长波却不行2)瑞利和琼斯用能量均分定理和电磁理论得出瑞利—琼斯公式 瑞利—琼斯公式在长波部分与实验结果比较吻合。但在紫外区竟算得单色辐 射度为无穷大—所谓的“紫外灾难” 3)1900年德国物理学家普朗克在维恩位移定律和瑞利--琼斯公式之间用内插 法建立了一个普遍公式——普朗克公式 A.黑体只吸收电磁波,不反射电磁波,看上去是黑的 B.黑体辐射电磁波的强度按波长的分布除与黑体的温度有关外,还与材料的种类及表面状况有关 C.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,与材料的种类及表面状况无关 D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体 对黑体的认识,下列说法正确的是() 1 A. B. C. D.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( ) 2

2020届高三高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性 1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D .实物的运动有特定的轨道,所以实物不具有波粒二象性 2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( ) A .遏止电压 B .饱和光电流 C .光电子的最大初动能 D .逸出功 3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( ) 甲 乙 丙 A .单个光子的运动没有确定的轨道 B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子 C .干涉条纹中明亮的部分是光子到达机会较多的地方 D .大量光子的行为表现为波动性 4.(多选)下列说法正确的是( ) A .光子不仅具有能量,也具有动量 B .光有时表现为波动性,有时表现为粒子性 C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h D .光波和物质波,本质上都是概率波 5.(多选)已知某金属发生光电效应的截止频率为νc ,则( ) A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子 B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大 D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

第十七章 波粒二象性 复习教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

(完整版)波粒二象性试题汇总

用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片。这些照片说明() A.光只有粒子性没有波动性 B.光只有波动性没有粒子性 C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性

2.实物粒子也具有波动性,只是因其波长太小,不易观察到,但并不能否定其具有波粒二象性。关于物质的波粒二象性,下列说法中正确的是() A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D.实物的运动有特定的轨道,所以实物不具有波粒二象性

3.电子属于实物粒子,1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一。如图所示是该实验装置的简化图,下列说法正确的是 () A.亮条纹是电子到达概率大的地方 B.该实验说明物质波理论是正确的 C.该实验再次说明光子具有波动性 D.该实验说明实物粒子具有波动性

(2016·宁波期末)一个德布罗意波波长为λ1的中子和另一个德布罗意波波长为λ2的氘核同向正碰后结合成一个氚核,该氚核的德布罗意波波长为 A. λ1λ2 λ1+λ2B. λ1λ2 λ1-λ2 C .λ1+λ2 2D. λ1-λ2 2

1.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是 A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样 B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样C.大量光子的运动显示光的波动性 D.光只有波动性没有粒子性

(完整版)波粒二象性知识点和练习

波粒二象性知识点和练习 一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大.. 。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............ ,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的 光电流随着反向电压的增加而减小,当反向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零, 所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。 三、光电效应方程 1、逸出功W 0: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。 2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即 02 max 21W mv hv += 其中2max 2 1mv 是指出射光子的最大初动能。 3、 光电效应的解释:

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 (含答案)

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 一、选择题 1.当用一束紫外线照射装在原不带电的验电器金属球上的锌板时,发生了光电效应,这时发生的现象是[ ] A.验电器内的金属箔带正电 B.有电子从锌板上飞出来 C.有正离子从锌板上飞出来 D.锌板吸收空气中的正离子 2.一束绿光照射某金属发生了光电效应,对此,以下说法中正确的是[ ] A.若增加绿光的照射强度,则单位时间内逸出的光电子数目不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 3.在光电效应实验中,如果需要增大光电子到达阳极时的速度,可采用哪种方法?[ ] A.增加光照时间 B.增大入射光的波长 C.增大入射光的强度 D.增大入射光频率 4.介质中某光子的能量是E,波长是λ,则此介质的折射率是[ ] A.λE/h B.λE/ch C.ch/λ E D.h/λ E

5.光在真空中的波长为λ,速度为c,普朗克常量h,现让光以入射角i由真空射入水中,折射角为r,则[ ] A.r>i D.每个光子在水中能量为hc/λ 6.光电效应的四条规律中,波动说仅能解释的一条规律是[ ] A.入射光的频率必须大于或等于被照金属的极限频率才能产生光电效应 B.发生光电效应时,光电流的强度与人射光的强度成正比 C.光电子的最大初动能随入射光频率的增大而增大 D.光电效应发生的时间极短,一般不超过10-9s 7.三种不同的入射光A、B、C分别射在三种不同的金属a、b、c表面,均恰能使金属中逸出光电子,若三种入射光的波长λA>λB>λC,则[ ] A.用入射光A照射金属b和c,金属b和c均可发出光电效应现象 B.用入射光A和B照射金属c,金属c可发生光电效应现象 C.用入射光C照射金属a与b,金属a、b均可发生光电效应现象 D.用入射光B和C照射金属a,均可使金属a发生光电效应现象 8.下列关于光子的说法中,正确的是[ ] A.在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子 B.光子的能量由光强决定,光强大,每份光子的能量一定大 C.光子的能量由光频率决定,其能量与它的频率成正比

相关文档
最新文档