统计物理习题答案

统计物理习题答案
统计物理习题答案

1、试证明,对于一维自由粒子,在长度为L 内,在ε到d εε+的能量范围内,量子态数(相格数)为

1/2

2()2L m dN d h εεε??

=??

??

证明:根据§4.2节相空间可知,一维自由粒子在μ空间体积元x dxdp 内可能的量子态数为 x

dxdp dN h

=

在长度为L 内,动量绝对值在p 到p+dp 范围内的可能量子态数为

2()L

dN p dp h

=

注意,此处的因子2是因为动量可以取正负两个可能的方向。

由能量和动量的关系式 22p m ε=可得,1/2

2m m dp d d p εεε??

==??

??,代入上式可

1/2

2()2L m dN d h εεε??

=??

??

证毕。

2、试证明,对于二维自由粒子,在面积L 2内,在ε到d εε+的能量范围内,量子态数(相格数)为

2

22()L dN md h

πεε=

证明:二维自由粒子在μ空间体积元x y dxdydp dp 内可能的量子态数为 2

x y

dxdydp dp dN h

=

对坐标空间积分,可得

22

x y

L dp dp dN h =

用二维动量空间的极坐标,p θ描述粒子的动量, ,p θ与,x y p p 的关系为

cos x p p θ= sin y p p θ=

用极坐标描述时,二维动量空间的体积元为pdpd θ,在面积2L 内,动量绝对值在p 到p+dp 范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的量子态数为

22

L pdpd dN h θ=

θ从0到2π积分,可得在面积2L 内,动量绝对值在p 到p+dp 范围内,二维自由粒子可能的量子态数为

2

22()L dN p pdp h

π=

由能量和动量关系式 22p m ε=可得,1/2

2m m dp d d p εεε??

==??

??

,代入上式可得

()1/2

22

1/22222()22L m L dN m d md h h

ππεεεεε??

==??

??

证毕。

3、完整地推导出F-D 统计的()f E 表达式(课后作业第2题,p442)。 证明:对费米系统的热力学概率

()!

!!i F D i i i i g N g N Ω=?∏

i

取对数,得

[]ln ln !ln !ln()!i i i i i

g N g N Ω=???∑

假设1i N ,1i g , 1i i g N ? ,应用Stirling 公式可得

[]ln ln ln ()ln()i i i i i i i i i

g g N N g N g N Ω=????∑

令i N 有i N δ的变化,ln Ω将因而有ln δΩ的变化,使Ω为极大分布必使

ln 0δΩ=,即

ln [ln ln()]0i i i i i

N g N N δδΩ=?+?=∑

但这些i N δ不是任意的,必须满足条件:

0i i

N N δδ==∑ 0i i i

E N δδε==∑

用拉氏乘子α和β分别乘以上面两式,并从ln δΩ中减去,得

ln 0i i i i i i g N N N αβεδ???????=????????

∑ 上式整理得

1

i

i i g

N e αβε+=+ 因此,F-D 分布函数为 1

()1i

f E e

αβε+=+ 证毕。

热力学统计物理期末复习试题 (2)

一.填空题 1.设一多元复相系有个?相,每相有个k 组元,组元之间不起化学反应。此系统平衡时必同时满足条件: T T T αβ ? == =、 P P P αβ ? == =、 (, )i i i 1,2i k α β ? μμμ== == 2.热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10。 4.均匀系的平衡条件是0 T T =且 P P =;平衡稳定性条件是 V C >且() T P V ?

热力学统计物理 课后习题 答案

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β与等温压缩系数κT 。 解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数T pV nR T V V p 1 1== ??? ????= α, 压强系数T pV nR T P P V 1 1== ??? ????= β 等温压缩系数p p nRT V p V V T 1 )(112=-?? ? ??=???? ????- =κ 1.2证明任何一种具有两个独立参量T,P 的物质,其物态方程可由实验测量的体胀系数与等温压缩系数,根据下述积分求得()? -=dp dT V T καln ,如果P T T 1 ,1 = =κα,试求物态方程。 解: 体胀系数 p T V V ??? ????= 1α 等温压缩系数 T T p V V ???? ????-=1κ 以T,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T T p κα-=? ??? ????+??? ????= dp dT V dV T κα-= 这就是以T,P 为自变量的完整微分,沿一任意的积分路线积分,得 ()?-=dp dT V T καln 根据题设 , 若 p T T 1,1== κα ????? ? ?-=dp p dT T V 11ln 则有 C p T V +=ln ln , PV=CT 要确定常数C,需要进一步的实验数据。 1.4描述金属丝的几何参量就是长度L,力学参量就是张力£,物态方程就是(£,L,T)=0,实验通常

在大气压下进行,其体积变化可以忽略。线胀系数定义为F T L L ??? ????= 1α ,等温杨氏模量定义为T L F A L Y ??? ????= ,其中A 就是金属丝的截面。一般来说,α与Y 就是T 的函数,对£ 仅有微弱的依赖关系。如果温度变化范围不大,可以瞧作常数。假设金属丝两端固定。试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=?。 解: f (£,L,T)=0 ,£=F£(L,T) dT T dL L dT T d L T L ??? ????-??? ????+??? ????=££££ (dL=0) 1££-=??? ??????? ??????? ????T F L L L T T αα YA L AY L L T L T T F L -=-=??? ??????? ????-=??? ????££ dT YA d α-=£ 所以 )T -(T -Y A £12α=? 1.6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体所做 的功与所吸收的热量。 解:将气体的膨胀过程近似瞧做准静态过程。 根据? -=VB VA pdV W , 在准静态等温过程中气体体积由V A 膨胀到VB,外界对气体所做的功为 A B A B VB VA VB VA P P RT V V RT V dV RT pdV W ln ln -=-=-=-=? ? 气体所做的功就是上式的负值, - W =A B P P RT ln -= 8、31?300?ln20J= 7、47?10-3J 在等温过程中理想气体的内能不变,即?U=0 根据热力学第一定律?U=W+Q, 气体在过程中吸收的热量Q 为 Q= - W = 7、47?10-3J 1、7 在25o C 下,压强在0至1000pn 之间,测得水的体积为 V=18、066-0、715?10-3P+0、046?10-6P 2cm 3?mol -1 如果保持温度不变,将1mol 的水从1pn 加压至1000pn,求外界所作的功。 解:将题中给出的体积与压强的关系记为 V=A+BP+CP 2 由此得到 dV=(B+2CP)dP 保持温度不变,将1mol 的水从1Pn 加压至1000Pn,在这个准静态过程中,外界所作的功为

热力学统计物理试题及其完整答案版

《热力学统计物理》试题参考解答及评分标准 一、1. B, 2. B, 3. A, 4. D, 5. B, 6. A, 7. C, 8. C, 9. A, 10. A. 评分标准:本题共20分, 每个答案2分。 二、 1. 状态, 2. 态, 系统从外界吸收, 3. p -, 4. ω )21(+ n , ,2,1,0=n , 5. l e a l l βεαω--=, 6. 0, 7. T V F )(??-, 8. 负温度状态, 9. n p T G ,)(??-, 10. n p S H ,)(??。 评分标准:本题共20分, 每个答案2分。 三、 1. 正确。 理由:pdV SdT dF --=。 2. 错误。 理由:T V F p ??? ????-=。 3. 错误。 理由:自由粒子为不受外力的作用而作自由运动的粒子。 4. 错误。 理由:组成玻色系统和费米系统的粒子是不可分辨的,而组成玻耳兹曼系统的 粒子是可以分辨的。 评分标准:每小题2.5分。其中判断1分,理由1.5分。 四、1.证: 由正则分布Es s e Z βρ-=1,得 s s E Z βρ--=ln ln . (1) 将上式代入广义熵的表示式,得 ]ln [ln ][ln ββ β??-=+=Z Z k U Z k . (2) 上式即正则系综中系统熵的表示式。 或者,由正则分布中熵的表示式出发 ][ln s s s E Z k βρ+=∑, (3) 利用(1)式,由上式得熵的普遍表示式 ∑-=s s s k S ρρln . (4) 评分标准:(1),(2)式各5分。 2. 证明:理想气体的热容量为n C ,则?dT C Q n =。由热力学第一定律得 pdV dT C dT C V n +=, 0)(=--pdV dT C C V n . (1) 将理想气体状态方程RT pV =微分,有

热力学统计物理课后习题答案33799

第三章 单元系的相变 求证 (1)V T n V n S T ,,??? ????-=??? ????μ (2)P T n T n V P ,,??? ????=??? ????μ 证明:(1)由自由能的全微分方程dF=-SdT-PdV+dn 及偏导数求导次序的可交换性,可以得到V T n V n S T ,,??? ????-=??? ????μ 这是开系的一个麦氏关系。 (2)由吉布斯函数的全微分方程dG=-SdT+VdP+dn 及偏导数求导次序的可交换性,可以得到P T n T n V P ,,??? ????=??? ????μ 这是开系的一个麦氏关系。 求证μ-??? ????V T n U ,n V T T ,??? ????-=μ 解:自由能TS U F -=是以n V T ,,为自变量的特性函数,求F 对n 的偏导数,有 V T V T V T n S T n U n F ,,,??? ????-??? ????=??? ???? (1) 但自由能的全微分dn pdV Sdt dF μ=--= 可得V T n F ,??? ????=μ, V T n S T ,??? ????=-n V T ,??? ????μ (2) 代入(1),即有V T n U ,??? ????-μ=-T n V T ,??? ????μ 两相共存时,两相系统的定压热容量C P =p T S T ??? ????,体胀系数 P T V V ??? ????=1α和等温压缩系数T P V V k T ??? ????- =1均趋于无穷。试加以说明。 解: 我们知道,两相平衡共存时,两相的温度,压强和化学式必须相等。如果在平衡压强

热力学统计物理课后习题答案

第七章 玻耳兹曼统计 7.1试根据公式V a P L l l ??- =∑ε证明,对于非相对论粒子 () 2 222 22212z y x n n n L m m P ++?? ? ??== πε, ( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为 () 2222 2,,2212z y x n n n n n n L m m P z y x ++?? ? ??== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为3 2 -=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量() 22 222)2(z y x n n n m a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。 由(2)式可得 V aV V l L εε323235 -=-=??----------------------(3) 代入压强公式,有V U a V V a P l l l L l l 3232 = =??-=∑∑εε----------------------(4) 式中 l l l a U ε ∑= 是系统的能。 上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 注:(4)式只适用于粒子仅有平移运动的情形。如果粒子还有其他的自由度,式(4)中的U 仅指平动能。 7.2根据公式V a P L l l ??- =∑ε证明,对于极端相对论粒子 () 2 1 2 222z y x n n n L c cp ++== πε, ,2,1,0,,±±=z y x n n n 有V U P 31= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为 () 2 1 22 2,,2z y x n n n n n n L c z y x ++= πε, ,2,1,0,,±±=z y x n n n -------(1) 为书写简便,我们将上式简记为3 1-=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量( ) 2 1 2 2 2 2z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三 个量子数。

热力学与统计物理题

《热力学与统计物理》练习题 一 简答题 1.单元复相系的平衡条件; 2.熵增原理 3.能量均分定理 4.热力学第一定律; 5.节流过程 6.热力学第二定律的克氏表述 计算题 1. 1 mol 理想气体,在C 0 27的恒温下体积发生膨胀,由20大气压准静态地变到1大气压。求气体所作的功和所吸的热。 2.求证 (a )0??? ????U V S 3.试证明在相变中物质摩尔内能的变化为 (1)p dT u L T dp ?=- 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式简化。 4. 1 mol 范氏气体,在准静态等温过程中体积由1V 膨胀至2V ,求气体在过程中所作的功。 5.试证明,在相同的压力降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的 温度降落。 6.蒸汽与液相达到平衡。设蒸汽可看作理想气体,液相的比容比气相的比容小得多,可以略而不计。以 dv dT 表在维持两相平衡的条件下,蒸汽体积随温度的变化率。试证明蒸汽的两相平衡膨胀系数为

111dv L v dT T RT ???? =- ? ????? 7. 在C 0 25下,压力在0至1000atm 之间,测得水的体积为: 3623118.0660.715100.04610V p p cm mol ---=-?+??, 如果保持温度不变,将1 mol 的水从1 atm 加压至1000 atm ,求外界所作的功。 8.试讨论以平衡辐射为工作物质的卡诺循环,计算其效率。 9.在三相点附近,固态氨的饱和蒸汽压(单位为大气压)方程为 3754 ln 18.70p T =- 液态的蒸汽压方程为 3063 ln 15.16p T =- 试求三相点的温度和压力,氨的气化热和升华热,在三相点的熔解热 10. 在C 0 0和1atm 下,空气的密度为300129.0-?cm g 。空气的定压比热 11238.0--??=K g cal C p ,41.1=γ。今有327cm 的空气, (i)若维持体积不变,将空气由C 0 0加热至C 0 20,试计算所需的热量。 (ii)若维持压力不变,将空气由C 0 0加热至C 0 20,试计算所需的热量。 11.满足C pV n =的过程称为多方过程,其中常数n 为多方指数。试证,理想气体在多方过程中的热容量n C 为 V n C n n C 1 --= γ 其中/p V C C γ= 12.写出以i T,V,n 为自变量的热力学基本等式,并证明:

热力学统计物理练习试题和答案

热力学·统计物理练习题 一、填空题. 本大题70个小题,把答案写在横线上。 1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。 2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。 3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。 4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。 5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。 6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。 7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。 8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。 9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。 10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。 11.循环关系的表达式为 。 12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。 13.W Q U U A B +=-,其中W 是 作的功。 14.?=+=0W Q dU ,-W 是 作的功,且-W 等于 。 15.?δ+δ2L 11W Q ?δ+δ2 L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。 16.第一类永动机是指 的永动机。 17.能是 函数,能的改变决定于 和 。 18.焓是 函数,在等压过程中,焓的变化等于 的热量。 19.理想气体能 温度有关,而与体积 。

热力学与统计物理试题及答案

热力学与统计物理试题及 答案 Revised by BLUE on the afternoon of December 12,2020.

一.选择(25分 ) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统

二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为()。 2.热力学基本微分方程du=()。 3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态平衡态具有哪些特点 2. 3.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统

热力学与统计物理课后习题答案第六章

第六章 近独立粒子的最概然分布 6.1 试根据式(6.2.13)证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为 ()()13 2232d 2d .V D m h πεεεε= 解: 式(6.2.13)给出,在体积3V L =内,在x p 到d ,x x y p p p +到 d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为 3 d d d .x y z V p p p h (1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为 2 34πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为 2 .2p m ε= 因此 d . p p p md ε== 将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为 ()13 2232π()d 2d .V D m h εεεε= (3) 6.2 试证明,对于一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为 ()1 2 2d d .2L m D h εεεε?? = ???

解: 根据式(6.2.14),一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为 d d .x x p h 在长度L 内,动量大小在p 到d p p +范围内(注意动量可以有正负两个可能的方向)的量子态数为 2d .L p h (1) 将能量动量关系 2 2p m ε= 代入,即得 ()1 2 2d d .2L m D h εεεε?? = ??? (2) 6.3 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为 ()2 22π.L D d md h εεε= 解: 根据式(6.2.14),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为 21 d d d d .x y x y p p h (1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为 cos ,sin . x y p p p p θθ== 用极坐标描述时,二维动量空间的体积元为 d d .p p θ 在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为 22 d d .L p p h θ (2)

热力学统计物理试题(B卷)

热力学·统计物理试题(B 卷) 适用于200×级本科物理学专业 (200×-200×学年度第×学期) 1. (10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关. 2. (20分) 试证明,相变潜热随温度的变化率为 βp c dT dL =-α p c -+T L αβαβv v L T v T v p p -??? ????????? ????-???? ? ??? 如果β相是气相,α相是凝聚相,试证明上式可简化为: α βp p c c dT dL -= 3.(10分) 若将U 看作独立变数T , V , n 1,… n k 的函数,试证明: (1)V U V n U n U i i i ??+??=∑ (2)V U v n U u i i i ??+??= 4.(20分) 试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为 ∑-=s Ps Ps Nk S ln 式中P s 是总粒子处于量子态s 的概率,1Z e N e P s s s βεβεα---= =,∑s 对粒子的所有量子态求和。 5.(20分) 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是 2Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2/3T 成正比. 6.(20分) 在极端相对论情形下电子能量与动量的关系为cp =ε,其中c 为光速.试求自由电子气体在0K 时的费米能量,内能和简并压.

附标准答案 1. (10分) 解证:范氏气体()RT b v v a p =-??? ? ? +2

由式(2.2.7)? T v U ??? ????=T V T p ??? ????-p =T 2 v a p b v R =-- (5分) T v U ??? ????=2v a ?)(),(0T f v a U v T U +-= =V C V T U ??? ????=)(T f ' ;与v 无关。 (5分) 2.(20分) 证明:显然属于一级相变; ()())(αβS S T L -=; 其中())(,T p T S S =, 在p ~T 相平衡曲线上. ()[]??? ? ??????+??? ?????+-=dT dp p S T T S T S S dT dL αβ 其中:=??? ?????T S () P T S ???? ????β()P T S ???? ????-α =???? ??????dT dp p S [()P T S ???? ????β()P T S ? ??? ????-α]dT dp ? (5分) 又有:T C P =P T S ??? ????;()())(αβS S T L -= 由麦氏关系(2.2.4): -=???? ????T p S P T V ??? ???? (5分) 上几式联立(并将一级相变的克拉伯珑方程代入)得: βp c dT dL =-α p c -+T L αβαβv v L T v T v p p -??? ????????? ????-???? ? ??? (5分) 若β相是气相,α相是凝聚相;() αV ~0;()p T V ???? ???α~0; β相按理想气体处理。pV=RT ?α βp p c c dT dL -= (5分) 3.(10分) 证明:(1) ),,,(),,,(11k k n n V T U n n V T U ΛΛλλλλ=

热力学统计物理期末复习考试试题

一. 填空题 1. 设一多元复相系有个?相,每相有个k 组元,组元之间不起化学反应。此系统平衡时必同时满足 条件: T T T αβ?===L 、 P P P αβ? ===L 、 (,)i i i 1,2i k αβ? μμμ====L L 2. 热力学第三定律的两种表述分别叫做: 能特斯定律 和 绝对零度不能达到定律 。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10 。 4.均匀系的平衡条件是 T T = 且 P P = ;平衡稳定性条件是 V C > 且()0 T P V ?

西南大学(陈鹏)热力学统计物理期末复习重点习题整理

第一章 热力学的基本规律 1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。试证明:理想气体在多方过程中的热容量n C 为 1 n V n C C n γ -= - 解:根据式(1.6.1),多方过程中的热容量 0lim .n T n n n Q U V C p T T T ?→??????? ?? ==+ ? ? ?????????? (1) 对于理想气体,能U 只是温度T 的函数, ,V n U C T ??? = ???? 所以 .n V n V C C p T ???=+ ???? (2) 将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得 11n TV C -=(常量)。 (3) 将上式微分,有 12(1)0,n n V dT n V TdV --+-= 所以 .(1)n V V T n T ??? =- ? ?-?? (4) 代入式(2),即得 ,(1)1 n V V pV n C C C T n n γ-=- =-- (5) 其中用了式(1.7.8)和(1.7.9)。 1.14试根据热力学第二定律证明两条绝热线不能相交。 解:假设在p V -图中两条绝热线交于C 点,如图所示。设想一等温线与

两条绝热线分别交于A 点和B 点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在循环过程ABCA 中,系统在等温过程AB 中从外界吸取热量Q ,而在循环过程中对外做功W ,其数值等于三条线所围面积(正值)。循环过程完成后,系统回到原来的状态。根据热力学第一定律,有 W Q =。 这样一来,系统在上述循环过程中就从单一热源吸热并将之完全转变为功了, 这违背了热力学第二定律的开尔文说法,是不可能的。 因此两条绝热线不可能相交。 第二章 均匀物质的热力学性质 2.2 设一物质的物态方程具有以下形式: (),p f V T = 试证明其能与体积无关. 解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ?????? =- ? ??????? (3) 所以 ()0.T U Tf V p V ???=-= ???? (4)

热力学统计物理精彩试题

简述题 1. 写出系统处在平衡态的自由能判据。 一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。即0F ?>。 2. 写出系统处在平衡态的吉布斯函数判据。 一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。即0G ?>。 3. 写出系统处在平衡态的熵判据。 一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。即 0S ?< 4. 熵的统计解释。 由波耳兹曼关系ln S k =Ω 可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。故,熵是系统内部混乱度的量度。 5. 为什么在常温或低温下原子内部的电子对热容量没有贡献? 不考虑能级的精细结构时,原子内的电子激发态与基态的能量差为1~10eV ,相应的特征温度为4 5 K 10~10。在常温或低温下,电子通过热运动获得如此大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。 6. 为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略? 因为双原子分子的振动特征温度3 K θ~10v ,在常温或低温下 kT <

统计物理试题

一.简要回答下列问题 a) 等几率原理 b) 能量均分定理 c) 玻色--爱因斯坦凝聚 d) 自发对称破缺 二.设有N 个定域粒子组成的系统,粒子之间相互作用很弱,可以忽略。设粒子只有三个非简并能级,能量分别为,0,εε-,系统处于平衡态,温度为T 。求: (1) 系统的配分函数和熵S 的表达式; (2) 内能U 及热容C (T ),并求其0T T →→∞与的极限 (3) 0 ()/?dT C T T ∞ =? 三.N 个二维各向同性简谐振子组成的近独立粒子系统处于平衡态(温度为T ),假设粒子遵 从Boltzmann 分布,其能量表达式是2 22221()()22 x y m p p x y m ωε=+++,量子化的本征能级是(1)n E n ω=+,其中n=0,1,2, 。。。。。 (1) 在什么条件下简谐振子能级量子化效应可以忽略? (2) 分别在高温和低温条件下,计算系统的内能和热容量 提示:高温条件可直接利用能量均分定理; 低温条件首先要计算系统的配分函数 四.考虑二维自由电子气体系统,其能量色散关系为()22/2p x y p p m ε=+,m 为常数,设面积为S ,总的粒子数为N (1)求零温下系统的化学势(0)μ及内能U (2)不用计算,从物理分析判断低温下定容热容量与温度的关系是什么? 为什么? 五. 铁磁固体低温下的元激发称为自旋波,它可以看作是一种粒子数不守恒的玻色型元激发,其能谱为r p αε=,其中 ||p p → =, α 和 r 均为常数。 (1) 求这种元激发的态密度)(εD ; (2) 实验发现在足够低的温度下,热容2/3~T C ,试由此确定r 。

热力学统计物理课后习题集答案解析

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。 解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数T pV nR T V V p 1 1== ??? ????= α, 压强系数T pV nR T P P V 1 1== ??? ????= β 等温压缩系数p p nRT V p V V T 1 )(112=-??? ??=???? ????- =κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()? -=dp dT V T καln ,如果P T T 1 ,1 = =κα,试求物态方程。 解: 体胀系数 p T V V ??? ????= 1α 等温压缩系数 T T p V V ???? ????-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T T p κα-=???? ????+??? ????= dp dT V dV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得 ()?-=dp dT V T καln 根据题设 , 若 p T T 1,1== κα

????? ? ?-=dp p dT T V 11ln 则有 C p T V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。 1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。线胀系数定义为F T L L ??? ????= 1α ,等温杨氏模量定义为T L F A L Y ??? ????= ,其中A 是金属丝的截面。一般来说,α和Y 是T 的函数,对£ 仅有微弱的依赖关系。如果温度变化范围不大,可以看作常数。假设金属丝两端固定。试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=?。 解: f (£,L,T)=0 ,£=F £(L,T) dT T dL L dT T d L T L ??? ????-??? ????+??? ????=££££ (dL=0) 1££-=??? ??????? ??????? ????T F L L L T T αα YA L AY L L T L T T F L -=-=??? ??????? ????-=??? ????££ dT YA d α-=£ 所以 )T -(T -Y A £12α=? 1.6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体所做的功和所吸收的热量。 解:将气体的膨胀过程近似看做准静态过程。 根据? -=VB VA pdV W , 在准静态等温过程中气体体积由VA 膨胀到VB ,外界对气体所做的功为

热力学统计物理试题(B卷)

热力学·统计物理试题(B 卷) 适用于200×级本科物理学专业 (200×-200×学年度第×学期) 1. (10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关. 2. (20分) 试证明,相变潜热随温度的变化率为 β p c dT dL =-αp c -+T L αβαβ v v L T v T v p p -??? ????????? ????-???? ???? 如果β相是气相,α相是凝聚相,试证明上式可简化为: α βp p c c dT dL -= 3.(10分) 若将U 看作独立变数T , V , n 1,… n k 的函数,试证明: (1)V U V n U n U i i i ??+??= ∑ (2)V U v n U u i i i ??+??= 4.(20分) 试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为 ∑-=s Ps Ps Nk S ln 式中P s 是总粒子处于量子态s 的概率,1Z e N e P s s s βεβεα---= =,∑s 对粒子的所有量子态求和。 5.(20分) 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是2 Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2 /3T 成正比.

6.(20分)在极端相对论情形下电子能量与动量的关系为 cp = ε,其中c为光速.试求自 由电子气体在0K时的费米能量,内能和简并压.

附标准答案 1. (10分) 解证:范氏气体()RT b v v a p =-?? ? ??+ 2 由式(2.2.7)? T v U ??? ????=T V T p ??? ????-p =T 2 v a p b v R =-- (5分) T v U ??? ????=2v a ?)(),(0T f v a U v T U +-= =V C V T U ??? ????=)(T f ' ;与v 无关。 (5分) 2.(20分) 证明:显然属于一级相变; ()())(αβS S T L -=; 其中())(,T p T S S =, 在p ~T 相平衡曲线上. ()[]??? ? ??????+??? ?????+-=dT dp p S T T S T S S dT dL αβ 其中:=??? ?????T S ()P T S ???? ????β()P T S ???? ????-α =???? ??????dT dp p S [()P T S ? ??? ? ???β()P T S ???? ????-α]dT dp ? (5分) 又有:T C P =P T S ??? ????;()() )(αβS S T L -= 由麦氏关系(2.2.4): -=???? ????T p S P T V ??? ???? (5分) 上几式联立(并将一级相变的克拉伯珑方程代入)得: β p c dT dL =-αp c -+T L αβαβ v v L T v T v p p -??? ????????? ????-???? ???? (5分) 若β相是气相,α相是凝聚相;() αV ~0;()p T V ???? ???α~0; β相按理想气体处理。pV=RT

热力学与统计物理复习总结级相关试题

《热力学与统计物理》考试大纲 第一章 热力学的基本定律 基本概念:平衡态、热力学参量、热平衡定律 温度,三个实验系数(α,β,T κ )转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C ,C V ,C p 的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。 综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS )的计算。 第二章 均匀物质的热力学性质 基本概念:焓(H ),自由能F ,吉布斯函数G 的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp )的关系,绝热膨胀过程及性质,特性函数F 、G ,空窖辐射场的物态方程,内能、熵,吉布函数的性质。 综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程) 第三章、第四章 单元及多元系的相变理论 该两章主要是掌握物理基本概念: 热动平衡判据(S 、F 、G 判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。 统计物理部分 第六章 近独立粒子的最概然分布 基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空间,德布罗意关系 (k P =,=ωε),相格,量子态数。 等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然 分布,玻尔兹曼分布律(l l l e a βεαω--=)配分函数( ∑∑-==-s l l s l e e Z βεβε ω1),用配分函数表 示的玻尔兹曼分布(l l l e Z N a βεω-= 1 ),f s ,P l ,P s 的概念,经典配分函数( ??-= du e h Z l r βε 0 11 ) 麦态斯韦速度分布律。 综合运用: 能计算在体积V 内,在动量范围P →P+dP 内,或能量范围ε→ε+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。 第七章 玻尔兹曼统计 基本概念:熟悉U 、广义力、物态方程、熵S 的统计公式,乘子α、β的意义,玻尔兹曼关系(S =Kln Ω),最可几率V m ,平均速度V ,方均根速度s V ,能量均分定理。 综合运用: 能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运用玻尔兹曼分布计算谐振子系统(已知能量ε=(n+2 1)ω )的配分函数内能和热容量。 第八章 玻色统计和费米统计 基本概念: 光子气体的玻色分布,分布在能量为εs 的量子态s 的平均光子数( 11-= KT s e f ω ),T =0k 时,自 由电子的费米分布性质(f s =1),费米能量μ(0),费米动量P F ,T =0k 时电子的平均能量,维恩位移定律。 综合运用:掌握普朗克公式的推导;T =0k 时,电子气体的费米能量μ(0)计算,T=0k 时,电子的平均速率V 的计算,电子的平均能量ε的计算。 第九章 系综理论 基本概念: Γ空间的概念,微正则分布的经典表达式、量子表达式,正则分布的表达式,正则配分函数的表达式。 经典正则配分函数。

相关文档
最新文档