ARM9嵌入式系统设计基础课后答案全解

ARM9嵌入式系统设计基础课后答案全解
ARM9嵌入式系统设计基础课后答案全解

********************************************* *********************************************

第一章

1.简述嵌入式的定义

以应用为中心、以计算机技术为基础,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。

2.举例说明嵌入式系统的“嵌入性”、“专用性”、“计算机系统”的基本特征。

按照嵌入式系统的定义,嵌入式系统有3个基本特点,即“嵌入性”、“专用性”与“计算机”。

“嵌入性”由早期微型机时代的嵌入式计算机应用而来,专指计算机嵌入到对象体系中,实现对象体系的智能控制。当嵌入式系统变成一个独立应用产品时,可将嵌入性理解为内部嵌有微处理器或计算机。

“计算机”是对象系统智能化控制的根本保证。随着单片机向MCU、SoC发展,片内计算机外围电路、接口电路、控制单元日益增多,“专用计算机系统”演变成为“内含微处理器”的现代电子系统。与传统的电子系统相比较,现代电子系统由于内含微处理器,能实现对象系统的计算机智能化控制能力。

“专用性”是指在满足对象控制要求及环境要求下的软硬件裁剪性。嵌入式系统的软、硬件配置必须依据嵌入对象的要求,设计成专用的嵌入式应用系统。

3. 简述嵌入式系统发展各阶段的特点。

(1)无操作系统阶段:使用简便、价格低廉;(2)简单操作系统阶段:初步具有了一定的兼容性和扩展性,内核精巧且效率高,大大缩短了开发周期,提高了开发效率。

(3)实时操作系统阶段:系统能够运行在各种不同类型的微处理器上,具备了文件和目录管理、设备管理、多任务、网络、图形用户界面Graphic User Interface,GUI)等功能,并提供了大量的应用程序接口Application Programming Interface,API),从而使应用软件的开发变得更加简单。

(4)面向Internet阶段:进入21世纪,Internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式技术与Internet技术的结合正在推动着嵌入式系统的飞速发展

4.简述嵌入式系统的发展趋势。

(1)新的微处理器层出不穷,精简系统内核,优化关键算法,降低功耗和软硬件成本。(2)Linux、Windows CE、Palm OS等嵌入式操作系统迅速发展。(3)嵌入式系统的开发成了一项系统工程,开发厂商不仅要提供嵌入式软硬件系统本身,同时还要提供强大的硬件开发工具和软件支持包。

5.简述SOC和IP核的区别。

SOC是指在单芯片上集成数字信号处理器、微控制器、存储器、数据转换器、接口电路等电路模块,可以直接实现信号采集、转换、存储、处理等功能。IP核是指具有知识产权的、功能具体、接口规范、可在多个集成电路设计中重复使用的功能模块,是实现系统芯片(SOC)的基本构件。

6. 简述嵌入式计算机系统硬件层的组成和功能。

硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O 接口(A/D、D/A、I/O等)。

(1)嵌入式微处理器是嵌入式系统硬件层的核心,嵌入式微处理器将通用CPU中许多由板卡完成的任务集成到芯片内部,从而有利于系统设计趋于小型化、高效率和高可靠性

(2)嵌入式系统的存储器包含Cache、主存储器和辅助存储器,用来存放和执行代码。(3)与外界交互所需要的通用设备接口

7. 简述cache的功能与分类。

(1)Cache是一种位于主存储器和嵌入式微处理器内核之间的快速存储器阵列,存放的是最近一段时间微处理器使用最多的程序代码和数据。在需要进行数据读取操作时,微处理器尽可能的从Cache中读取数据,而不是从主存中读取,减小存储器(如主存和辅助存储器)给微处理器内核造成的存储器访问瓶颈,提高微处理器和主存之间的数据传输速率,使处理速度更快,实时性更强

(2)Cache一般集成在嵌入式微处理器内,可分为数据Cache、指令Cache或混合Cache,Cache的存储容量大小依不同处理器而定。

8. 简述嵌入式计算机系统中间层的组成和功能。

中间层也称为硬件抽象层(Hardware Abstract Layer,HAL)或板级支持包(Board Support Package,BSP),位于硬件层和软件层之间,将系统上层软件与底层硬件分离开来。

BSP作为上层软件与硬件平台之间的接口,需要为操作系统提供操作和控制具体硬件的方法。不同的操作系统具有各自的软件层次结构,BSP需要为不同的操作系统提供特定的硬件接口形式。BSP使上层软件开发人员无需关心底层硬件的具体情况,根据BSP层提供的接口即可进行开发。

BSP是一个介于操作系统和底层硬件之间的软件层次,包括了系统中大部分与硬件联系紧密的软件模块。BSP一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配

置等功能。

9.简述嵌入式计算机系统系统软件层的组成和功能。

系统软件层通常包含有实时多任务操作系统(Real-time Operation System,RTOS)、文件系统、图形用户接口(Graphic User Interface,GUI)、网络系统及通用组件模块组成。

(1)嵌入式操作系统(Embedded Operating System,EOS)

EOS负责嵌入式系统的软件、硬件的资源分配、任务调度,控制协调。

(2)文件系统

嵌入式文件系统与通用操作系统的文件系统不完全相同,主要提供文件存储、检索和更新等功能,一般不提供保护和加密等安全机制。

(3)图形用户接口(GUI)

GUI使用户可以通过窗口、菜单、按键等方式来方便地操作计算机或者嵌入式系统。

10.简述RTOS的定义与特点。

RTOS是指能够在指定或者确定的时间内完成系统功能和对外部或内部、同步或异步时间做出响应的系统,系统能够处理和存储控制系统所需要的大量数据。

特点:(1)约束性

RTOS任务的约束包括时间约束、资源约束、执行顺序约束和性能约束。

(2)可预测性

可预测性是指RTOS完成实时任务所需要的执行时间应是可知的。(3)可靠性(4)交互性

11. 常用的RTOS调度技术有哪些?各有什么特点?

(1)抢占式调度和非抢占式调度

抢占式调度通常是优先级驱动的调度。每个任务都有优先级,任何时候具有最高优先级且已启动的任务先执行。抢占式调度实时性好、反应快,调度算法相对简单,可优先保证高优先级任务的时间约束,其缺点是上下文切换多。而非抢占式调度是指不允许任务在执行期间被中断,任务一旦占用微处理器就必须执行完毕或自愿放弃,其优点是上下文切换少,缺点是微处理器有效资源利用率低,可调度性不好。

(2)静态表驱动策略和优先级驱动策略

静态表驱动策略是一种离线调度策略,指在系统运行前根据各任务的时间约束及关联关系,采用某种搜索策略生成一张运行时刻表。在系统运行时,调度器只需根据这张时刻表启动相应的任务即可。

优先级驱动策略指按照任务优先级的高低确定任务的执行顺序。优先级驱动策略又分为静态优先级调度策略和动态优先级调度策略。静态优先级调度是指任务的优先级分配好之后,在任务的运行过程中,优先级不会发生改变。静态优先级调度又称为固定优先级调度。动态优先级调度是指任务的优先级可以随着时间或系统状态的变化而发生变化。

12.冯诺依曼结构与哈佛结构各有什么特点?

(1)哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址、独立访问。

(2)冯·诺依曼结构的计算机由CPU和存储器构成,其程序和数据共用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置;采用单一的地址及数据总线,程序指令和数据的宽度相同。程序计数器(PC)是CPU内部指示指令和数据的存储位置的寄存器

13.RISC架构与CISC架构相比有什么优点?

复杂指令集计算机(Complex Instruction Set Computer,CISC);精简指令集计算机(Reduced Instruction Set Computer,RISC)

RISC优点:(1)结构更加简单合理,从而提高运算效率;(2)优先选取使用频率最高的、很有用但不复杂的指令,避免使用复杂指令;(3)固定指令长度,减少指令格式和寻址方式种类;(4) 指令之间各字段的划分比较一致,各字段的功能也比较规整;(5)采用Load/Store指令访问存储器,其余指令的操作都在寄存器之间进行;(6)增加CPU中通用寄存器数量,算术逻辑运算指令的操作数都在通用寄存器中存取;(7)大部分指令控制在一个或小于一个机器周期内完成;(8)以硬布线控制逻辑为主,不用或少用微码控制;(9)采用高级语言编程,重视编译优化工作,以减少程序执行时间。

14.简述流水线技术的基本概念。

流水线技术的基本概念是将一个重复的时序分解成若干个子过程,而每一个子过程都可有效地在其专用功能段上与其他子过程同时执行。

15.试说明指令流水线的执行过程。

在流水线技术中,流水线要求可分成若干相互联系的子过程,实现子过程的功能所需时间尽可能相等。形成流水处理,需要一段准备时间。指令流发生不能顺序执行时,会使流水线过程中断,再形成流水线过程则需要时间。(执行、取操作数、指令译码、取指令)

16.大端存储法与小端存储法有什么不同?对存储数据有什么要求与影响?

小端:较高的有效字节存放在较高的的存储器地址,较低的有效字节存放在较低的存储器地址。

大端:较高的有效字节存放在较低的存储器地址,较低的有效字节存放在较高的存储器地址。

第二章

1、ARM微处理器的特点

A 体积小、低功耗、低成本、高性能;

B 支持Thumb(16位)/ARM(犯位)双指令集,能很好地兼容8位/16位器件;

C 大量使用寄存器,指令执行速度更快;

D 大多数数据操作都在寄存器中完成;

E 寻址方式灵活简单、执行效率高。

2、画出ARM体系结构方框图,并说明各部分功能(23)

1.ALU

ARM体系结构的ALU与常用的ALU逻辑结构基本相同,由两个操作数锁存器、加法器、逻辑功能、结果及零检测逻辑构成。ALU的最小数据通路周期包含寄存器读时间、移位器延迟、ALU延迟、寄存器写建立时间、双相时钟间非重叠时间等几部分。

2.桶形移位寄存器

ARM采用了32×32位桶形移位寄存器,左移/右移n位、环移n位和算术右移n位等都可以一次完成,可以有效的减少移位的延迟时间。在桶形移位寄存器中,所有的输入端通过交叉开关(Crossbar)与所有的输出端相连。交叉开关采用NMOS晶体管来实现。

3.高速乘法器

ARM为了提高运算速度,采用两位乘法的方法,2位乘法可根据乘数的2位来实现“加-移位”运算。ARM的高速乘法器采用32×8位的结构,完成32×2位乘法也只需5个时钟周期

4.浮点部件

在ARM体系结构中,浮点部件作为选件可根据需要选用,FPA10浮点加速器以协处理器方式与ARM相连,并通过协处理器指令的解释来执行。

浮点的Load/Store指令使用频度要达到67%,故FPA10内部也采用Load/Store结构,有8个80位浮点寄存器组,指令执行也采用流水线结构。

5.控制器

ARM的控制器采用硬接线的可编程逻辑阵列PLA,其输入端有14根、输出端有40根,分散控制Load/Store多路、乘法器、协处理器以及地址、寄存器ALU和移位器。

6.寄存器

ARM内含37个寄存器,包括31个通用32位寄存器和6个状态寄存器

7、分析ARM11的内核结构(P26)

8、分析cortex-M4处理器内部结构(P33)

14、ARM微处理器支持哪几种运行模式?各运行模式有什么特点?

答:

1)用户模式:ARM处理器正常程序执行模式;

2)快速中断模式:用于高速数据传输或通道处理;

3)外部中断模式:用于通用的中断处理;

4)管理模式:操作系统使用的保护模式;

5)数据访问终止模式:当数据或指令预取终止时进入该模式,可用于虚拟存储

及存储保护;

6)系统模式:运行具有特权的操作系统任务;

7)未定义指令中止模式:当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。

15、RM微处理器有哪几种工作状态?各工作状态有什么特点

答:ARM处理器有32位ARM和16位Thumb两种工作状态。在32位ARM状态下执行字对齐的ARM指在16位Thumb状态下执行半字对齐的Thumb指令。

16、试分析ARM寄存器组织结构图,并说明寄存器分组与功能。

答:1.通用寄存器

通用寄存器(R0~R15)可分成不分组寄存器R0~R7、分组寄存器R8~R14和程序计数器R15 三类。

(1)不分组寄存器R0~R7

不分组寄存器R0~R7是真正的通用寄存器,可以工作在所有的处理器模式下,

没有隐含的特殊用途。

(2)分组寄存器R8~R14

分组寄存器R8~R14取决于当前的处理器模式,每种模式有专用的分组寄存器

用于快速异常处理

(3)程序计数器R15

读程序计数器:读PC主要用于快速地对临近的指令和数据进行位置无关寻址,包括程序中的位置无关转移。

写程序计数器:写R15的通常结果是将写到R15中的值作为指令地址,并以此地址发生转移。

2程序状态寄存器

寄存器R16用作程序状态寄存器CPSR(当前程序状态寄存器)。在所有处理器模式下都可以访问CPSR。

17、简述程序状态寄存器的位功能

(1)条件码标志

N、Z、C、V(Negative、Zero、Carry、oVerflow)均为条件码标志位(Condition Code Flags),它们的内容可被算术或逻辑运算的结果所改变,并且可以决定某条指令是否被执行。CPSR 中的条件码标志可由大多数指令检测以决定指令是否执行。在ARM状态下,绝大多数的指令都是有条件执行的。在Thumb状态下,仅有分支指令是有条件执行的。

通常条件码标志通过执行比较指令(CMN、CMP、TEQ、TST)、一些算术运算、逻辑运算和传送指令进行修改。

条件码标志的通常含义如下:

●N:如果结果是带符号二进制补码,那么,若结果为负数,则N=1;若结果为正数或0,则N=0。

●Z:若指令的结果为0,则置1(通常表示比较的结果为“相等”),否则置0。

C:可用如下4种方法之一设置:

一-加法(包括比较指令CMN)。若加法产生进位(即无符号溢出),则C置1;否则置0。

一-减法(包括比较指令CMP)。若减法产生借位(即无符号溢出),则C置0;否则置1。

一-对于结合移位操作的非加法/减法指令,C置为移出值的最后1位。

一-对于其他非加法/减法指令,C通常不改变。

●V:可用如下两种方法设置,即

一-对于加法或减法指令,当发生带符号溢出时,V置1,认为操作数和结果是补码形式的带符号整数。

一-对于非加法/减法指令,V通常不改变。

(3)控制位

程序状态寄存器PSR(Program Status Register)的最低8位I、F、T和M[4:0]用作控制位。当异常出现时改变控制位。处理器在特权模式下时也可由软件改变。

?a.中断禁止位

I:置1,则禁止IRQ中断;

F:置1,则禁止FIQ中断。

?b.T位

T=0 指示ARM执行;

T=1 指示Thumb执行。

?c.模式控制位

M4、M3、M2、Ml和M0(M[4:0])是模式位,决定处理器的工作模式。

20、ARM体系结构支持几种类型的异常,并说明其异常处理模式和优先级状态?

答,支持7种类型的异常

异常处理过程:(进入异常)PC→LR,CPRS→SPSR,设置CPSR的运行模式位,跳转

到相应的异常处理程序,(异常返回)LR→PC,SPSR→CPSR,若在进入异常处理时

设置中断禁止位,要在此清楚,复位异常处理程序不需要返回。

Reset>数据中指>快速中断请求(FIQ)>中断请求(IRQ)>指令预取中止>

未定义指令和软件中止。、

21、简述异常类型的含义

?(1)复位

?当处理器的复位电平有效时,产生复位异常,ARM处理器立刻停止执行当前指令。复

位后,ARM处理器在禁止中断的管理模式下,程序跳转到复位异常处理程序处执行(从地址0x00000000或0xFFFF0000开始执行指令)。

?(2)未定义指令异常

?当ARM处理器或协处理器遇到不能处理的指令时,产生未定义指令异常。当ARM处

理器执行协处理器指令时,它必须等待任一外部协处理器应答后,才能真正执行这条指令。若协处理器没有响应,就会出现未定义指令异常。若试图执行未定义的指令,也会出现未定义指令异常。未定义指令异常可用于在没有物理协处理器(硬件)的系统上,对协处理器进行软件仿真,或在软件仿真时进行指令扩展。

?(3)软件中断异常(SoftWare Interrupt,SWI)

?软件中断异常由执行SWI指令产生,可使用该异常机制实现系统功能调用,用于用户模

式下的程序调用特权操作指令,以请求特定的管理(操作系统)函数。

?(4)指令预取中止

?若处理器预取指令的地址不存在,或该地址不允许当前指令访问,存储器会向处理器发

出存储器中止(Abort)信号,但当预取的指令被执行时,才会产生指令预取中止异常。

?(5)数据中止(数据访问存储器中止)

?若处理器数据访问指令的地址不存在,或该地址不允许当前指令访问时,产生数据中止

异常。存储器系统发出存储器中止信号。响应数据访问(加载或存储)激活中止,标记数据为无效。在后面的任何指令或异常改变CPU状态之前,数据中止异常发生。

?(6)外部中断请求(IRQ)异常

?当处理器的外部中断请求引脚有效,且CPSR中的I位为0时,产生IRQ异常。系统的

外设可通过该异常请求中断服务。IRQ异常的优先级比FIQ异常的低。当进入FIQ处理时,会屏蔽掉IRQ异常。

?(7)快速中断请求(FIQ)异常

?当处理器的快速中断请求引脚有效,且CPSR中的F位为0时,产生FIQ异常。FIQ支

持数据传送和通道处理,并有足够的私有寄存器。

22、简述ARM微处理器处理异常的操作过程。

1、将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。若异常是从ARM状态进入,LR寄存器中保存的是下一条指令的地址(当前PC+4或PC+8,与异常的类型有关);若异常是从Thumb状态进入,则在LR寄存器中保存当前PC的偏移量,这样,异常处理程序就不需要确定异常是从何种状态进入的。例如:在软件中断异常SWI,指令MOV PC,R14_svc总是返回到下一条指令,不管SWI是在ARM 状态执行,还是在Thumb状态执行。

2、将CPSR复制到相应的SPSR中。

3、根据异常类型,强制设置CPSR的运行模式位。

4、强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。

24、说明存储器映射I/O的特点。

I/O口使用特定的存储器地址,当从这些地址加载(用于输入)或向这些地址存储(用于输出)时,完成I/O功能。加载和存储也可用于执行控制功能,代替或者附加到正常的输入或输出功能。然而,存储器映射I/O位置的行为通常不同于对一个正常存储器位置所期望的行为。例如,从一个正常存储器位置两次连续的加载,每次返回的值相同。而对于存储器映射I/O位置,第2次加载的返回值可以不同于第1次加载的返回值

43、简述ARM AMBA接口结构与功能。

AMBA有AHB(Advanced High-performance Bus,先进高性能总线)、ASB(Advanced System Bus,先进系统总线)和APB(Advanced Peripheral Bus,先进外围总线)等三类总线。

?ASB是目前ARM常用的系统总线,用来连接高性能系统模块,支持突发(Burst)

方式数据传送。

?AHB不但支持突发方式的数据传送,还支持分离式总线事务处理,以进一步提高总

线的利用效率。特别在高性能的ARM架构系统中,AHB有逐步取代ASB的趋势,例如在ARM1020E处理器核中。

?APB为外围宏单元提供了简单的接口,也可以把APB看作ASB的余部。

?AMBA通过测试接口控制器TIC(Test Interface Controller)提供了模块测试的途径,

允许外部测试者作为ASB总线的主设备来分别测试AMBA上的各个模块。

?AMBA中的宏单元也可以通过JTAG方式进行测试。虽然AMBA的测试方式通用性

稍差些,但其通过并行口的测试比JTAG的测试代价也要低些。

44.简述ARM JTAG调试接口结构、电路与功能。

ARM JTAG调试接口的结构如图2.7.2所示。它由测试访问端口TAP(Test Access Port)控制器、旁路(Bypass)寄存器、指令寄存器、数据寄存器以及与JTAG接口兼容的ARM架构处理器组成。处理器的每个引脚都有一个移位寄存单元(边界扫描单元(BSC,Boundary Scan Cell)),它将JTAG电路与处理器核逻辑电路联系起来,同时,隔离了处理器核逻辑电路与芯片引脚。所有边界扫描单元构成了边界扫描寄存器BSR,该寄存器电路仅在进行JTAG 测试时有效,在处理器核正常工作时无效。

(1)JTAG的控制寄存器

①测试访问端口TAP控制器对嵌入在ARM处理器核内部的测试功能电路进行访问控制,是一个同步状态机。通过测试模式选择TMS和时钟信号TCK来控制其状态转移,实现

IEEE1149.1标准所确定的测试逻辑电路的工作时序。

②指令寄存器是串行移位寄存器,通过它可以串行输入执行各种操作的指令。

③数据寄存器组是一组串行移位寄存器。操作指令被串行装入由当前指令所选择的数据寄存器,随着操作的进行,测试结果被串行移出

第三章

2 简述S3C2410A存储器控制器的特性。

特性:

●支持小/大端(通过软件选择)。

●地址空间:每个bank有128 MB(总共有8个bank,共1 GB)。

●除bank0只能是16/32位宽之外,其他bank都具有可编程的访问位宽(8/16/32位)。

●总共有8个存储器bank(bank0~bank7):

一其中6个用于ROM,SRAM等;

一剩下2个用于ROM,SRAM,SDRAM等。

●7个固定的存储器bank(bank0~bank6)起始地址。

●最后一个bank(bank7)的起始地址是可调整的。

●最后两个bank(bank6和bank7)的大小是可编程的。

●所有存储器bank的访问周期都是可编程的。

●总线访问周期可以通过插入外部等待来扩展。

●支持SDRAM的自刷新和掉电模式。

3 画出S3C2410A复位后的存储器映射图,并分析不同存储器的地址

范围。(P69-70)

S3C2410A复位后,存储器的映射情况如图3.2.1所示,bank6和bank7对应不同大小存储器时的地址范围参见表3.2.1。

4 试分析复位电路的工作过程。

工作过程:在系统上电时,通过电阻R108向电容C162充电,当C162两端的电压未达到高电平的门限电压时,RESET端输出为高电平,系统处于复位状态;当C162两端的电压达到高电平的门限电压时,RESET端输出为低电平,系统进入正常工作状态。当用户按下按钮RESET时,C162两端的电荷被放掉,RESET端输出为高电平,系统进入复位状态,再重复以上的充电过程,系统进入正常工作状态。

6 简述S3C2410A时钟电路的特点。

特点:产生CPU所需的FCLK时钟信号。AHB总线外围设备所需的HCLK时钟信号,以及APB总线外围设备所需的PCLK时钟信号。微处理器的主时钟可以由外部时钟源提供,也可以由外部振荡器提供。

●OM[3:2]=00时,MPLL和UPLL的时钟均选择外部晶体振荡器;

●OM[3:2]=0l时,MPLL的时钟选择外部晶体振荡器;UPLL选择外部时钟源

●OM[3:2]=10时,MPLL的时钟选择外部时钟源;UPLL选择外部晶体振荡器;

●OM[3:2]=11时,MPLL和UPLL的时钟均选择外部时钟源。

7 S3C2410A的电源管理模块具有哪几种工作模式?各有什么特点?

●正常模式:在这个模式,由于所有外围设备都处于开启状态,因此功耗达到最大。若不需要定时器,那么用户可以断开定时器的时钟,以降低功耗

●慢速模式:称无PLL模式,在慢速模式不使用PLL,而使用外部时钟(XTIPLL或EXTCLK)直接作为S3C2410A中的FCLK。在这种模式下,功耗大小仅取决外部时钟的频率,功耗与PLL无关。

●空闲模式:电源管理模块只断开CPU内核的时钟(FCLK),但仍为所有其他外围设备提供时钟。空闲模式降低了由CPU内核产生的功耗。任何中断请求可以从空闲模式唤醒CPU。

●掉电模式:电源管理模块断开内部电源。除唤醒逻辑以外,CPU和内部逻辑都不会产生功耗。激活掉电模式需要两个独立的电源,一个电源为唤醒逻辑供电;另一个为包括CPU 在内的其他内部逻辑供电,并且这个电源开/关可以控制。在掉电模式下,为CPU和内部逻辑供电的第二个电源将关断。通过EINT[15:0]或RTC报警中断可以从掉电模式唤醒S3C2410A。

13 S3C2410A与配置I/O口相关的寄存器有哪些?各自具有什么功能?

15 简述ARM系统中的中断处理过程。处理过程:(1)保存现场。(2)模式切换。(3)获取中断服务子程序地址。(4)多个中断请求处理。(5)中断返回,恢复现场。

17 试按功能对S3C2410A的中断源进行分类。

19 简述采用DMA方式进行数据传输的过程。

过程:

(1)外设向DMA控制器发出DMA请求。

(2)DMA控制器向CPU发出总线请求信号。

(3)CPU执行完现行的总线周期后,向DMA控制器发出响应请求的回答信号。

(4)CPU将控制总线、地址总线及数据总线让出,由DMA控制器进行控制。

(5)DMA控制器向外部设备发出DMA请求回答信号。

(6)进行DMA传送。

(7)数据传送完毕,DMA控制器通过中断请求线发出中断信号。CPU在接收到中断信号后,转人中断处理程序进行后续处理。

(8)中断处理结束后,CPU返回到被中断的程序继续执行。CPU重新获得总线控制权。

20 简述S3C2410A的DMA控制器功能。

S3C2410A有4个DMA控制器。每个DMA控制器可以处理以下4种情况:

(1)源和目的都在系统总线上;

(2)源在系统总线上,目的在外围总线上;

(3)源在外围总线上,目的在系统总线上;

(4)源和目的都在外围总线上。

S3C2410A每个DMA通道有9个控制寄存器,4个通道共有36个寄存器。每个DMA通道的9个控制寄存器中有6个用于控制DMA传输,另外3个用于监控DMA控制器的状态。

21 S3C2410A的DMA通道有几个控制寄存器?各自具有什么功能?

(1)DMA初始化源寄存器(DISRC)

DMA初始化源寄存器(DISRC)用于存放要传输的源数据的起始地址。

(2)DMA初始化源控制寄存器(DISRCC)

DMA初始化源控制寄存器(DISRCC)用于控制源数据在AHB总线还是APB总线上并控制地址增长方式

3)DMA初始化目标地址寄存器(DIDST),

DMA初始化目标地址寄存器(DIDST)用于存放传输目标的起始地址。

(4)DMA初始化目标控制寄存器(DIDSTC)

DMA初始化目标控制寄存器(DIDSTC)用于控制目标位于AHB总线还是APB总线上,并控制地址增长方式。

(5)DMA控制寄存器(DCON)

有4个DMA控制寄存器(DCON)(DCON0~DCON3)

(6)DMA状态寄存器(DSTA T)

DMA状态寄存器(DSTAT)保存DMA0~DMA3计数寄存器状态。

(7)DMA当前源寄存器(DCSRC)

DMA当前源寄存器(DCSRC)用于保存DMAn的当前源地址。n的当前目标地址。

(8)DMA当前目标寄存器(DCDST)

DMA当前目标寄存器(DCDST)用于保存DMAn的当前目标地址。

(9)DMA屏蔽触发寄存器(DMASKTRIG)

DMA屏蔽触发寄存器(DMASKTRIG)控制DMA0~DMA3触发状态。

第四章

1、简述存储器系统层次结构及特点。

层次结构:组成为6个层次的金字塔形的层次结构,

特点:上面一层的存储器作为下一层存储器的高速缓存。

2、简述cache的分类与功能。

Cache可以分为统一cache和独立的数据/程序cache。

在一个存储系统中,指令预取时和数据读写时使用同一个cache,这时称系统使用统一的cache。如果在一个存储系统中,指令预取时使用的一个cache,数据读写时使用的另一个cache,各自是独立的,这时称系统使用了独立的cache,用于指令预取的cache称为指令cache,用于数据读写的cache称为数据cache。

3、简述MMU的功能。

功能:

(1)虚拟存储空间到物理存储空间的映射。采用了页式虚拟存储管理,它把虚拟地址空间分成一个个固定大小的块,每一块称为一页,把物理内存的地址空间也分成同样大小的页。MMU实现的就是从虚拟地址到物理地址的转换。

(2)存储器访问权限的控制。

(3)设置虚拟存储空间的缓冲的特性。

4、简述内存映射概念。

MMU(Memory Manage Unit, 存储管理单元)在CPU和物理内存之间进行地址转换,将地址从逻辑空间映射到物理空间,这个转换过程一般称为内存映射。

5、简述嵌入式系统内存段、大页、小页、极小页、域的含义。

段(section)大小为1MB的内存块;大页(Large Pages)大小为64KB的内存块;小页(Small Pages)大小为4KB的内存块;极小页(Tiny Pages)大小为1KB的内存块。极小页只能以1KB大小为单位不能再细分,而大页和小页有些情况下可以在进一步的划分,大页可以分成大小为16KB的子页,小页可以分成大小为1KB的子页。MMU中的域指的是一些段、大页或者小页的集合。每个域的访问控制特性都是由芯片内部的寄存器中的相应控制位来控制的。例如在ARM嵌入式系统中,每个域的访问控制特性都是由CP15中的寄存器C3中的两位来控制的。

6、简述在嵌入式系统中I/O操作被映射成存储器操作的含义。

I/O操作通常被映射成存储器操作,即输入/输出是通过存储器映射的可寻址外围寄存器和中断输入的组合来实现的。I/O的输出操作可通过存储器写入操作实现;I/O的输入操作可通过存储器读取操作实现。这些存储器映射的I/O空间不满足cache所要求的特性,不能使用cache技术,一些嵌入式系统使用存储器直接访问(DMA)实现快速存储。

7、简述嵌入式系统存储设备的分类。

存储器:1.按在系统中的地位分类,可分为主存储器(Main Memory简称内存或主存)和辅助存储器(Auxiliary Memory,Secondary Memory,简称辅存或外存)。2.按存储介质分类,可分为磁存储器(Magnetic Memory),半导体存储器、光存储器(Optical Memory)及激光光盘存储器(Laser Optical Disk)。3.按信息存取方式分类,分为随机存取存储器(Random Access Memory,RAM)和只读存储器(Read Only Memory,ROM)。

8、简述存储器的组织和结构。

存储器的容量是描述存储器的最基本参数。存储器的表示并不唯一,有不同表示方法,每种有不同的数据宽度。在存储器内部,数据是存放在二维阵列存储单元中。阵列以二维的形式存储,给出的n位地址被分成行地址和列地址(n=r十c)。嵌入式存储器通常由ROM、RAM、EPROM等组成,一般采用存储密度较大的存储器芯片,存储容量与应用的软件大小相匹配。

10、简述NOR Flash与NAND Flash的区别。

区别:1、NOR Flash把整个存储区分成若干个扇区(Sector),而NAND Flash把整个存储区分成若干个块(Block),可以对以块或扇区为单位的内存单元进行擦写和再编程。2、NAND Flash执行擦除操作是十分简单的,而NOR型内存则要求在进行擦除前先要将目标块内所有的位都写为0。3、由于擦除NOR Flash时是以64~128KB为单位的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND Flash是以8~32KB的块进行的,执行相同的操作最多只需要4ms。4、NOR Flash的读速度比NAND Flash稍快一些,NAND Flash的写入速度比NOR Flash快很多。NAND Flash的随机读取能力差,适合大量数据的连续读取。5、除了NOR Flash的读,Flash Memory的其他操作不能像RAM那样,直接对目标地址进行总线操作。6、NOR Flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。NAND Flash地址、数据和命令共用8位总线/16位总线,每次读写都要使用复杂的I/O接口串行地存取数据,8位总线/16位总线用来传送控制、地址和资料信息。7、NAND Flash读和写操作采用512B的块,基于NAND的闪存可以取代硬盘或其他块设备。8、NOR Flash容量通常在1 MB~8MB之间。而NAND Flash用在8MB以上的产品当中。NOR Flash主要应用在代码存储介质中,NAND Flash适用于资料存储。9、所有Flash Memory器件存在位交换现象,使用NAND Flash的时候,同时使用EDC/ECC(错误探测/错误纠正)算法,以确保可靠性。10、NAND Flash中的坏块是随机分布的,NAND Flash需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。11、应用程序可以直接在NOR Flash内运行,NOR Flash的传输效率很高,但是很低的写入和擦除速度大大影响了它的性能。NAND Flash结构可以达到高存储密度,并且写入和擦除的速度也很快,应用NAND Flash的困难在于需要特殊的系统接口。12、在NOR Flash上运行代码不需要任何的软件支持。在NAND Flash上进行同样操作时,通常需要驱动程序(MTD),NAND Flash和NOR Flash在进行写入和擦除操作时都需要MTD。

11、简述Flash存储器在嵌入式系统中的用途。

Flash memory(闪速存储器)是嵌入式系统中重要的组成部分,用来存储程序和数据,掉电后数据不会丢失。但在使用Flash Memory时,必须根据其自身特性,对存储系统进行特殊设计,以保证系统的性能达到最优。

12、简述CF卡的内部结构和工作模式。

CF卡有3种工作模式:PC卡ATA I/O模式、PC卡ATA存储模式和实IDE模式。

结构:

15、简述S3C2410A NAND Flash控制器的基本特性。

特性:

●NAND Flash模式:支持读/擦除/编程NAND Flash存储器。

●自动启动模式:复位后,启动代码被传送到Steppingstone中。传送完毕后,启动代码在Steppingstone中执行。

●具有硬件ECC产生模块(硬件生成校验码和通过软件校验)。

●在NAND Flash启动后,Steppingstone 4KB内部SRAM缓冲器可以作为其他用途使用。

●NAND Flash控制器不能通过DMA访问,可以使用LDM/ STM指令来代替DMA操作。

16、分析S3C2410A NAND Flash控制器内部结构,并简述其功能。

18、简述SDRAM的特点。

SDRAM可读/可写,不具有掉电保持数据的特性,但其存取速度大大高于Flash存储器。在嵌入式系统中,SDRAM主要用做程序的运行空间、数据及堆栈区。当系统启动时,CPU 首先从复位地址0x0处读取启动代码,在完成系统的初始化后,程序代码一般应调入SDRAM 中运行,以提高系统的运行速度。同时,系统及用户堆栈、运行数据也都放在SDRAM中。微处理器具有刷新控制逻辑,或在系统中另外加入刷新控制逻辑电路,以避免数据丢失。但某些ARM芯片则没有SDRAM刷新控制逻辑,不能直接与SDRAM接口,在进行系统设计时应注意这一点。常用的SDRAM为8位/16位的数据宽度,工作电压一般为3.3V。

规范。

22、简述SD卡的接口。

SD存储卡兼容MMC卡接口规范,采用9芯的接口(CLK为时钟线,CMD为命令/响应线,DA T0~DAT3为双向数据传输线,VDD、Vss1和Vss2为电源和地),最大的工作频率

是25MHz,标准SD的外形尺寸是24mm×32mm×2.1mm,SD卡系统支持SD和SPI方式两种通信协议。SD卡在结构上使用一主多从星型拓扑结构。

第五章

1. 分析双向GPIO端口(D0)的功能逻辑图(图5.1.1),简述其工作原理。

DDR设置端口的方向。如果DDR的输出为1,则GPIO端口为输出形式;如果DDR的输出为零,则GPIO端口为输入形式。写入WR—DDR信号能够改变DDR的输出状态。DDR 在微控制器地址空间中是一个映射单元。这种情况下,如果需要改变DDR,则需要将恰当的值置于数据总线的第0位(即D0),同时激活WR—DDR信号。读DDR,就能得到DDR 的状态,同时激活RD—DDR信号。如果设置PORT引脚端为输出,则PORT寄存器控制着该引脚端状态。如果将PORT引脚端设置为输入,则此输入引脚端的状态由引脚端上的逻辑电路层来实现对它的控制。对PORT寄存器的写操作,需要激活WR—PORT信号。PORT 寄存器也映射到微控制器的地址空间。需指出,即使当端口设置为输入时,如果对PORT 寄存器进行写操作,并不会对该引脚产生影响。但从PORT寄存器的读出,不管端口是什么方向,总会影响该引脚端的状态。

3. 分析计数式A/D转换器结构图(图5.2.1),简述其工作原理。

计数式A/D转换器结构如图5.2.1所示。其中,Vi是模拟输入电压,VO是D/A转换器的输出电压,C是控制计数端,当C=1(高电平)时,计数器开始计数,C=0(低电平)时,则停止计数。D7~D0是数字量输出,数字输出量同时驱动一个D/A转换器。

4. 分析双积分式A/D转换器工作原理

双积分式A/D转换器对输入模拟电压和参考电压进行两次积分,将电压变换成与其成正比的时间间隔,利用时钟脉冲和计数器测出其时间间隔,完成A/D转换。双积分式A/D转换器主要包括积分器、比较器、计数器和标准电压源等部件,其电路结构图如图5.2.2(a)所示。

5. 分析逐次逼近式A/D转换器结构图(图5.2.3),简述其工作原理。

其工作过程可与天平称重物类比,电压比较器相当于天平,被测电压Ux相当于重物,基准电压Ur相当于电压法码。该方案具有各种规格的按8421编码的二进制电压法码Ur,根据UxUr,比较器有不同的输出以打开或关闭逐次逼近寄存器的各位。

6. 简述A/D转换器的主要指标。

(1)分辨率(Resolution)分辨率用来反映A/D转换器对输入电压微小变化的响应能力,通常用数字输出最低位(LSB)所对应的模拟输入的电平值表示。(2)精度(Accuracy)精度有绝对精度(Absolute Accuracy)和相对精度(Relative Accuracy)两种表示方法。①绝对精度:在一个转换器中,对应于一个数字量的实际模拟输入电压和理想的模拟输入电压之差并非是一个常数。②相对精度是指整个转换范围内,任一数字量所对应的模拟输入量的实际值与理论值之差,用模拟电压满量程的百分比表示。(3)转换时间(Conversion Time)转换时间是指完成一次A/D转换所需的时间,即由发出启动转换命令信号到转换结束信号开始有效的时间间隔。(4)量程,量程是指所能转换的模拟输入电压范围,分单极性、双极性两种类型。

7. 分析S3C2410A的A/D转换器和触摸屏接口电路,简述其工作原理。

S3C2410A包含一个8通道的A/D转换器,内部结构见图5.2.4,该电路可以将模拟输入信号转换成10位数字编码(10位分辨率),差分线性误差为± 1.0 LSB,积分线性误差为± 2.0 LSB。在A/D转换时钟频率为2.5 MHz时,其最大转换率为500 KSPS(Kilo Samples Per Second,千采样点每秒),输入电压范围是0~3.3V。A/D转换器支持片上操作、采样保持功能和掉电模式。S3C2410A的A/D转换器和触摸屏接口电路如图5.2.4所示

8. 与S3C2410A的A/D转换器相关的寄存器有哪些?各自的功能?

(1)ADC控制寄存器(ADCCON)ADC控制寄存器(ADCCON)是一个16位的可读/写的寄存器,地址为0x5800 0000,复位值为0x3FC4。ADCCON位的功能描述如表5.2.1所列。(2)ADC触摸屏控制寄存器(ADCTSC)ADC触摸屏控制寄存器(ADCTSC)是一个可读/写的寄存器,地址为0x5800 0004,复位值为0x058。ADCTSC的位功能描述如表5.2.2所列。在正常A/D转换时,AUTO_PST和XY_PST都置成0即可,其他各位与触摸屏有关,不需要进行设置。(3)ADC启动延时寄存器(ADCDL Y )ADC启动延时寄存器(ADCDL Y)是一个可读/写的寄存器,地址为0x5800 0008,复位值为0x00FF。ADCDL Y

(4)ADC转换数据寄存器(ADCDAT0和ADCDAT1)S3C2410A 的位功能描述如表5.2.3所列。

有ADCDAT0和ADCDA T1两个ADC转换数据寄存器。ADCDA T0和ADCDAT1为只读寄存器,地址分别为0x5800 000C和0x5800 0010。在触摸屏应用中,分别使用ADCDAT0和ADCDAT1保存X位置和Y位置的转换数据。对于正常的A/D转换,使用ADCDAT0来保存转换后的数据。

9. 简述ADC控制寄存器(ADCCON)的位功能。

ECFLG,15位:A/D转换状态标志(只读)。0:A/D转换中;1:A/D转换结束

PRSCEN ,14位:A/D转换器前置分频器使能控制。0:禁止;1:使能

PRSCVL ,13-6位:A/D转换器前置分频器数值设置,数值取值范围:1~255。注意:当前置分频器数值为N时,分频数值为N+1。

SEL_MUX ,5-3位:模拟输入通道选择。000:AIN0;001:AIN1;010:AIN2;011:AIN3;100:AIN4;101:AIN5;110:AIN6;111:AIN7

STDBM ,2位:备用(Standby)模式选择。0:正常模式;1:备用模式

READ_START ,1位:利用读操作来启动A/D转换。0:不使能读操作启动;1:使能读操作启动

ENABLE_START,0位:A/D转换通过将该位置1来启动,如果READ_START有效(READ_START置1),则该位无效。0:不操作;1:启动A/D转换,A/D转换开始后该位自动清零

10. 简述ADC控制寄存器(ADCTSC)的位功能。

arm9嵌入式课后答案

arm9嵌入式课后答案 【篇一:arm嵌入式系统结构与编程习题答案(全)】ass=txt>第一章绪论 1. 国内嵌入式系统行业对“嵌入式系统”的定义是什么?如何理解?答:国内嵌入式行业一个普遍认同的定义是:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能,可靠性,成本,体积,功耗严格要求的专业计算机系统。从这个定义可以看出嵌入式系统是与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的剪裁利用。因此有人把嵌入式系统比作是一个针对特定的应用而“量身定做”的专业计算机系统。 2.嵌入式系统是从何时产生的,简述其发展历程。 答:从20世纪70年代单片机的出现到目前各式各样的嵌入式微处理器,微控制器的大规模应用,嵌入式系统已经有了30多年的发展历史。 嵌入式系统的出现最初是基于单片机的。intel公司1971年开发出第一片具有4位总线结构的微处理器4004,可以说是嵌入式系统的萌芽阶段。80年代初的8051是单片机历史上值得纪念的一页。20世纪80年代早期,出现了商业级的“实时操作系统内核”,在实时内核下编写应用软件可以使新产品的沿着更快,更节省资金。20世纪90年代实时内核发展为实时多任务操作系统。步入21世纪以来,嵌入式系统得到了极大的发展。在硬件上,mcu的性能得到了极大的提升,特别是arm技术的出现与完善,为嵌入式操作系统提供了功能强大的硬件载体,将嵌入式系统推向了一个崭新的阶段。 3.当前最常用的源码开放的嵌入式操作系统有哪些,请举出两例,并分析其特点。答:主要有嵌入式linux和嵌入式实时操作内核uc/os-ii 嵌入式linux操作系统是针对嵌入式微控制器的特点而量身定做的一种linux操作系统,包括常用的嵌入式通信协议和常用驱动,支持多种文件系统。主要有以下特点:源码开放,易于移植,内核小,功能强大,运行稳定,效率高等。 uc/os是源码工卡的实时嵌入式系统内核,主要有以下特点:源码公开,可移植性强,可固化,可剪裁,占先式,多任务,可确定性,提供系统服务等。

基于ARM9的人脸识别系统 嵌入式报告 课程设计

嵌入式课程设计报告 学院信息电子技术 专业通信工程 班级 学号 姓名 指导教师 2017年07月01日

基于ARM9的人脸识别系统 一、引言 人脸识别背景和意义 人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其他生物并不通过此类生物特征区别个体。 人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者利用红外线采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。 二、系统设计 1、硬件电路设计 (1)ARM9处理器 本系统所采用的硬件平台是天嵌公司的TQ2440开发板,该开发板的微处理器采用基于ARM920T内核的S3C2440芯片。 ARM9对比ARM7的优势:虽然ARM7和ARM9内核架构相同,但ARM7处理器采用3级流水线的冯·诺伊曼结构,而ARM9采用5级流水线的哈佛结构。增加的流水线设计提高了时钟频率和并行处理能力。5级流水线能够将每一个指令处理分配到5个时钟周期内,在每一个时钟周期内同时有5个指令在执行。在常用的芯片生产工艺下,ARM7一般运行在100MHz左右,而ARM9则至少在200MHz 以上。指令周期的改进对于处理器性能的提高有很大的帮助。性能提高的幅度依赖于代码执行时指令的重叠,这实际上是程序本身的问题。对于采用最高级的语言,一般来说,性能的提高在30%左右。ARM7一般没有MMU(内存管理单元),(ARM720T有MMU)。 (2)液晶显示屏 为显示摄像头当前采集图像的预览,系统采用三星的320x240像素的液晶屏,大小为206.68cm。该液晶显示屏的每个像素深度为2bit,采用RGB565色彩空间。 (3)摄像头 摄像头采用市场上常见的网眼2000摄像头,内部是含CMOS传感器的OV511+芯片。CMOS传感器采用感光元件作为影像捕获的基本手段,核心是1个感光二极

ARM9嵌入式复习总结

ARM9嵌入式复习 第一章 1.嵌入式微处理器的分类。 a)什么是嵌入式微处理器? 1.嵌入式微处理器是嵌入式系统硬件层的核心,嵌入式微处理器将通用CPU中许多 由板卡完成的任务集成到芯片内部,从而有利于系统设计趋于小型化、高效率和高可靠性。嵌入式微处理器大多工作在为特定用户群所专门设计的系统中。 2.嵌入式微处理器的体系结构可以采用冯·诺依曼体系结构或哈佛体系结构,指令 系统可以选用精简指令系统(Reduced Instruction Set Computer,RISC)和复杂指令集系统CISC(Complex Instruction Set Computer, CISC)。 b) 嵌入式微处理器分类 1.按照系列分:ARM系列、MIPS系列、PowerPC系列。 2.按照指令复杂程度分:CISC和RISC两类 2.微处理器划分: a)嵌入式微控制器 b)嵌入式微处理器 c)DSP处理器 d)嵌入式片上系统 e)多核处理器 3.嵌入式操作系统(EOS)的特性 EOS除具备了一般操作系统最基本的任务调度、同步机制、中断处理、文件处理等功能外,还具有如下特点:强实时性;支持开放性和可伸缩性的体系结构,具有可裁减性;提供统一的设备驱动接口;提供操作方便、简单、友好的图形GUI和图形界面;支持TCP/IP协议及其他协议,提供TCP/UDP/IP/PPP协议支持及统一的MAC访问层接口,提供强大的网络功能。 第二章 1.ARM7TDMI命名 2.3级流水线与总线架构

三级流水线: 流水线使用3个阶段,因此指令分为3个阶段执行 1.取指:从程序存储器中读取指令,放入流水线中 2.译码:操作码和操作数被译码,决定执行什么功能,为下一个始终周期准备数据路 径所需要的控制信号。 3.执行:执行已译码的指令 注:程序计数器(PC)指向被取指的指令,而不是指向正在执行的指令 在正常操作的过程中,在执行一条指令的同时对下一条指令进行译码,并将第三条指令从存储器中取出 3.ARM的两种状态与7种工作模式 a)两种状态。 i.ARM状态:32位,这种状态下执行的是字方式的ARM指令; ii.Thumb状态:16位,这种状态下执行半字方式的Thumb指令。 注:两个状态之间的切换并不影响处理器模式或寄存器内容,可以使用BX指令切换两种状态.状态寄存器CPSR的T位反应了处理器运行不同指令的当前状态. b)7种工作模式。

ARM9上的嵌入式Linux系统移植

《自动化技术与应用》2009年第28卷第6期 Techniques of Automation & Applications | 43 1 引言 嵌入式系统是以应用为中心,以计算机技术为基础,且软硬件可裁减,是对功能、可靠性、成本、功耗有严格要求的专用计算机系统。它一般由以下几部分组成: 嵌入式微处理器、外围硬件设备、嵌入式操作系统、及特定的应用程序。 当前,人类进入信息爆炸的时代,各类信息极度丰富,数字信息技术和网络技术的高速发展,只有借助于各种计算机,才能够对各类信息进行处理,它们已不再局限于以前的PC,而是由形态各异、性能千差万别的嵌入式系统来完成。而嵌入式操作系统主要有:嵌入式Linux 、WindowsCE 、Vxworks 、uC/OS-II 等[1]。本文主要研究嵌入式Linux 在嵌入式系统中的应用。 2 嵌入式Linux 操作系统及特点 将Linux 应用于嵌入式环境,是基于其具有以下特点:(1)Linux 操作系统是层次结构,并且内核源代码完全开放。不同领域和不同层次的用户可以根据自己应用的需要,对内核进行修改,能够低成本的开发出满足自己需要的嵌入式系统。(2)其具有强大的网络支持功能。Linux 诞生于因特网时代,并具有 ARM9上的嵌入式Linux 系统移植 邹颖婷,李绍荣 (电子科技大学光电信息学院,四川 成都 610054) 摘 要:Linux 操作系统在各个嵌入式领域有着越来越广泛的应用。主要研究了在ARM9体系结构上,嵌入式Linux 系统的移植。介 绍了嵌入式Linux 操作系统、移植目标平台SBC2410、及Linux 内核源代码的目录结构。然后详细讲述了在SBC2410硬件平台上实现Uboot 移植的过程,及概要介绍了Linux 操作系统内核移植的过程。最后将嵌入式Linux 系统成功移植上SBC2410平台。 关键词:ARM9;嵌入式Linux;Uboot 移植;内核移植 中图分类号:TP311.54 文献标识码:B 文章编号:1003-7241(2009)06-0043-03 Transplant of the Linux System on ARM9 ZOU Ying-ting, LI Shao-rong ( School of Opto-Electronic Information, University of Electronic Science and Technology of China, Chengdu 610054 China )Abstract: Linux OS has been more and more widely applied in many embedded areas. This paper introduces the transplantation of the Embedded Linux System on the ARM9. The Embedded Linux OS, the SBC2410 board, and the directory structure of the Linux kernel are introduced. The transplant process of the Uboot and of the Linux kernel are also discussed. Key words: ARM9; embedded Linux; transplantation of Uboot; transplantation of the Linux kernel 收稿日期:2009-01-04 Unix 的特性,这保证了它支持所有标准因特网协议,并且可以利用Linux 的网络协议栈,将其开发成为嵌入式的TCP/IP 网络协议栈。此外,Linux 还支持ext2、fat16、fat32、romfs 等文件系统,为嵌入式系统应用开发打下了很好的基础。(3)Linux 具备一整套工具链,容易自行建立嵌入式系统的开发环境和交叉运行环境,可以跨越嵌入式系统开发中仿真工具的障碍。而且,Linux 也符合IEEE POSIX.1标准,使应用程序具有较好的可移植性[2]。 3 SBC2410硬件平台介绍 SBC2410是一款基于三星公司ARM9处理器S3C2410A,支持ARM-Linux 、WindowsCE 等操作系统的嵌入式硬件平台。平台的主要硬件资源有:一片64M SDRAM,一片64M Nand Flash,一片1M Nor Flash,一个串口 COM0,一个USB Host A 型接口,一个USB Slave B 型接口,一个标准JTAG 接口,等等。平台支持Linux2.4.18内核版本。 4 嵌入式Linux 系统移植 移植主要包括引导加载程序Uboot 的移植和Linux2.4.18内 计算机应用 Computer Applications

ARM嵌入式系统开发:软件设计与优化

作者简介 Andrew N.Sloss于1992年获得Herefordshire大学(英国)计算机科学学士学位,英国计算机协会认证注册工程师(C.Eng,MBCS)。他已在计算机行业工作了16年,从1987年开始参与有关ARM处理器的研发,在ARM处理器上开发了众多领域的应用项目,积累了丰富的经验。他为Emerald出版集团(英国)设计了首个能够在ARM2和ARM3处理器上运行的针对中文和埃及象形文字的编辑系统。他在ARM公司工作了6个多,目前是ARM在美国加州Los Gatos的技术销售工程师,负责为开发新产品的公司提供建议和支持。 编辑推荐 从事ARM嵌入式系统软件开发的每一位工程师的桌上都应摆着这本书。对于初学者来说,它是一本详尽、透彻的使用指南;对于ARM专家来说,它则是一本有益的参考书。从审阅本书的第一稿以来,我就一直在使用这本书,我愿向任何希望从基于ARM的产品获得最大收益的人推荐这本书。

在过去的10年间,ARM体系统结构已经成为世界上最流行的体系结构之一,从蜂窝电话到汽车制动系统,在这些产品中使用了超过20亿片基于ARM的处理器。许多半导体厂商和产品设计公司组成了全球范围的ARM开发者团体,包括软件开发者、系统设计师和硬件设计师。就ARM系统和软件开发来说,到目前为止,还没有其它任何一本书籍能够真正满足其需求,本书将填补这一空白。 本书涵盖了ARM和Thumb指令集、Intel的XScale处理器,概括了ARM体系结构的不同版本之间的差异,示范了如何实现DSP算法,解释了异常和中断处理,描述了围绕ARM内核的cache技术,以及最有效的存储器管理技术。最后一章介绍了ARMv6体系结构的特征和ARM未来的发展,以及对指令集所做的最新改进,这些改进增强了ARM体系结构的DSP和多媒体处理能务。 本收特色 本书从系统和软件我角度来描述了ARM内核,这是与其它书的显著差别。 作者结合了丰富的ARM软件工程经验和ARM开发者的需要的广泛、透彻的知识。 书中提供了许多实用的运行代码范例,并作了详尽的解释,可以从出版商的网站下载 :https://www.360docs.net/doc/8f10983078.html,/companions/1558608745。 包含了一个简单的嵌入式操作系统。 本书简介 本书从软件设计的角度,全面、系统地介绍了ARM处理器的基本体系结构和软件设计与优化方法。内容包括:ARM处理器基础;ARM/Thumb指令集;C语言与汇编语言程序的设计与优化;基本运算、操作的优化;基于ARM的DSP;异常与中断处理;固件与嵌入式OS;cache与存储器管理 ;ARMv6体系结构的特点等。全书内容完整,针对各种不同的ARM内核系统结构都有详尽论述,并有大量的例子和源代码。附录给出了完整的ARMv4/v5/Thumb指令的功能、编码、周期定时以及汇编参考。 本书适于从事ARM嵌入式系统教学与研发,或想把其它嵌入式平台的软件移植到ARM平台上去的专业技术人员使用,要求对ARM处理器有一定的了解,并有C语言和汇编语言基础。若在编译原理、操作系统、数字信号处理、计算机体系结构等方面有一定的基础,则效果会更好。本书也可作为嵌入式系统专业方向的本科生和研究生相关课程的教材或教学参考书。 目录 第1章 基于ARM的嵌入式系统 1.1 RISC设计思想 1.2 ARM设计思想 1.3 嵌入式系统的硬件 1.3.1 ARM总线技术 1.3.2 AMBA总线协议 1.3.3 存储器 1.3.4 外设 1.4 嵌入式系统的软件 1.4.1 初始化(启动)代码 1.4.2 操作系统 1.4.3 应用程序 1.5 总结 第2章 ARM处理器基础 2.1 寄存器 2.2 当前程序状态寄存器 2.2.1 处理器模式 2.2.2 分组寄存器

基于ARM9的嵌入式Linux网络通信系统设计与实现

基于ARM9的嵌入式Linux网络通信 系统设计与实现

随着计算机技术的发展,嵌入式系统已经成为计算机领域的一个重要组成部分。Internet现已成为社会重要的基础信息设施之一,是信息流通的重要渠道,如何让嵌入式设备连接到Internet上,和其他通信系统进行信息交换是当前嵌入式技术领域研究的热点所在。本文结合实际应用需求,详细研究实现了一种基于S3C2410平台和Linux操作系统的嵌入式网络通信系统。 1.嵌入式网络通信系统总体设计 经过大量的资料收集比较,深入地研究分析并结合现有的实验条件,我们对系统的体系结构、硬件平台和软件系统做出了以下选择: 1)目前嵌入式CPU很多,选择哪款CPU要根据自己产品的实际需要。一般而言,首先应尽量选择系统集成度高、外围电路简洁的CPU;其次,还应综合考察CPU的各项性能指标;最后,还应该考虑软硬件开发环境的建立、厂家的货源以及代理的软件支持力度。经过比较, 本设计采用三星的S3C2410微处理器。这是一款高性价比、低功耗、高集成度的CPU,基于ARM920T内核,主频最高为203MHz,专为手持设备和网络应用而设计,能满足嵌入式系统中的低成本、低功耗、高性能、小体积的要求。 图1为硬件平台的总体设计[ 1 ] 。CPU S3C2410模块是开发板的核心部件。S3C2410 在包含ARM920T核的同时,增加了丰富的外围资源,主要包括1个LCD 控制器,支持STN 和TFT液晶显示屏; 3个通道UART; 4个通道DMA; 4个具有PWM功能的16位定时/计数器和1个16位内部定时器, 支持外部时钟源; 8通道10位ADC,最高速率可达500kB / s;触摸屏、IIS总线、SD 卡和MMC卡接口;117位通用I/O口和24位外部中断源。存储系统包括64MB的NAND Flash存储器模块和SDRAM存储器模块; Flash用于存放嵌入式操作系统、应用程序和用户数据等,并作嵌入式文件系统; SDRAM作为系统运行时的主要区域,用于存放系统及用户数据。通信模块包括串口和以太网接口模块;以太网接口为系统提供以太网接入的物理通道, UART接口则通过RS232可以和宿主机做串口通讯。JTAG调试接口用于系统的嵌入式调试。扩展总线扩展出了系统总线供今后继续开发使用。 图1 硬件平台结构框图

【ARM9嵌入式系统硬件设计指南】嵌入式输入设备设计

【ARM9嵌入式系统硬件设计指南】嵌入式输入设备设计摘要:嵌入式系统可以对各种数据信息进行快速计算、分析、输出,即完成对数据的处理。但计算机系统无法主动产生数据和结果。对数据的处理结果做出何种决策和反应,很多时候就需要用户“告诉”系统如何执行下一步动作,或是给出决策的依据。 ZLG致远电子十余年的嵌入式硬件设计秘笈首度公开!《ARM9嵌入式系统硬件设计指南》配套划时代精品EasyARM-i.MX283A 开发平台同期发布,深入剖析ARM9 硬件设计的每一个毛孔,助您完成前所未有的技术飞跃! 7.1 嵌入式输入设备设计 嵌入式系统可以对各种数据信息进行快速计算、分析、输出,即完成对数据的处理。但计算机系统无法主动产生数据和结果。对数据的处理结果做出何种决策和反应,很多时候就需要用户“告诉”系统如何执行下一步动作,或是给出决策的依据。这时,就需要使用输入设备将用户的“指示”或“依据”传递给嵌入式系统。 常见的人机交互输入设备包括按键、触摸屏、麦克风及其他各类用户可控输入的传感器等。随着科技的发展,不仅我们常见的交互输入设备出现了新的形态,而且也出现了不少新的交互输入方式。比如,现在手机中的电容按键及重力感应传感器、距离传感器。现在的交互设备不仅体现在硬件设备的复杂性上,而且在相关数据的复杂性上也与以往有了较大的增加。比如,可用于语音输入的麦克和可用于人脸识别的摄像头,为了完成这些人机交互输入,除了硬件输入设备对信息采集外,还需要后台进行大量的数据处理,以帮助系统“理解”用户的“输入信息”。 下面我们详细介绍最常用的两种输入设备:键盘/按键、触摸屏。 7.1.1 键盘 键盘是嵌入式应用的常用外部设备之一。键盘是由若干个按键组成的开关矩阵,它是最简单的数字量输入设备。对系统而言,键盘上不同的按键代表着不同的含义(一般来说,按键的含义可通过软件定义)。用户通过按动键盘的按键,输入数据或命令,实现简单的人机交互。 1.键盘的基本电路 键盘的基本电路是一个接触开关,通、断两种状态分别表示逻辑“0”和“1”。如图7.1所示,当开关打开时,处理器检测到相应引脚为高电平,表示逻辑“1”;当开关闭合时,处理器检测到相应引脚为低电平,表示逻辑“0”。 2.键盘的分类 按键排布的方式,键盘可分为可分成独立式按键键盘和矩阵式按键键盘;按读入键值的方式,可分为直读方式和扫描方式;按编码方式,可分成非编码方式和硬件编码方式;按微处理器响应方式可分为中断方式和查询方式。以上各种方式组合可构成不同硬件结构和接口的键盘。以下介绍较为常用的两种方式。 (1)、独立式 独立式按键键盘是指将每个独立按键按一对一的方式直接接到微处理器的I/O输入端口,如图7.1所示。读键值时,处理器可以检测相应I/O输入端口的状态,判定输入电平,确定输入的逻辑值。按键之间在硬件和读取方式上均相互独立,所以习惯称这种按键为独立式按键。这种方式在软硬件上实现均比较简单,但每一个按键都占用一个I/O端口,占用的资源较多,一般在按键数量较少,微处理器I/O资源充足时采用。

基于arm9和linux的嵌入式小区智能娱乐点播系统设计

基于ARM9和Linux的嵌入式小区智能娱乐点播系统设计 编制: 校对: 审核: 批准:

摘要 本项目实现了一款基于ARM Linux操作系统和Qt/Embedded图形系统的嵌入式视频点播系统。该系统提供美观、友好的图形用户界面。用户可方便地进行播放、停止、 暂停、选曲等操作。mplayer播放器输出的音频视频品质优良。 VOD是Video On Demand的缩写,即视频点播的意思。顾名思义,它是一种可以按用户需要点播节目的交互式视频系统,或者更广义一点讲,它可以为用户提供各种交 互式信息服务。交互式视频点播系统一般由VOD前端处理系统、传输网络、用户机顶 盒三个部分组成。 交互式VOD集互联网、多媒体、通讯等多种技术于一体,向用户提供包括数字电 视在内的多种交互式服务的崭新技术。 本设计将研究目标定位是设计一个GEC2440+液晶屏的视频点播系统。采用的硬 件环境为国内外广泛使用的ARM9处理器S3C2440,操作系统采用的是嵌入式Linux家族中的ARM Linux。

目录 1绪论 (6) 1.1嵌入式系统概述 (6) 1.3项目内容和实现关键部分说明 (7) 2系统总体设计 (8) 2.1系统概述 (8) 2.2服务器端设计 (9) 2.2.1 FTP服务器 (9) 2.2.2目录服务器 (9) 2.3客户端设计框架 (9) 2.4 ARM微处理器 (9) 2.4.1 ARM概述 (9) 2.4.2 ARM微处理器的特点 (10) 2.4.3 ARM微处理器系列 (10) 2.5嵌入式操作系统 (11) 2.5.1嵌入式系统软件结构体系 (11) 2.5.2嵌入式操作系统简介 (11) 2.5.3 Linux操作系统简介 (12) 2.6 Q T/E MBEDDED用户界面 (14) 3系统硬件设计 (16) 3.1嵌入式系统硬件结构 (16) 3.2 GEC2440结构 (16) 3.3 GEC2440硬件资源 (17) 3.4 S3C2440简介 (18) 4系统软件设计 (19) 4.1搭建嵌入式L INUX开发环境 (19)

ARM9嵌入式系统设计基础课后答案全解

********************************************* ********************************************* 第一章 1.简述嵌入式的定义 以应用为中心、以计算机技术为基础,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 2.举例说明嵌入式系统的“嵌入性”、“专用性”、“计算机系统”的基本特征。 按照嵌入式系统的定义,嵌入式系统有3个基本特点,即“嵌入性”、“专用性”与“计算机”。 “嵌入性”由早期微型机时代的嵌入式计算机应用而来,专指计算机嵌入到对象体系中,实现对象体系的智能控制。当嵌入式系统变成一个独立应用产品时,可将嵌入性理解为内部嵌有微处理器或计算机。 “计算机”是对象系统智能化控制的根本保证。随着单片机向MCU、SoC发展,片内计算机外围电路、接口电路、控制单元日益增多,“专用计算机系统”演变成为“内含微处理器”的现代电子系统。与传统的电子系统相比较,现代电子系统由于内含微处理器,能实现对象系统的计算机智能化控制能力。 “专用性”是指在满足对象控制要求及环境要求下的软硬件裁剪性。嵌入式系统的软、硬件配置必须依据嵌入对象的要求,设计成专用的嵌入式应用系统。 3. 简述嵌入式系统发展各阶段的特点。 (1)无操作系统阶段:使用简便、价格低廉;(2)简单操作系统阶段:初步具有了一定的兼容性和扩展性,内核精巧且效率高,大大缩短了开发周期,提高了开发效率。 (3)实时操作系统阶段:系统能够运行在各种不同类型的微处理器上,具备了文件和目录管理、设备管理、多任务、网络、图形用户界面Graphic User Interface,GUI)等功能,并提供了大量的应用程序接口Application Programming Interface,API),从而使应用软件的开发变得更加简单。 (4)面向Internet阶段:进入21世纪,Internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式技术与Internet技术的结合正在推动着嵌入式系统的飞速发展

推荐-基于ARM9的μCOSⅡ嵌入式系统移植 精品

大庆师范学院 本科生毕业 基于ARM9的μC/OS-Ⅱ嵌入式系统移植 院(系)物理与电气信息工程 专业电子信息工程 研究方向嵌入式技术 学生姓名钮佳楠 学号20XX01071677 指导教师姓名成宝芝 指导教师职称讲师 20XX年5 月15 日

摘要 随着计算机和电子技术的发展,越来越多的嵌入式产品出现在人们的日常生活和工业生产之中。由于嵌入式设备的智能型,使得生活和生产变得极为方便,由此也带来了嵌入式操作系统的迅速发展。本文通过ADS1.2和JLink的软件平台,以及芯片为S3C2440的ARM9开发板,成功进行微型嵌入式操作系统μC/OS-Ⅱ在开发板上的移植。在此过程中对于μC/OS-Ⅱ进行了较为全面的学习,对于移植操作也有了深刻的认识。 关键词:μC/OS-Ⅱ;Arm9;移植

Abstract With the development of puter and electronic technology, more and more embedded in people's daily life and industrial production. Intelligent embedded devices, making life extremely convenient and production, which also brought the rapid development of embedded operating system.This article by ADS1.2 and JLink, software platforms, and chip S3C2440 ARM9 development board, the success of micro embedded operating system OS-II development board transplantation. In this process, the OS-II for a more prehensive learning, have a deep understanding for the transplant operation. Key words: u C/OS - Ⅱ; Arm9; transplant

ARM9嵌入式系统设计基于S3C2410与Linux

ARM9嵌入式系统设计:基于S3C2410与Linux》针对在嵌入式市场上颇具竞争力的ARM9处理器——S3C2410和开放源码的Linux操作系统,讲述嵌入式系统的概念、软硬件的开发和调试手段、嵌入式Linux驱动程序和应用程序的开发以及图形用户界面MiniGUI的移植和应用。《ARM9嵌入式系统设计:基于S3C2410与Linux》的特点是集嵌入式系统开发的理论知识和实验教学于一体,并结合北京精仪达盛科技有限公司的开发板,给出了大量实例。 编辑推荐 《ARM9嵌入式系统设计:基于S3C2410与Linux》可作为高等院校嵌入式系统课程的教材,也可作为对嵌入式系统开发感兴趣的读者的入门教材,同时还可以作为从事ARM嵌入式系统应用开发工程师的参考书。 当前,嵌入式技术的应用越来越广泛,从航天科技到民用产品,嵌入式产品的身影无处不在,而这些嵌入式产品的核心——处理器决定了产品的市场和性能。在32位嵌入式处理器市场中,ARM处理器占有很大的份额。ARM不仅是一个公司、一种技术,也是一种经营理念,即由ARM 公司提供核心技术,只出售芯片中的IP授权,采取了别具一格的“Chipless模式”(无芯片的芯片企业),不参与生产,而是由合作厂商去生产具体的芯片和产品。 现在由于存储空间等原因,在嵌入式芯片上编程有较大的困难,选取合适的平台就显得很重要。Linux自出现以来,得到了迅猛的发展。Linux是开放源码的操作系统,吸引着全世界的程序员参与到发展和完善的工作中来,所以Linux保持了稳定而且卓越的性能。Linux在服务器领域已经占有很大的份额,在图形界面方面也不输于Windows。由于源码可以修改、移植,Linux 在嵌入式领域中的应用也越来越广。选用Linux作为平台,可以根据具体需要自由地裁减源码,打造适合目标平台的环境,编写最有效率的应用程序。 查看所有商品描述

ARM9嵌入式系统设计期末复习

ARM复习 4.1基本IO实验(LED控制) 控制实验平台的发光二极管LED1,LED2,LED3,LED4,使它们有规律的点亮和熄灭,具体顺序如下:LED1 亮->LED2 亮->LED3 亮->LED4 亮->LED1 灭->LED2 灭->LED3 灭->LED4 灭->全亮->全灭,如此反复。 /****************************************************************************** * name: led_on * func: turn on the leds one by one ******************************************************************************/ void led_on(void) { int i,nOut; nOut = 0xF0; rGPFDAT = nOut & 0x70; for(i=0;i<100000;i++); rGPFDAT=nOut & 0x30; for(i=0;i<100000;i++); rGPFDAT=nOut & 0x10; for(i=0;i<100000;i++); rGPFDAT=nOut & 0x00; for(i=0;i<100000;i++); } /****************************************************************************** * name: led_off * func: turn off the leds one by one ******************************************************************************/ void led_off(void) { int i,nOut; nOut=0;

ARM嵌入式系统论文

ARM嵌入式系统论文 指导老师:张力一.ARM简介 如果说,“嵌入式”是2008年电子工程师谈论得最多的词之一,2009年谈论得最多的一个词就是“ARM”。究竟什么是ARM呢,他是英国一家电子公司的名字,全名的意思是Advanced RISC Machine。该公司成立于1990年11月,是苹果电脑,Acorn电脑集团和VLSI Technology的合资企业。Acorn曾推出世界上首个商用单芯片RISC处理器,而苹果电脑当时希望将RISC技术应用于自身系统,ARM微处理器新标准因此应运而生。 80年代末90年代初半导体行业产业链刚刚出现分工,台积电,联电等半导体代工厂正悄悄崛起,美国硅谷中的一些fabless公司也如雨后春笋一样涌现出来,所谓的fabless公司自己设计芯片,但是生产过程则包给台积电等代工厂生产。而ARM更是为天下先,19年前首创了chipless的生产模式,即该公司既不生产芯片,也不设计芯片,而是设计出高效的IP内核,授权给半导体公司使用,半导体公司在ARM技术的基础上添加自己的设计并推出芯片产品,最后由OEM客户采用这些芯片来构建基于ARM技术的系统产品。这种方式有点象通信行业的高通和半导体行业的RAMBUS,他们站在了半导体产业链上游的上游。19年前成立的ARM可能面临着很大风险,因为没有人知道这条路能不能行得通,但是现在的事实已经证明,ARM走了一条没人走过,却是正确的道路。,作为附加产品,他还让中国的行业人士从这个窗口认识到了英国的电子公司,ARM的成功带动了英国的chipless公司的发展。 因为ARM的产品是IP Core,没有任何物理意义上的硬件或者软件实体,所以只能在中国注册成为“咨询”公司,尽管咨询只是其业务中很小的一块。ARM的核心业务是销售芯片核心技术IP,目前全球有103家巨型IT公司在采用ARM技术,20家最大的半导体厂商中有19家是ARM的用户,包括德州仪器,意法半导体,Philips, Intel等。20大巨头中唯一没有购买ARM授权的是Intel的老对头AMD,因为Intel便携式处理器采用的是Strong ARM,而AMD则收购了Alchemy公司与之抗衡,采用的是MIPS结构。 二.ARM产品介绍 ARM提供一系列内核、体系扩展、微处理器和系统芯片方案。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。典型的产品如下。 CPU内核 ARM7:小型、快速、低能耗、集成式RISC内核,用于移动通信。 ARM7TDMI(Thumb):这是公司授权用户最多的一项产品,将ARM7指令集同Thumb扩展组合在一起,以减少内存容量和系统成本。同时,它还利用嵌入式ICE调试技术来简化系统设计,并用一个DSP增强扩展来改进性能。该产品的典型用途是数字蜂窝电话和硬盘驱动器。 ARM710系列,包括ARM710、ARM710T、ARM720T和ARM740T:低价、低能耗、封装式常规系统微型处理器,配有高速缓存(Cache)、内存管理、写缓冲和JTAG。广泛应用于手持式计算、数据通信和消费类多媒体。 ARM7优化用于对价位和功耗敏感的消费应用的低功耗32位核,非常低的功耗;三段流水线和冯·诺依曼结构,提供0.9MIPS/MHz。 ARM9TDMI:采用5阶段管道化ARM9内核,同时配备Thumb扩展、调试和Harvard 总线。在生产工艺相同的情况下,性能可达ARM7TDMI的两倍之多。常用于连网和顶置盒。 ARM940T系列低价、低能耗、高性能系统微处理器,配有、内存管理和写缓冲。应用于高级引擎管理、保安系统、顶置盒、便携计算机和高档打印机。StrongARM:性能很高、

ARM9在嵌入式中的应用实例

ARM9在嵌入式中的应用实例 ——启动程序的实现 【摘要】:本文给出了基于ARM9嵌入式系统的启动程序的实现流程,并针对存储器控制单元的使用以及目标文件的分布装载等技术难点进行详细分析。 【关键词】嵌入式系统、启动程序、ARM9 嵌入式系统被定义为:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。嵌入式系统的核心部件是各种类型的嵌入式处理器,随着嵌入式系统不断深入到人们生活中的各个领域,嵌入式处理器得到前所未有的飞速发展。 典型的32位RISC芯片──ARM处理器,不论是在PDA,STB,DVD等消费类电子产品中,还是在GPS,航空,勘探,测量等军方产品中都得到了广泛的应用。越来越多的芯片厂商早已看好ARM的前景,如Intel,NS,Ateml,Philips,NEC,CirrusLogic等公司都有相应的产品。在1999年,ARM突破1.5亿个,市场份额超过了50%,已经成为业界的龙头。 在基于ARM9的嵌入式系统过程中,发现技术难点主要在于系统启动程序的编写,为此本文详细论述了在ARM9基础上开发嵌入式系统时启动程序的实现。 1.启动程序流程 嵌入式系统的资源有限,程序通常都是固化在ROM中运行。ROM中程序执行前,需要对系统硬件和软件运行环境进行初始化,这些工作由用汇编语言编写的启动程序完成。 启动程序是嵌入式程序的开头部分,应与应用程序一起固化在ROM中,并首先在系统上运行。它应包含进各模块中可能出现的所有段类,并合理安排它们的次序。 写好启动程序是设计好嵌入式程序的关键,系统启动程序所执行的操作依赖于正在开发其软件的系统,一般流程如下: 2.详细步骤 (1)设置入口指针 启动程序首先必须定义入口指针,而且整个应用程序只有一个入口指针。 (2)设置中断向量 ARM7要求中断向量表必须设置在从0地址开始,连续8×4字节的空间,分别是复位、未定义指令错误、软件中断、预取指令错误、数据存取错误、IRQ、FIQ和一个保留的中断向量。

arm9嵌入式系统设计

arm9嵌入式系统设计 基于ARM9嵌入式微处理器的远程仓库管理系统 摘要 仓库管理是物流当中的一个重要环节,也在企业的整个管理流程中起着非常重要的作用,如果不能保证及时准确的进货、库存控制和发货,将会给企业带来巨大损失,这不仅表现为企业各项管理费用的增加,而且会导致客户服务质量难以得到保证,最终影响企业的市场竞争力.传统的人工仓库作业模式和数据采集方式早已不能满足仓库管理的快速、准确要求,因此,在20世纪70年代,通用计算机开始应用到仓库管理上,它带来了仓库管理的一次革命,但随之也带来了新的问题:建设成本巨高,后期维护量大,硬件系统不可靠。随着嵌入式技术的发展,人们似乎又找到了更加适合用于仓库管理的系统。嵌入式系统以体积小,功耗低,运算能力强等优点著称,它一般被设计成某一场合专用的系统。本文设计的远程仓库管理系统,客户机是以运行Windows CE操作系统的手持式设备,服务器采用运行Windows Server 2003的PC机。客户机的硬件平台以ARM9(S3C2410)微处理器作为核心,通过以太网与服务器建立连接组成一个远程仓库管理系统。该系统可以实现到货检验、入库、出库、调拨、移库、库存盘点等各个作业环节。 关键词:远程仓库管理系统,嵌入式系统,ARM9微处理器,Windows https://www.360docs.net/doc/8f10983078.html,

ABSTRACT Warehouse management system take an important part in labour exchange , but also the entire business process management plays an important role, if it can not guarantee timely and accurate purchasing, inventory control and shipping, will be a great loss to businesses, not only the performance of the management costs for enterprises increases, and customer service quality will lead to difficult to be assured that the ultimate impact of the market competitiveness of enterprises. Traditional artificial storage and data acquisition mode of operation has long warehouse management can not meet the rapid and accurate request, therefore, in the 20th century, 70's, began to apply general-purpose computers, warehouse management, warehouse management which has brought a revolution, but with the it has also brought new problems: the construction of huge high-cost, post-maintenance, and unreliable hardware. With the development of embedded technology, there seems to have found a more suitable system for warehouse management. Embedded systems are small, low power consumption, computing power, said the strong advantages, it is generally designed as a forum dedicated system. In this paper, the design of a remote warehouse management system, client operating system is running Windows CE handheld devices, servers running Windows Server 2003 using the PC. Client hardware platform as a core ARM9 microprocessors, servers via Ethernet to connect a remote warehouse management system. The system enables delivery inspection, storage, a library, allocate, transfer database, inventory and other operational aspects of inventory. Key words:Remote Warehouse Management System,Embedded System,ARM9 Device,Windows https://www.360docs.net/doc/8f10983078.html, 目录 第1章绪论 (1) 1.1 仓库管理系统的概述 (1) 1.2 仓库管理系统研究背景与意义 (1) 1.3 国内外同类软件的研究现状与发展趋势 (1) 第2章需求分析 (3) 2.1 设计目标 (3) 2.2 需求描述 ................................................................................ 错误!未定义书签。 2.2.1 功能需求 ........................................................................ 错误!未定义书签。 2.2.2 数据需求 ........................................................................ 错误!未定义书签。 2.3 可行性分析 ............................................................................ 错误!未定义书签。 2.3.1 远程数据库系统原理可行性分析 (5) 2.3.2 硬件平台的选择 ............................................................ 错误!未定义书签。 第3章系统分析........................................................................ 错误!未定义书签。 3.1 整体硬件连接图 .................................................................... 错误!未定义书签。 3.2 服务器软件环境分析 (6) 3.2.1 SQL Server Mobile 服务器代理 (6) 3.2.2 IIS 6.0 的应用 ............................................................... 错误!未定义书签。 3.2.3 Microsoft? SQL Server? 2000简介 (6) 3.3 客户端软件环境分析 (7) 3.3.1 SQL Server Mobile 客户端代理 (7) 3.3.2 https://www.360docs.net/doc/8f10983078.html,的应用 (7) 3.3.3 客户端环境的操作系统定制 ........................................ 错误!未定义书签。 第4章服务器的实现 (10)

相关文档
最新文档