高中数学-分段函数及题型

高中数学-分段函数及题型
高中数学-分段函数及题型

x

高中数学-分段函数及题型

【解析】

4x 3 (x

0)

例1 ?求函数

f(x)

x 3 (0 x 1)的最大值.

x 5 (x

1)

【解析】当x

时,

f

max

(x)

f(0)

3,当 0 x 1 时,f max (X ) f (1) 4,当 x 1 时,

x 5

1 5 4,

综上有f max (x)

4 .

【经典例题赏析】

例2.在同一平面直角坐标系中 x 0,

f( x)

(x)2( 1) x 2(x

0, x 0, f( x)

x)2( x

1)

任意 x R 都有 f( x)

f (x),

所以f(x)为偶函数.

例4 ?判断函数 f(x)

x 3 x (x 0)

2 x

的单调性.

(x 0)

1) f (x),当 x

2

x (x 1) f (x)因此,对于

函数y f(x)和y g(x)的图象关于直线 y x 对称,现将y g(x)的图

象沿x 轴向左平移2个单位 ,再沿y 轴向上平移1个单位,

所得的图象是由两条线段组成的折线 (如图所示),

则函数f (x)的表达式为(

B. C. 2x 2 (1

x 0) x 2

2 (0

x 2) y i f k

2x 2 (1 x 0) 3'

/

x 2 2 (0

x 2)

2 “

7 2x 2 (1 x 2)

/

x 2

1 (

2 x 4) -2 -1

o

1

2x 6 (1 x 2)

x

2 3 (2 x 4)

例3 ?判断函数

f(x)

x 2(x 1)

x 2

(x

(x 0) 的奇偶性.

1)(x

0)

答案A.

)

f(x)

f(x)

f(x)

? x D. f(x)

【解析】

显然f(x)连续.当x 0时,f (x) 3x 2

1 1恒成立,所以f(x)是单调递增函数,当x 0时,

在R 上是单调递增函数 例5?写岀函数 f(x) |1

2x| |2 x|的单调减区间.

3x 1 (x

2)

【解析】f (x)

3 x (

; x 2),画图易知单调减区间为

(

,

;]

3x 1

(x 2)

2 x 1 (x

0)

例6 ?设函数f(X )

1

,若f (x 0) 1,则x 0得取值范围是(

)答案D

x 2

(x 0)

故选A 项.

A.( 1,1)

B.( 1,)

C.( J

2)

(x

1)2

(x 1)

例7 ?设函数 f(x)

4 - ,x 1

(x 1)

范围为()

A ?(

,2] [0,10]

B

(0, ) D- ( , 1) (1,)

则使得f (x) 1的自变量x 的取值 (,2] [0,1]

f '(x)

2x 0恒成立,f (x)也是单调递增函数

所以f (x)在R 上是单调递增函数

或画图易知f(x)

C. ( , 2] [1,10]

【解析】

D. [ 2,0] [1,10]

2

当 x 1 时,f (X )

1 (x 1)

x 2或x 0 , 所以x

2或 0 x 1 ,当 x 1 时,

f(x) 1

4 、、x 1 1 1 3 x 10,所以1 x 10,综上所述

x 2或 0 x 10,

t 20,

4

.某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是p t 100,

该商品的日销售量 Q (件)与时间t (天)的函数关系是 Q t 40 (0 t 金额的最大值,并指岀日销售金额最大的一天是

30天中的第几天?

2、 针对性课堂训练

x 的图象是

1 .函数y 函数 A . B. C. y ig x ( 是偶函数,在区间

是偶函数,在区间

是奇函数,在区间

是奇函数,在区间

画岀函数y |x 3x 2( 4 3x 2(1 x

(0, (0,

,0)上单调递增 ,0)上单调递

)上单调递增 )上单调递

1| 1) 3)

|2x

3 1

在区间

[4

,3)的图象

0 t 25,t N, 25 t 30,t N.

30, t N ),求这种商品的日销售

高一数学函数试卷及答案

高一数学函数试卷及答 案 SANY GROUP system office room 【SANYUA16H-

函数测试题 班级 姓名 学号 成绩 一、选择题:(本题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y = ) A )4 3 ,21(- B ]4 3,21[- C ),4 3[]2 1,(+∞?-∞ D ),0()0,2 1(+∞?- 2.下列对应关系f 中,不是从集合A 到集合B 的映射的是( ) A A=}{是锐角x x ,B=(0,1),f :求正弦; B A=R ,B=R ,f :取绝对值 C A=+R ,B=R ,f :求平方; D A=R ,B=R ,f :取倒数 3二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 7- B 1 C 17 D 25 4.已知???<+≥-=)6()2()6(5 )(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5 5.二次函数2y ax bx c =++中,0a c ?<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定 6.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 3-≤a B 3-≥a C 5≤a D 5≥a 7.若132 log

高中数学,函数图形考点及题型全归纳

第五节 函数的图象 ? 基础知识 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换 ①y =f (x )的图象――――――――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→ b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减. (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1 a 纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 3452 2+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y . 例5:已知函数)(1 2R x x b ax y ∈++=的值域为]4,1[-,求常数b a , 解析: 01 2 22 =-+-?+=+?++= b y ax yx b ax y yx x b ax y

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高中数学必修一函数题型方法总结

这份资料是全部内容已经完成的一部分, 写中。此资料是必修一函数部分的总结, 同学有所帮助。 路。部分题目仅仅是题目。 的题目,总结这一类题目的思路与方法。活学活用。 第一部分典型例题解析 一、函数部分 一、函数的值域:求函数值域的常用方法有 方法、判别式、换元、分离常数法、方程法)。 1、函数y=的值域是()。A、[0,+ B、[0,4) C[0,4] D(0,4) 解析:本题是指数函数与幂函数复合, 各自的取值范围。所以本题我们用直接分析法。 [) 40160 0160,4 x x x x ∴∴≥ ≤ Q>16-4<;要根号有意义,16-4 综上可知:16-4< 2、若函数() y f x =的值域是 1 ,3 2 ?? ?? ?? ,则函 1 ()() () F x f x f x =+的值域是()。 11051010 .,3.2,.,.3, 23223 A B C D ???????? ???????? ???????? 解析:本题是复合函数求值域,可变 11 (),()(),,3 2 f x t F x F t t t t ?? ===+∈?? ?? 。 方法一:定义求单调区间 21 212121 2112 212112 12 12 12 1212 12 12 11 (),()(),,3,, 2 111 ()()()()(1). 1 011 1 11(1)0 1 1111 1 (1)0 f x t F x g t t t t t t g t g t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ?? ===+∈?? ?? ∴-=+-+=-- -∴? - ? - Q 令> >,∴>。当>时,求得< <,<。此时<,函数递减。 当<时,求得>>,>。 此时>,函数递增 [] 1 ,1,1,3.. 2 151010 (),(1)2,(3).()2,. 2233 x x g g g F x ?? ∴∈∈ ?? ?? ?? ∴===∴∈?? ?? 。 时函数递减.时函数递增 学了不等式的话,我们可以由基本不等式求单调 11 0,2, 1. 1 1 ,3 2 t t t t t t t ∴+≥=?= = = 此时 时,函数取得最小值。然后判断 时的函数值即可。 2 34 x y x = - 的值域是() 44 ,)(,) 33 -∞+∞ U B. 22 (,)(,) 33 -∞+∞ U C.R 24 ,)(,) 33 -∞+∞ U 分离常数法。希望同学自己探究分离常数的方法。 22882 .0,. 3439129123 22 ,, 33 x y x x x =+≠∴≠ --- ???? ∈-∞+∞ ? ? ???? Q U 24 .(34)2.. 3432 2 320. 3 22 ,, 33 x y y x x x x y y y ?∴-=?= -- ∴-≠?≠ ???? ∈-∞+∞ ? ? ???? U 2 1 22 x y x x + = ++ 的值域是()。 11 (,) 22 - B.(11 ,,) 22 ?? -∞-+∞ ?? ?? U C. 11 , 22 ?? -?? ?? ]1,1 - () 2 2 2 2 2 (21)210. 22110, , (21)210 11 =40.,. 22 ) yx y x y x x R y x y b a c y ?+-+-= ++=++≠ ∈ +-+-= ?? -≥∈-?? ?? 方程有意义。 在R上有根。 解得 讨论一元一次方程情况 1 1 (1) 1 y x x = ++ + ,参考例题2两个方法。 R的函数() y f x =的值域为[],a b,则函数

(完整版)高一数学分段函数练习题

高一数学函数的定义与分段函数测试题 1、给出函数?????<+≥=)4()1()4()21()(x x f x x f x ,则=)3(f ( ) A.823- B. 111 C. 19 1 D. 241 2、若f(x)=???≥)0()0(2πx x x x ???<-≥=) 0()0()(2x x x x x ?,则当x<0时,f[?(x)]=( ) A. -x B. -x 2 C.x D.x 2 3、下列各组函数表示同一函数的是( ) ①f(x)=|x|,g(x)=???<-≥) 0()0(x x x x ② f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+ -x x g(x)=0 x ∈{-1,1} A.①③ B.① C.②④ D.①④ 4、设f(x)=?????>+≤--1||111||,2|1|2x ,x x x ,则f[f(21)]=( ) A. 21 B.134 C. -59 D.4125 5、设函数3,(10)()((5)),(10)x x f x f f x x -≥?=?+≤+)2(,2)2(,22x x x x 则f(-4)=___________,若f(x 0)=8,则x 0=________ 6.、函数y =+的定义域为( ) A . {x |x ≤1} B . {x |x ≥0} C . {x |x ≥1或x ≤0} D . {x |0≤x ≤1} 7、.函数f (x )=的定义域为( ) A . [1,2)∪(2,+∞) B . (1,+∞) C . [1,2) D . [1,+∞) 8、函数 的定义域是( ) A . B . C . D .

高中数学函数经典复习题含答案

《函 数》复习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111y x x = +-+ -2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

1-1函数的表示方法与分段函数

函数的表示方法与分段函数 一、选择题 1.已知A={x|x=n2,n∈N},给出下列关系式:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=x4;⑤f(x)=x2+1,其中能够表示函数f:A→A的个数是() A.2 B.3 C.4 D.5 2.函数() y f x =的图象与直线1 x=的公共点数目是() A.1B.0C.0或1D.1或2 3.如图所示,能表示“y是x的函数”的有( ). ① A.1个B.2个C.3个D.4个 4.下列对应中有几个是映射?() ①②③④A.1个B.2个C.3个D.4个 5.已知集合{} 04 A x x =≤≤,{} 02 B y y =≤≤,下列从A到B的对应f不是映射的是A. 1 : 2 f x y x →=B. 1 : 3 f x y x →=C. 2 : 3 f x y x →=D.2 1 : 8 f x y x →= 6. 函数y=+) 2 ln(x -的自变量x的取值范围是() A.) ,0[+∞B.)2, (-∞C.)2,0[D.)2,1( )1,0[ 7.下列各组函数中,表示同一个函数的是() A.y=x-1和y= x2-1 x+1 B.y=x0和y=1 C.f(x)=x2和g(x)=(x+1)2 D.f(x)= x 2 x和g(x)= x x 2

8设()12 32, 2()log 1,2 x e x f x x x -?的解集是( ) A.),3()1,3(+∞?- B.),2()1,3(+∞?- C.),3()1,1(+∞?- D.)3,1()3,(?--∞ 11.函数y = 2 x -1 的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪???? 12,2 B .(-∞,2] C.? ???-∞,1 2∪[2,+∞) D .(0,+∞) 12.函数f (x )=???? ? sin (πx 2),-10},f :x →y =|x |,其对应是从A 到B 的映射.

高中数学函数常用函数图形及其基本性质

高中数学函数常用函数图形及其基本性质 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见函数性质汇总 常数函数f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴) 的直线 一次函数f (x )=kx +b (k ≠0,b ∈R)|k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。b=0;k>0;k<0 定义域:R 值域:R 单调性:当k>0时,当k<0时 奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反函数:有反函数。K=±1、b=0的时候 周期性:无 补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系 2、与曲线函数的联合运用 反比例函数f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第 一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:),0()0,(+∞-∞ 值域:),0()0,(+∞-∞ 单调性:当k>0时;当k<0时 奇偶性:奇函数反函数:原函数本身周期性:无 x y b O f (x )=b x y O f (x )=kx +b x y O f (x )=x k

补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个— —⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图)f (x )= d cx b ax ++(c ≠0且d ≠0) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0>a 时,开口向上,有最低点当00时,函数图象与x 轴有两个交点();当<0时,函数图象与x 轴有一个交点();当=0时,函数图象与x 轴没有交点。 ④)0()(2≠++=a c bx ax x f 关系)0()(2≠=a ax x f 定义域:R 值域:当0>a 时,值域为();当0a 时;当0

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

高中数学阶段常见函数性质汇总

高中阶段常见函数性质汇总 函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 定 义 域:R 值 域:{b} 单 调 性:没有单调性 奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性 函 数 名 称:一次函数 解析式 形 式:f (x )=kx +b (k ≠0,b ∈R) 图象及其性质:直线型图象。|k|越大,图象越陡;|k|越小,图象越平缓; 当b =0时,函数f (x )的图象过原点; 当b =0且k =1时,函数f (x )的图象为一、三象限角平分线; 当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线; 定 义 域:R 值 域:R 单 调 性:当k>0时,函数f (x )为R 上的增函数; 当k<0时,函数f (x )为R 上的减函数; 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数。[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无 函 数 名 称:反比例函数 解析式 形 式:f (x )= x k (k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的 图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点; 图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞Y 值 域:),0()0,(+∞-∞Y 单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数; 当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增 函数; 奇 偶 性:奇函数 反 函 数:原函数本身 b

相关文档
最新文档