中考总复习--函数专题复习

中考总复习--函数专题复习
中考总复习--函数专题复习

初中数学函数专题复习 专题一 一次函数和反比例函数

一、一次函数及其基本性质

1、正比例函数

形如()0≠=k kx y 的函数称为正比例函数,其中k 称为函数的比例系数。

(1)当k>0时,直线y=kx 经过第一、三象限,从左向右上升,即随着x 的增大y 也增大; (2)当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小。

2、一次函数

形如b kx y +=的函数称为一次函数,其中k 称为函数的比例系数,b 称为函数的常数项。 (1)当k>0,b>0,这时此函数的图象经过第一、二、三象限;y 随x 的增大而增大; (2)当k>0,b<0,这时此函数的图象经过第一、三、四象限;y 随x 的增大而增大; (3)当k<0,b>0,这时此函数的图象经过第一、二、四象限;y 随x 的增大而减小; (4)当k<0,b<0,这时此函数的图象经过第二、三、四象限;y 随x 的增大而减小。 例题1:在一次函数y =(m -3)x m -1+x +3中,符合x ≠0,则m 的值为 。

随堂练习:已知自变量为x 的函数y=mx +2-m 是正比例函数,则m =________,该函数的解析式为_______。 例题2:已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A 、﹣2 B 、﹣1 C 、0

D 、2

随堂练习:

1、直线y =x -1的图像经过象限是( )

A 、第一、二、三象限

B 、第一、二、四象限

C 、第二、三、四象限

D 、第一、三、四象限 2、一次函数y =6x +1的图象不经过...( )

A 、第一象限

B 、第二象限

C 、第三象限

D 、第四象限

例题3:已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值范围是( ) A 、m >0,n <2 B 、m >0,n >2 C 、m <0,n <2 D 、m <0,n >2

随堂练习:已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可化简为 。

例题4:已知一次函数y =kx +b 的图像经过二四象限,如果函数上有点()()1122,,,x y x y ,如果满足12y y >,那么1x 2x 。

3、待定系数法求解函数的解析式

(1)一次函数的形式可以化成一个二元一次方程,函数图像上的点满足函数的解析式,亦即满足二元一次方程。

(2)两点确定一条直线,因此要确定一次函数的图像,我们必须寻找一次函数图像上的两个点,列方程组,解方程,最终求出参数k b 、。

例题5:已知:一次函数y kx b =+的图象经过M (0,2),(1,3)两点。 (1)求k 、b 的值;

(2)若一次函数y kx b =+的图象与x 轴的交点为A (a ,0),求a 的值。

随堂练习:

1、直线1y kx =-一定经过点( )。

A 、(1,0)

B 、(1,k )

C 、(0,k )

D 、(0,-1) 2、若点(m ,n )在函数y =2x +1的图象上,则2m ﹣n 的值是( ) A 、2 B 、-2 C 、1 D 、-1 3、一次函数24y x =-+的图象与y 轴的交点坐标是( ) A 、(0,4) B 、(4,0) C 、(2,0) D 、(0,2)

4、已知一次函数()0≠+=k b kx y 图象过点)2,0(,且与两坐标轴围成的三角形面积为2,求此一次函数的解析式。

4、一次函数与方程、不等式结合

(1)一次函数中的比较大小问题,主要考察

(2)一次函数的交点问题:求解两个一次函数的交点,只需通过将两个一次函数联立,之后通过解答一个二元一次方程组即可。

例题1:已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )

A 、x <-1

B 、x > -1

C 、x >1

D 、x <1 随堂练习:

1、若直线42--=x y 与直线b x y +=4的交点在第三象限,则b 的取值范围是( ) A 、84<<-b B 、04<<-b C 、4-b D 、84≤≤-b

2、结合正比例函数y =4x 的图像回答:当x >1时,y 的取值范围是( ) A 、y =1 B 、1≤y <4 C 、y=4 D 、y >4

例题2:在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标( ) A 、(-1,4)

B 、(-1,2)

C 、(2,-1)

D 、(2,1)

随堂练习:如图,一次函数y=k 1x+b 1的图象l 1与y=k 2x+b 2的图象l 2相交于点P,则方程组??

?+=+=2

211,

b x k y b x k y 的解是( )

A 、??

?=-=3,2y x B 、???-==2

,3y x C 、???==3,2y x D 、2

3x y =-??=-?

例题3:如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式0<kx +b <x 3

1

的解集为________。

随堂练习:如图,已知函数y =3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是 。

5、一次函数的基本应用问题

例题1:如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A →B 一D → C →A 的路径运动,回到点A 时运动停止.设点P 运动的路程长为x ,AP 长为y ,则y 关于x 的函数图象大致是(

)

随堂练习:如图3,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD =2.若动点F E 、同时从点O 出发,E 点沿折线DC AD OA →→运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度。设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )

例题2:某景区的旅游线路如图1所示,其中A 为入口,B ,C ,D 为风景点,E 为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km ).甲游客以一定的速度沿线路“A →D →C →E →A ”步行游览,在每个景点逗留的时间相同,当他回到A 处时,共用去3h .甲步行的路程s (km )与游览时间t (h )之间的部分函数图象如图2所示.

(1)求甲在每个景点逗留的时间,并补全图象; (2)求C ,E 两点间的路程;

(3)乙游客与甲同时从A 处出发,打算游完三个景点后回到A 处,两人相约先到者在A 处等候, 等候时间不超过10分钟.如果乙的步行速度为3km/h ,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由。

随堂练习:煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划。某煤矿现有1000吨煤炭要全部运往A 、B 两厂,通过了解获得A 、B 两厂的有关信息如下表(表中运费栏“元/km t ?”表示:每吨煤炭运送一千米所需的费用):

(第2题)

图2

12

图1

(1)写出总运费y(元)与运往厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)

例题3:如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C。

(1)求k的值;

(2)求△ABC的面积。

随堂练习:如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P 是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连结PP',P'A,P'C.设点P的横坐标为a.

(1)当b=3时,①求直线AB的解析式;②若点P'的坐标是(-1,m),求m的值;

(2)若点P在第一象限,记直线AB与P'C的交点为D.当P'D:DC=1:3时,求a的值;

(3)是否同时存在a,b,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由。.

二、反比例函数及其基本性质

1、反比例函数的基本形式

一般地,形如x

k y =

(k 为常数,o k ≠)的函数称为反比例函数。x k y =还可以写成kx y =1-

)0(<=

k x k y )0(>=k x

k

y 2、反比例函数中比例系数k 的几何意义

(1)过反比例函数图像上一点,向x 轴作垂线,则以图像上这个点、垂足,原点为顶点的三角形的面积等于反比例函数k 的绝对值的一半。

(2)正比例函数y=k 1x (k 1>0)与反比例函数y =

x

k

(k >0)的图像交于A 、B 两点,过A 点作AC ⊥x 轴,垂足是C ,三角形ABC 的面积设为S ,则S=|k|,与正比例函数的比例系数k 1无关。 (3)正比例函数y=k 1x (k 1>0)与反比例函数y =

x

k

(k >0)的图像交于A 、B 两点,过A 点作AC ⊥x 轴,过B 点作BC ⊥y 轴,两线的交点是C ,三角形ABC 的面积设为S ,则S=2|k|,与正比例函数的比例系数k 1无关。

例题1:点P 是x 轴正半轴上的一个动点,过P 作x 轴的垂线交双曲线1

y x

=于点Q ,连续OQ ,当点P 沿x 轴正方向运动时,Rt △QOP 的面积( )

A 、逐渐增大

B 、逐渐减小

C 、保持不变

D 、无法确定 例题2:如图,双曲线(0)k

y k x

=

>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 。

随堂练习:

1、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数

221k k y x

++=的图象上。若点A 的坐标为(-2,-2),则k 的值为

A 、1

B 、-3

C 、4

D 、1或-3

2、如图所示,在反比例函数2

(0)y x x

=

>的图象上有点1234,,,P P P P ,它们的横坐标依次为1,2,3,4,分别过些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1234,,,S S S S ,则

123S S S ++= 。

3、如图,直线l 和双曲线(0)k

y k x

=

>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )

A 、S 1<S 2<S 3

B 、 S 1>S 2>S 3

C 、S 1=S 2>S 3

D 、S 1=S 2

3、反比例函数的图像问题

(1)反比例函数的图像取决于比例系数。

(2)利用反比例函数的图像与一次函数、一元一次不等式结合 例题1:函数y ax a =-+与(0)a

y a x

-=

≠在同一坐标系中的图象可能是(如图所示)

随堂练习:一次函数)0(≠+=m m x y 与反比例函数x

m

y =

的图像在同一平面直角坐标系中是( )

例题2:如图,正比例函数12y x =

的图象与反比例函数k

y x

=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ?的面积为1. (1)求反比例函数的解析式;

(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.

随堂练习:如图,直线y =2x ﹣6与反比例函数()k

y=x 0x

>的图象交于点A (4,2)

,与x 轴交于点B . (1)求k 的值及点B 的坐标;

(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.

例题3:已知一次函数y 1=x -1和反比例函数y 2=2

x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2

时,x 的取值范围是( ).

A 、x >2

B 、-1<x <0

C 、x >2,-1<x <0

D 、x <2,x >0 随堂练习:

1、如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1

x >k 2x ,则

x 的取值范围是

A 、-1<x <0

B 、-1<x <1

C 、x <-1或0<x <1

D 、-1<x <0或x >1

2、点A (x 1,y 1),B(x 2,y 2),C(x 3,y 3)都在反比例函数y =-3

x

的图象上,若x 1

A 、 y 3

B 、y 1

C 、y 3

D 、y 2

3、如图,一次函数y 1=ax +b (a ≠0)与反比例函数y 2=()0≠k x

k

的图象交于A (1,4)、B (4,1)两点,若y 1>y 2,则x 的取值范围是

4、反比例函数的基本应用

例题1:如图,等腰梯形ABCD 放置在平面直角坐标系中,已知(2,0)A -、(6,0)B 、(0,3)D ,反比例函数的图象经过点C .

(1)求C 点坐标和反比例函数的解析式;

(2)将等腰梯形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.

随堂练习:已知一次函数m x y +=1的图象与反比例函数x

y 6

2=

的图象交于A 、B 两点,.已知当1>x 时,21y y >;当10<

(1)求一次函数的解析式;

(2)已知一次函数在第一象限上有一点C 到y 轴的距离为3,求△ABC 的面积。

例题2:如图,点A 在双曲线y =

x

k

的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.

随堂练习:如图,M 为双曲线y =

上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y x m =-+于D 、C 两点,若直线y x m =-+与y 轴交与点A ,与x 轴交与点B ,则A D ·BC 的值为 。

专题二 二次函数

一、二次函数的基本性质以及二次函数中三大参数的作用

1、二次函数的解析式及其求解

一般的,形如),0(2

是常数、、c b a a c bx ax y ≠++=的函数叫做二次函数,其中,x 是自变量,

c b a 、、分别为二次函数的二次项系数、一次项系数和常数项。

(1)一般式:c bx ax y ++=2

。已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2

。已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.

(4)对称点式:已知图像上有两个关于y 轴对称的点()()k x k x ,,,21,那么函数的方程可以选用对称点式

()()k x x x x a y +--=21,代入已知的另外的点就可以求出函数的方程来了。

例题1:根据题意,求解二次函数的解析式。 (1)求过点A(1,0),B(2,3),C(3,1)的抛物线的方程

(2)已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.

(3)已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。 (4)已知二次方程32=++c bx ax 的两个根是-1和2,而且函数c bx ax y ++=2

过点(3,4),求函数

c bx ax y ++=2的解析式。

(5)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.

(6)已知二次函数当x =2时有最大值3,且它的图象与x 轴两交点间的距离为6,求这个二次函数的解析式。 随堂练习:

1、已知二次函数的图像经过点A(2,1),B(3,4),且与y 轴交点为(0,7),则求函数的解析式

2、已知过点(2,0),(3,5)的抛物线c bx ax y ++=2与直线33+=x y 相交与x 轴上,求二次函数的

解析式

3、已知二次函数c bx ax y ++=2,其顶点为(2,2),图象在x 轴截得的线段长为2,求这个二次函数的解析式。

4、已知函数的c bx ax y ++=2过点(1,3),且函数的对应方程的根是2和4,求方程132=++c bx ax 的解

5、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )

A 、1x =

B 、1x =-

C 、3x =-

D 、3x =

2、二次函数的基本图像

(1)二次函数2

y ax =的图像:一般地,抛物线2

y ax =的对称轴是y 轴,顶点是原点。当a >0时,抛物线的开口向上,顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大。

(2)二次函数2

()y a x h k =-+的图像:当a >0时,开口向上;当a <0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k )。

(3)二次函数2()y a x h k =-+与2y ax =图像的关系:一般地,抛物线2()y a x h k =-+与2

y ax =形状相同,位置不同。把抛物线2

y ax =向上(下)向左(右)平移,可以得到抛物线2

()y a x h k =-+。平移的方向、距离要根据h ,k 的值来决定。

(4)二次函数2

(0)y ax bx c a =++≠的图像:一般地,我们可以用配方法求抛物线

2

(0)y ax bx c a =++≠的顶点与对称轴。a b ac a b x a c bx ax y 44222

2

2-+??? ?

?

+=++=,因此,抛物线

2

(0)y ax bx c a =++≠的对称轴是2b

x a

=-,顶点坐标是24(,)24b ac b a a --

。 例题1:把抛物线y =3x 2先向上平移2个单位再向右平移3个单位,所得的抛物线是( ) A 、y =3(x +3)2-2

B 、y =3(x +3)2+2

C 、y =3(x -3)2-2

D 、.y =3(x -3)2+2

例题2:已知函数y =ax 2+bx +c 的图象如图,那么函数解析式为( )

A 、y =-x 2+2x +3

B 、y =x 2-2x -3

C 、y =-x 2-2x+3

D 、y =-x 2-2x -3

例题3:已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( ) A 、(-2,1) B 、(2,1) C 、(2,-1) D 、(1,2)

随堂练习:

1、在同一平面直角坐标系内,将函数1422

++=x x y 的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是( )

A 、(1-,1)

B 、(1,2-)

C 、(2,2-)

D 、(1,1-)

2、将抛物线y =3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A 、2

3(2)3y x =++ B 、2

3(2)3y x =-+ C 、2

3(2)3y x =+- D 、2

3(2)3y x =-- 3、如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数y=c bx x ++-

2

3

2的图像经过B 、C 两点. (1)求该二次函数的解析式; (2)结合函数的图像探索:当y >0时x 的取值范围。

例题4:关于x 的二次函数y =x 2-2mx +m 2和一次函数y =-mx +n (m ≠0),在同一坐标系中的大致图象正确的是( )

随堂练习:

1、二次函数2

()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )

A 、第一、二、三象限

B 、第一、二、四象限

C 、第二、三、四象限

D 、第一、三、四象限 2、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )

3、二次函数的增减性及其最值

(1)开口向上的二次函数,在对称轴左侧,y 随着x 的增大而减小;在对称轴右侧,y 随着x 的增大而增

B 、

C 、

D 、

大;在对称轴处取到最小值2

44ac b a

-,越靠近对称轴,函数值越小。

(2)开口向下的二次函数,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减

小;在对称轴处取到最大值2

44ac b a

-,越靠近对称轴,函数值越大。

例题1:二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是(

A 、21y y <

B 、21y y =

C 、21y y >

D 、不能确定

例题2:设A 123(2,),(1,),(2,)y B y C y -是抛物线2

(1)y x m =-++上的三点,则123,,y y y 的大小关系为( ) A 、123y y y >> B 、132y y y >> C 、321y y y >> D 、213y y y >> 随堂练习:已知二次函数y =-

12x 2-7x +15

2

,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( ) A 、y 1>y 2>y 3

B 、 y 1<y 2<y 3

C 、y 2>y 3>y 1

D 、 y 2<y 3<y 1

4、二次函数中三大参数的和函数图像的关系

(1)a 决定开口方向及开口大小,这与2

ax y =中的a 完全一样。

(2)b 和a 共同决定抛物线对称轴的位置,由于抛物线c bx ax y ++=2

的对称轴是直线a

b

x 2-

=,故: ①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

b

(即a 、b 异号)时,对称轴在y 轴右侧。

(3)c 的大小决定抛物线c bx ax y ++=2

与y 轴交点的位置。

当0=x 时,c y =,∴抛物线c bx ax y ++=2

与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

0

b

。 例题1:已知二次函数2

y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:

20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )

A 、1个

B 、2个

C 、3个

D 、4个

例题2:已知二次函数

的图象如图所示,有下列结论:①

;②abc >0;

③8a +c >0;④9a +3b +c <0。其中,正确结论的个数是( )。 A 、1 B 、2 C 、3 D 、4 随堂练习:

1

、已知二次函数

(其中

),关于这个二次函数的图象有如下

说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧。以上说法正确的有( ).

A 、0个

B 、1个

C 、2个

D 、3个 2、已知二次函数)0(2

≠++=a c bx ax y 的图象如图所示对称轴为2

1

-

=x 。下列结论中,正确的是( ) A 、abc >0 B 、a +b =0 C 、2b+c >0 D 、4a 十c <2b 3、已知二次函数

的图象如图所示,则下列5个代数式:ac ,a+b+c ,4a-2b+c ,2a+b ,2a-b

中,其值大于0的个数为( )

A 、2

B 、3

C 、4

D 、5

5、二次函数和不等式、方程的结合

(1)二次函数的零点的个数以及求解:通过判断2

=4b ac ?-的正负可以得到二次函数零点的个数,注意,

前提是需要注意一个函数是否为二次函数,需要判断二次项次数是否为零,其中12x =

、。 (2)二次函数和不等式的结合:在x 轴上方,则函数大于零;在x 轴下方,则函数小于零;在直线上方,

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

浅谈与二次函数有关的面积问题

实际问题与二次函数 柘城县牛城一中李中凯 一、知识和能力 能够根据二次函数中不同图形的特点选择方法求图形面积 二、过程和方法 通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 三、情感态度和价值观 由简单题入手逐渐提升,从而消除学生的畏难情绪,让学生有兴趣和积极性参与数学活动。 加强学生之间的合作交流,提高学生的归纳总结能力,培养学生不断反思的习惯。 四、教学重点和难点 重点:选择方法求图形面积 难点:如何割补图形求面积 教学方法 启发式、讨论式 教学用具: 多媒体课件 五、教学过程: 与二次函数有关的面积问题 小结方法 1、三角形的边在轴上或与轴平行 2、不规则图形或三角形三边均不与轴平行

教学活动 例题:已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求(1)抛物线解析式 (2)抛物线与x轴的交点A、B,与y轴交点C 学生完成后展示过程、交流 (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE 思考:这几个图形求面积有何共同点?(三角形边特殊吗?) 小结: 教师活动追问:你能求四边形OCDB的面积吗?你有几种方法? 你肯定行:△ADE的面积如何求呢?

小结:不规则图形或三边不具特殊性的三角形如何求面积 能力提升: (4)若点F(x,y)为抛物线上一动点,其 中-1≤x≤4,求当△AEF面积最大时点F的坐标及最大面积。 解决问题: (二次函数检测)17.已知平面直角坐标系xOy中, 抛物线2(1) =-+与直线y kx y a x a x =的一个公共点为(4,8) A. (1)求此抛物线和直线的解析式; (2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值; (3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN 恰好是梯形,求点N的坐标及梯形AOMN的面积.

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

初中数学之二次函数最值问题

初中数学之二次函数最值问题 一、选择题 1.(2008年山东省潍坊市)若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 2.(2008浙江杭州)如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()A.B.C.D. 3.(08绵阳市)二次函数y = ax2 + bx + c的部分对应值如下表: 利用二次函数的图象可知,当函数值y<0时,x的取值范围是(). A.x<0或x>2 B.0<x<2 C.x<-1或x>3 D.-1<x <3 4.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论: ①当时,函数值最大; ②当时,函数随的增大而减小; ③存在,当时,函数值为0. 其中正确的结论是() A.①②B.①③C.②③D.①②③

5.(2008 湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的 小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大() A. 7 B. 6 C. 5 D. 4 6.(2008泰安)如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最.接近的值是() A.4 B.C.D. 7.(2008山东泰 安)函数的图象如 图所示,下列对该 的是() 函数性质的论断不可能正确 ..... A.该函数的图象是中心对称图形 B.当时,该函数在时取得最小值2 C.在每个象限内,的值随值的增大而减小 D.的值不可能为1 8.若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 二、填空题 1.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元

二次函数与最值问题专题讲座

第四讲 二次函数与最值问题专题讲座 一、考点梳理 考点1:二次函数的解析式 一般式:y=ax 2+bx+c 顶点式:y=a(x+k)2+h 交点式:y=a(x-x 1)(x-x 2) 考点2:二次函数的图象:抛物线 考点3 二次函数的性质:二次函数图像的开口方向;顶点坐标;对称轴方程;最值. 二、题型透视 (一)、填空题 1、(2010 丽水)如图,四边形ABCD 中,∠BAD=∠ACB=90°, AB=AD,AC=4BC,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A 、2252x y = B 、2 25 4x y = C 、252x y = D 、254x y = 2(2010南充)抛物线)0)(3)(1(≠-+=a x x a y 的对称轴是( ) A 、x=1 B 、x=1- C 、x=3- D 、x=3 3、(2010 荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122 +-x x )可以由E (x ,2 x )怎样平移得到?( ) A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位 D .向右平移1个单位 4、(2010 咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、 B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2y D .不能确定 5(2010 襄樊)若函数22(2)2x x y x ?+=?? ≤ (x>2) ,则当函数值y =8时,自变量x 的值是( ) A B .4 C 4 D .4 6、(2010 东营)二次函数c bx ax y ++=2 的图形如图所示,则一次函数ac bx y -=与 c b a y +-= 在同一坐标系内的图象大致为( ) 7、(2010 荆门)二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误.. 的是( ) (A)ab <0 (B)ac <0 (C)当x <2时,y 随x 增大而增大;当x >2时,y 随x 增大而减小

二次函数和最值问题总结

二次函数的最值问题 二次函数y ax2bx c ( a 0) 是初中函数的主要内容,也是高中学习的重要基 础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情 况(当 a 时, 函数在 x b处取得最小值4ac b2,无最大值;当 a 0时,函数在 x b处取得 2a 4a 2a 4ac b2,无最小 值. 最大值 4a 本节我们将在这个基础上继续学习当自变 量x 在某个范围内取值时,函数的最值问 题.同时还将学习二次函数的最值问题在实际生活中的简单应 用. 二次函数求最值(一般范围类) 例 1.当 2 x 2 时,求函数 y x22x 3 的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草 图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变 量x 的值. 解:作出函数的图象.当x 1时, y min 4 ,当 x 2 时, y max 5. 例 2.当 1 x 2 时,求函数yx2x 1的最大值和最小值. 解:作出函数的图象.当 x 1 时, y min1,当 x 2 时, y max5 . 由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量 x 的范围的图象形状各异.下面给出一些常见情况: 例 3.当 x 0 时,求函数y x(2 x) 的取值范围.

资料

解: 作出函数 y x(2 x ) x 2 2x 在 x 0 内的图 象. 可以看出: 当 x 1 时, y min 1,无最大值. 所以,当 x 0 时,函数的取值范围 是 y 1 . 例 4. 当 t x t 1 时,求函数 y 1 x 2 x 5 的最小值 (其中 t 为常 数 ). 2 2 分析: 由于 x 所给的范围随着 t 的变化而变化,所以需要比较对称轴与其范围的相 对位 置. 解: 函数 y 1 x 2 x 5 的对称轴为 x 1 .画出其草图. 2 2 1 5 (1 ) 当对称轴在所给范围左侧.即 t 1 时: 当 x t 时, y min t 2 t ; t 1 t 1 0 t 1 2 2 (2 ) 当对称轴在所给范围之间.即 时: 当 x 1时, y min 1 12 1 5 3; 2 2 (3 ) 当对称轴在所给范围右侧.即 t 1 1 t 0 时: 当 x t 1 时, y min 1 (t 1)2 (t 1) 5 1 t 2 3. 2 2 2 1 t 2 3, t 0 2 综上所述: y3,0 t 1 1 t 2 t 5 , t 1 2 2 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值 ( 经济类问题 ) 例 1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定 对购买彩电的农户实行政府补贴. 规定每购买一台彩电, 政府补贴若干元, 经调查某商场销售彩电台数 y (台)与补贴款额 x (元)之间大致满足如图①所示的一次函数关系.随着补 贴款额 x 的不断增大, 销售量也不断增加, 但每台彩电的收益 Z (元)会相应降低且 Z 与 x 之间也大致满足如图②所示的一次函数关系.

专题五--二次函数的最值问题

专题五 二次函数的最值问题 【要点回顾】 1.二次函数2 (0)y ax bx c a =++≠的最值. 二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. 2.二次函数最大值或最小值的求法. 第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值. 如:2 y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:0x x =; 第二步:讨论: (1)若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。 (2) 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①对称轴02 m n x +≤ ,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m n x +>,即对称轴在m x n ≤≤的中点的右侧; 说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。 【例题选讲】 例1求下列函数的最大值或最小值. (1)5322--=x x y ; (2)432 +--=x x y .

同步练习:已知函数1x 2x 2 1y 2++= (1)写出抛物线的开口方向,顶点坐标、对称轴及最值; (2)求抛物线与x 轴、y 轴的交点; (3)观察图象:x 为何值时,y 随x 的增大而增大; (4)观察图象:当x 为何值时,y>0时,当x 为何值时,y=0;当x 为何值时,y<0。 例2 已知函数2 ,2y x x a =-≤≤,其中2a ≥-,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值. 同步练习:当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 例3当0x ≥时,求函数(2)y x x =--的取值范围. 同步练习:已知二次函数,322--=x x y (1)x 为何值时0=y ? (2)x 为何值时0>y ? (3)x 为何值时0

二次函数的应用—面积问题

二次函数面积问题 基础知识 () 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 知识典例 (夯实基础)(30分钟) [例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动. (1)运动第t秒时,△PBQ的面积y(cm2)是多少? (2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围. (3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? ()(5分钟) [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 强化练习 x

初三二次函数最值问题和给定范围最值(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 二次函数中的最值问题重难点复习 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数2y ax bx c =++用配方法可化成:2 ()y a x h k =-+的形式 ()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. a b ac a b x a c bx ax y 44222 2-+??? ? ?+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 二次函数常用来解决最值问题,这类问题实际上就是求函数的最大(小)值。一般而言,最大(小)值会在顶点处取得,达到最大(小)值时的x 即为顶点横坐标值,最大(小)值也就是顶点纵坐标值。 自变量x 取任意实数时的最值情况 (1)当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值; (2)当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. (3)二次函数最大值或最小值的求法. 第一步:确定a 的符号,0a >有最小值,0a <有最大值; 第二步:配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 2.自变量x 在某一范围内的最值. 如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:02b x x a ==- ; 第二步:讨论: [1]若0a >时求最小值(或0a <时求最大值),需分三种情况讨论:(以0a >时求最小值为例) ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧,在x m =处取最小值2min y am bm c =++; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部,在0x x =处取最小值2min 00y ax bx c =++; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧,在x n =处取最小值2min y an bn c =++. [2] 若0a >时求最大值(或0a <时求最小值),需分两种情况讨论:(以0a >时求最小值为例) ①对称轴02m n x +≤ ,即对称轴在m x n ≤≤的中点的左侧,在x n =处取最大值2max y an bn c =++; ②对称轴02 m n x +>,即对称轴在m x n ≤≤的中点的右侧,在x m =处取最大值2max y am bm c =++ 小结:对二次函数的区间最值结合函数图象总结如下:

二次函数解析式最值问题专题总结

二次函数解析式最值问题1.线段最值 例1:二次函数y=? 2 x+mx+n的图象经过点A(?1,4),B(1,0),y=?2 1 x+b经过点B,且与二次函数y=? 2 x+mx+n 交于点D. (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在BD上方),过N作NP⊥x轴,垂足为点P,交BD于点M,求MN 的最大值。 考点:[待定系数法求二次函数解析式, 一次函数的性质, 一次函数图象上点的坐标特征 例2:二次函数y=? 2 x+b x+c的图象与x轴交于A(1,0),且当x=0和x=?2时所对应的函数值相等。(1) 求此二次函数的表达式; (2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC 的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由。 (3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积。考点:[抛物线与x轴的交点, 二次函数的最值, 待定系数法求二次函数解析式, 轴对称-最短路线问题]

ax+3ax+c(a>0)与y轴交于C点,与x轴交于A.B两点,A点在B点左侧。点B 例3:已知:如图,抛物线y=2 的坐标为(1,0),OC=3BO. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值。

例5:如图,在平面直角坐标系中,抛物线y=25 4x +bx+c 与y 轴交于点A ,与x 轴交于B(1,0),C(5,0)两点,其对称轴与x 轴交于点M. (1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P ,使ΔPAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由; (3)连接AC ,在直线AC 的下方的抛物线上,是否存在一点N ,使ΔACN 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由. 例6:如图,已知抛物线y=2 ax ?3x+c 与y 轴交于点A(0,?4),与x 轴交于点B(4,0),点P 是线段AB 下方抛物线上的一个动点。 (1)求这条抛物线的表达式及其顶点的坐标; (2)当点P 移动到抛物线的什么位置时,∠PAB=90°求出此时点P 的坐标; (3)当点P 从点A 出发,沿线段AB 下方的抛物线向终点B 移动,在移动中,设点P 的横坐标为t ,△PAB 的面积为S ,求S 关于t 的函数表达式,并求t 为何值时S 有最大值,最大值是多少?

相关文档
最新文档