正三棱锥、正四面体、直角四面体的性质

正三棱锥、正四面体、直角四面体的性质
正三棱锥、正四面体、直角四面体的性质

正三棱锥性质

1.底面是正三角形。

2.侧面是三个全等的等腰三角形。

3.顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。

4.大用处的四个直角三角形(见图)。

(1)斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)

(2)高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)

(3)高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)

(4)斜高射影、侧棱射影、底边的一半构成的直角三角形。

说明:上述直角三角形集中了正三棱锥几乎所有元素。在正三棱锥计算题中,常常取上述直角三角形。其实质是,不仅使空间问题平面化,而且使平面问题三角化,还使已知元素与未知元素集中于一个直角三角形中,利于解出。

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的

(1)全面积 S

2 a;

(2)体积3;

(3)对棱中点连线段的长a;(此线段为对棱的距离,若一个球与正四面体的6条棱都相

切,则此线段就是该球的直径。)

(4)相邻两面所成的二面角α=

1 arccos

3

(5)对棱互相垂直。

(6)侧棱与底面所成的角为β=

1 arccos

3

(7)外接球半径a;

(8)内切球半径a.

(9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高).

1、侧面高为(a√3)/2 ,高为(a√6)/3

2、内切球半径(a√6)/12,外接球半径(a√6)/4,内切球半径+外接球半径=高

3、与棱相切的球半径(a√2)/4

有一个三面角的各个面角都是直角的四面体叫做直角四面体.

如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形;

②直角顶点O 在底面上的射影H 是△ABC 的垂心;

③体积 V= 16

a b c ; ④底面面积S △ABC

⑤S

2△BOC =S △BHC ·S △ABC ; ⑥S

2△BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 2222

1111OH a b c =++; ⑧外接球半径

⑨内切球半径 r=AOB BOC AOC ABC S S S S a b c

????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的

(1)全面积 S 全

2a ;

(2)体积

3; (3)对棱中点连线段的长

a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。)

(4)相邻两面所成的二面角 α=1arccos 3

(5)对棱互相垂直。

(6)侧棱与底面所成的角为β=1arccos 3

(7)外接球半径

a ; (8)内切球半径

a . (9)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高).

A B C D O H

高考数学必背经典结论-正四面体性质

必背经典结论---提高数学做题速度! 立体几何(必背经典结论) 之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2 (正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离, 若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 3 6 (正方体体对角线l 32=) (3) 正四面体的体积为3 12 2a (正方体小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61=)

(6)外接球的半径为 a 4 6 (是正方体的外接球,则半径正方体体对角线l 2 1 =) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线l 6 1 =) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 16a b c ; (4)底面面积S △ABC (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 22221111 OH a b c =++; (8)外接球半径 (9)内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++

《角平分线的性质》导学案

《角平分线的性质》导学案 教学目标 :1. 掌握角的平分线的性质定理和它的逆定理的内容、证明及应用。 2. 理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题. 3. 渗透角平分线是满足特定条件的点的集合的思想。 教学重点和难点 :角平分线的性质定理和逆定理的应用是重点. 性质定理和判定定理的区 别和灵活运用是难点. } 如图,AB =AD ,BC =DC , 沿着AC 画一条射线AE ,AE 就是∠BAD 的角平分线, 你知道 为什么吗 用直尺和圆规作角的平分线 已知:∠AOB 求作:射线OC 使∠AOC =∠BOC ] 做法: 探究角平分线的性质 (1)实验:将∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察 两次折叠形成的三条折痕,你能得出什么结论 (2)猜想:角的平分线上的点到角的两边的距离相等. 已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E 、 求证: PD=PE 几何书写 在Rt △ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,则: ⑴图中相等的线段有哪些相等的角呢 ⑵哪条线段与DE 相等为什么 - ⑶若AB =10,BC =8,AC =6, 求BE ,AE 的长和△AED 的周长。 P A O 》 B C E D 1 |

在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。 | 如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢 已知:如图,QD ⊥OA ,QE ⊥OB , ( 点D 、E 为垂足,QD =QE . 求证:点Q 在∠AOB 的平分线上. D ) B A C D ~ E B F

正四面体性质及其应用

正四面体性质及其应用 Revised by Jack on December 14,2020

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高 的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则ABCD 2R 的正四面体,A 到面BCD 的距离为2 6 3R ,则上面一个球的球心A 到桌面的距 离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60○,E 为AC 的中点,将△ADE 与△BEC 分别沿ED P ,则三棱锥P -DCE 的外接球的体积为( ) A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DC E 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球心的一个截面如图1

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的 (1)全面积S全 = 2a; (2)体积 V=3 12 a; (3)对棱中点连线段的长 d= a;(此线段为对棱的距离,若一个 球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角α= 1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β= 1 arccos 3 (7)外接球半径 R= 4 a; (8)切球半径 r= 12 a. (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c.则 ①不含直角的底面ABC是锐角三角形; ②直角顶点O在底面上的射影H是△ABC的垂心; ③体积V= 1 6 a b c; ④底面面积S△ABC ⑤S2△BOC=S△BHC·S△ABC; A B C D O H

⑥S 2 △BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 22 221111 OH a b c =++; ⑧外接球半径 R= ⑨切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全= 2a ; (2)体积 3 ; (3)对棱中点连线段的长 d= a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 R= 4 a ; (8)切球半径 r= a . (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; A O H

角平分线的性质定理和判定定理(含答案)

几何专题2:角平分线的性质定理和判定定理 一、 知识点(抄一遍): 1. 角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线. 2. 角平分线的性质定理: 角平分线上的点,到这个角的两边的距离相等. 3. 角平分线的判定定理: 角的内部到角的两边距离相等的点在角的平分线上. 二、 专题检测题 1. 证明角平分线的性质定理. (注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明角平分线的判定定理. 3. 定理的几何语言表示 (1)角平分线的性质定理: ∵ , ∴ . (2)角平分线的判定定理: ∵ , ∴ . 4. 已知:如图所示,BN 、CP 分别是∠ABC 、∠ACB 的角平分线,BN 、CP 相交于O 点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的角平分线. 5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂足,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD. B

6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD. 7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 8. 如图,已知P 是∠AOB 平分线上的一点.PC ⊥OA ,PD ⊥OB ,垂足分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ; (2)OP 是CD 的垂直平分线; (3)OC=OD. O

几何专题2:角平分线的性质定理和判定定理答案 1. 证明角平分线的性质定理. 已知:如图,OC 平分∠AOB ,点P 在OC 上, PD ⊥OA 于点D ,PE ⊥OB 于点E 求证: PD=PE 证明:∵OC 平分∠ AOB ∴ ∠1= ∠2 ∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中 ∠PDO= ∠PEO ∠1= ∠2 OP=OP ∴△PDO ≌ △PEO(AAS) ∴PD=PE 2. 证明角平分线的判定定理. 已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂足,PD =PE . 求证:点P 在∠AOB 的平分线上 证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB ∴ ∠PDO =∠PEO =90° 在Rt △PDO 和Rt △PEO 中 PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL ) ∴ ∠ POD =∠POE ∴点P 在∠AOB 的平分线上. 3. 定理的几何语言表示 (1)角平分线的性质定理: ∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB , ∴ DP=EP. (2)角平分线的判定定理: ∵ PD⊥OA,PE⊥OB,PD =PE . ∴ OP 平分∠AOB . O O

正四面体的性质 (2)

正四面体的性质及应用 设正四面体ABCD 的棱长为a ,则存在以下性质: 【性质1】正四面体的3对相对棱互相垂直,任意一对相对棱之间的距离为 a 22 【性质2】正四面体的高=h a 3 6 【性质3】正四面体的表面积为23a .体积为 3122a 【性质4】正四面体的内切球半径为=r a 126.外接球半径为=R a 4 6且4:3:1::=h R r 【性质5】正四面体底面内任一点O 到三个侧面的距离之和为 a 36 【性质6】正四面体内任一点到四个侧面的距离之和为a 3 6 【性质7】正四面体的侧棱与底面所成的二面角大小为: 36arccos 【性质8】正四面体相邻侧面所成的二面角的大小为: 3 1arccos 【性质9】设正四面体侧棱与底面所成的角为α,相邻两侧面所成的二面角的大小为β,则有βαtan 2tan = 【性质10】正四面体的外接球的球心与内切球的球心O 重合且为正四面体的中心 【性质11】中心与各个顶点的四条连线中两两夹角相等为3 1arccos -π

【性质12】正四面体内接于正方体,且它们共同内接于同一个球.球的直径等于正 方体的体对角线.( V 正四面体: V 正方体 : V 球 = 2 : 6 : 3 3) 二.正四面体性质的应用 【例1】一个球与正四面体的6条棱都相切,若正四面体的棱长为a.求此球的体积.【例2】在正四面体ABCD.E,F分别为棱AD,BC的中点,连结AF,CE.①异面直线AF 和CE所成的角_______②CE与平面BCD所成的角_______ 【例3,四个顶点在同一球面上,则此球的表面积为________ 【例4】四面体的ABCD的表面积为S , 其四个面的中心分别为E , F , G , H .设四面体EFGH的表面积为T , 则 S : T = _______

角平分线性质定理及逆定理的证明

角平分线的性质与判定 教学目标: 1、 能够对角平分线的性质定理及逆定理进行严密的证明。 2、 能够灵活运用两个定理进行相关问题的计算或者证明。 教学重点:定理的证明及应用。 教学难点:定理的证明。 教学过程: 一.复习引入: 在第二章,我们利用角的轴对称性质,通过实验的方法,探索出了角平分线的性质。 你还记得角平分线的性质吗?你能用推理的方法证明它们的真实性吗? 角平分线的性质:___________________________________________________ 角平分线的性质的逆命题是: 二、新课学习: 知识点一、证明:角平分线上的点到这个角的两边的距离相等. 已知:OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA 于点C ,DF ⊥OB 于点D 求证:CF =DF. 证明: 应用格式: 例 1.已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。求证:PE=PF 知识点二、证明:到线段两个端点距离相等的点在这条线段的垂直平分线上。 已知:如图5,点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,PC =PD 求证:点P 在∠AOB 的平分线上. 证明: 应用格式: 例2. 已知: PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 平分线,它们交于P ,PD ⊥BM 于D ,PF ⊥BN 于F ,求证:BP 为∠MBN 的平分线。 知识点三. 关于三角形三条角平分线交点的定理: 三角形三条角平分线相交于一点,并且这一点到三边的距离相等. 已知:如图6,AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、∠ABC 、∠ACB 的平分线 求证:① AP 、BQ 、CR 相交于一点I ;② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI. 证明: 三、课堂总结:总结本节课的收获 四.课堂检测 1、有一点P 到三角形三条边的距离相等,则点P 一定是 的交点 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则= 图4

角平分线的性质定理及其逆定理 教学设计

角平分线的性质定理及其逆定理教学设计教学设计思想 通过前面的学习已经探究出角平分线上的点所具有的性质,本节学习对这个性质进行证明。让学生完成对三角形全等的判定公理的推论的证明,进而应用这个公理完成对角平分线性质定理的证明,对于平分线的性质定理的逆定理仿照上节课处理线段垂直平分线逆命题的思路,引导学生解决与定理和逆定理的有关问题。对于尺规作角平分线,要让学生明白每步做法的依据。最后通过例题的学习来巩固这些知识点。 教学目标 知识与技能 总结角平分线的性质定理及其逆定理的证明并能灵活应用它们进行有关的计算和证明; 说出用尺规作角平分线的依据; 能够熟练地按照证明的格式和步骤对一些命题进行证明。 过程与方法 经历用尺规作角平分线的过程; 经历寻找证明、作图思路的过程,进一步发展推理证明意识和能力; 情感态度价值观 通过观察、类比、对比、归纳等方法尝试从不同角度分析问题,形成不同的策略; 愿意动手操作,并和同伴交流,形成不同意见。 教学重点和难点 重点是角平分线的性质定理和逆定理的证明及其应用; 难点是角平分线的性质定理和逆定理的应用。 解决办法:通过例题的学习,分析出解题的思路,总结出做题的方法。 教学方法 启发引导、小组讨论 课时安排 1课时 教具学具准备 投影仪或电脑、三角板 教学过程设计 (一)角平分线的性质定理

我们已经探究出角平分线上的点所具有的性质,怎样对这个性质进行证明呢? 角平分线的性质定理角平分线上的点到这个角的两边的距离相等。 证明角平分线的性质定理时,我们将用到三角形全等判定公理的推论: 推论两角及其中一角的对边对应相等的两个三角形全等(AAS)。 做一做 证明三角形全等判定公理的推论。 注:让学生独立按照证明的格式完成对“AAS”定理的证明,作为证明本节定理的依据。 证明略。 利用上面你已经证明的推论,可以对角平分线的性质定理给出如下的证明。 已知:如下图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别为D,E。 求证:PD=PE。 证明:∴OC是∠AOB的平分线(已知), ∴∠1=∠2(角平分线的定义)。 ∵PD⊥OA,P E⊥OB(已知), ∴∠PDO=∠PEO=90°(垂直的定义)。 在△PDO和△PEO中, ∠PDO=∠PEO (已证), ∠1=∠2(已证), OP=OP(公共边), ∴△PDO≌△PEO (AAS)。 ∴PD=PE(全等三角形的对应边相等)。 (二)角平分线性质定理的逆定理 做一做 1.请写出角平分线性质定理的逆命题。

正四面体的性质

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; 2 2 2 2 & ⑥S △Bo +S △Ao +S △ AO =S △ABC 1 1 + -- ? 2 2 J b c R= 1 J a 2 + b 2 +c 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos ⑤ S △ BO =S BHC ? & ABC ⑧外接球半径 C

2 ⑨内切球半径r= S^OB +S^OC +S^OC~S m c a + b +c

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos C

角平分线的性质定理教案

角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理的应用; 教学方法:引导学生发现、探索、研究问题,归纳结论的方法 教学过程: 一,新课引入: 1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点 操作:(1)画一个角的平分线; (2)在这条平分线上任取一点P,画出P点到角两边的距离。 (3)说出这两段距离的关系并思考如何证明。 2.定理的获得: A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明, 得出此命题是真命题,从而得到定理,并写出相应的符号语言。 B、分析此定理的作用:证明两条线段相等; 应用定理所具备的前提条件是:有角的平分线,有垂直距离。 3.定理的应用 二.例题讲解: 例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。 求证:PE=PF (此题已知中有垂直,缺乏角平分线这个条件)

例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点 E、F, 圆心O在∠MAN的角平分线AQ上。 求证:BC=EF (此题已知中有角平分线,缺乏垂直这个条件) 三:课堂小结: ①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂 直距离; ②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习 1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC 分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1= ∠2;BD=CD,AD=AD),但无法证明△ABD ≌△ACD,所以必须添加一些线帮助解题。

正四面体性质及其应用

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3 a ; (3) 体积V = 2 12 a 3 ; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2 a ; (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=a rctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4 a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球 心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3 ,则AB=BC=CA =1 所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3 ,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8 a 解析:直接运用正四面体的性质,内切球的半径r = 6 12 a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12 a ,因此选 例3:(06年陕西卷)将半径为R 心到桌面的距离为 。 解析

角平分线的性质

12.3 角的平分线的性质 一、教学分析 1.教学容分析 本节课是新人教版教材《数学》八年级上册第12.3节第一课时容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析 刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础. 3.教学环境分析 利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体、投影仪等教学系统辅助教学,将有关教学容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握. 二、教学目标 1、知识与技能: 1.掌握作已知角的平分线的尺规作图方法。 2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决问题. 2、过程与方法: 1.在探究作已知角的平分线和角平分线的性质的过程中,发展几何直觉。 2.提高综合运用三角形全等的有关知识解决问题的能力. 3.初步了解角的平分线的性质在生活、生产中的应用. 3、情感态度价值观:

正四面体性质及其应用

正四面体性质及其应用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 球的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则 ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3 R ,则上面一个球的球心A 到桌面的距离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60 ○ ,E 为AC 的中点,将△ADE 与△BEC 分别沿重合于点 P ,则三棱锥P -DCE 的外接球的体积为( )A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DCE 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球球心的一个截面如图1

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

人教版八年级上册数学 角平分线性质的证明

人教版八年级上册数学 角平分线性质的证明教学设计 教学目标: 知识与技能:了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。 过程与方法:在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。 情感态度与价值观:在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验 教学重难点 重点: 角的平分线的性质的证明及应用。难点:角的平分线的性质的探究。 教学过程 (一)导入新课 复习角平分线的画法 (二)生成新知 探究做一做(学生独立完成,同组同学交流,找生到黑板上板演.教师纠正答案) 如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论. 结论:角的平分线的性质:角的平分线上的点到角的两边的距离相等. 证明步骤: ①明确命题中的已知和求证; ②根据题意,画出图形,并用数学符号表示已知和求证; ③经过分析,找出由已知推出求证的途径,写出证明过程. (三)深化新知

思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报) (四)应用新知 1.例题: 2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中 PD=PE. (2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D、E,则图中PD=PE吗? (3)在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢? (五)作业小结 小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

角平分线的性质典型例题

【典型例题】 例1.已知:如图所示,/ C=/ C'= 90 °, AC= AC 求证:(1)Z ABC=Z ABC ; (2)BO BC(要求:不用三角形全等判定). 分析:由条件/ C=Z C = 90°, AO AC,可以把点A看作是/ CBC平分线上的点,由此可打开思路. 证明:(1)vZ C=Z C = 90°(已知), ??? ACL BC, AC丄BC (垂直的定义). 又??? AO AC (已知), ???点A在/CBC勺角平分线上(到角的两边距离相等的点在这个角的平分线上). ? / ABC=Z ABC. (2)vZ C=Z C;Z ABC=Z ABC, ?180°—(/ C+Z ABC = 180°—(/ C '+/ ABC)(三角形内角和定理)即/ BAC=Z BAC, ??? AC L BC, AC L BC, ?BO BC (角平分线上的点到这个角两边的距离相等). 评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性. 例 2.女口图所示,已知△ ABC中, PE// AB交BC于E, PF// AC交BC于F, P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分Z BAC 并说明理由. 分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出Z 1 = Z 2,再利用平行线推得Z 3=Z 4,最后用角平分线的定义得证. 解:AD平分Z BAC ??? D到PE的距离与到PF的距离相等, ???点D在Z EPF的平分线上. ? Z 1 = Z 2. 又??? PE// AB ???/ 1 = Z 3.

正四面体

正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 化学中CH4,CCl4等分子也呈正四面体状。 相关数据 当正四面体的棱长为a时,一些数据如下: 高:√6a/3。中心把高分为1:3两部分。 表面积:√3a^2 体积:√2a^3/12 对棱中点的连线段的长:√2a/2 外接球半径:√6a/4,正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球半径:√6a/12,内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 棱切球半径:√2a/4. 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 两邻面夹角:2ArcSin(√3/3)=ArcCos(1/3)≈1.23095 94173 4077(弧度)或70°31′43″60571 58335 111,与两条高夹角在数值上互补。 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。

相关文档
最新文档