超声波探伤的常见问题

超声波探伤的常见问题
超声波探伤的常见问题

超声波探伤的常见问题

盐城奥凯 2015-06-10 14:55

1、什么是无损探伤/无损检测?

(1)无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。

(2)无损检测:NondestructiveTesting(缩写NDT)

2、常用的探伤方法有哪些?

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:

常规无损检测方法有:

-超声检测Ultrasonic Testing(缩写UT);

-射线检测Radiographic Testing(缩写RT);

-磁粉检测Magnetic particle Testing(缩写MT);

-渗透检验Penetrant Testing (缩写PT);

-涡流检测Eddy current Testing(缩写ET);

非常规无损检测技术有:

-声发射Acoustic Emission(缩写AE);

-泄漏检测Leak Testing(缩写UT);

-光全息照相Optical Holography;

-红外热成象Infrared Thermography;

-微波检测Microwave Testing

3、超声波探伤的基本原理是什么?

超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。

目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。

4、超声波探伤与X射线探伤相比较有何优的缺点?

超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。

5、超声波探伤的主要特性有哪些?

(1)超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过射线而不能反射;

(2)波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。

(3)超声波的传播能量大,如频率为1MHZ(100赫兹)的超生波所传播的能量,相当于振幅相同而频率为1000HZ(赫兹)的声波的100万倍。

6、超生波探伤板厚14毫米时,距离波幅曲线上三条主要曲线的关系怎样?

测长线Ф1 х 6 -12dB

定量线Ф1 х 6 -6dB

判度线Ф1 х 6 -2dB

7、用超生波探伤时,底波消失可能是什么原因造成的?

(1)近表表大缺陷;(2)吸收性缺陷;(3)倾斜大缺陷;(4)氧化皮与钢板结合不好。

8、简述超生波探伤中,超生波在介质中传播时引起衰减的原因是什么?

(1)超声波的扩散传播距离增加,波束截面愈来愈大,单位面积上的能量减少。

(2)材质衰减一是介质粘滞性引起的吸收;二是介质界面杂乱反射引起的散射。

9、试块的主要作用是什么?

(1)校验灵敏度;(2)校准扫描线性。

10、用超生波对饼形大锻件探伤,如果用底波调节探伤起始灵敏度对工作底面有何要求?

(1)底面必须平行于探伤面;

(2)底面必须平整并且有一定的光洁度。

11.超声波探伤选择探头K值有哪三条原则?

(1)声束扫查到整个焊缝截面;

(2)声束尽量垂直于主要缺陷;

(3)有足够的灵敏度。

12、超声波探伤仪主要有哪几部分组成?

主要有电路同步电路、发电路、接收电路、水平扫描电路、显示器和电源等部份组成。

13、发射电路的主要作用是什么?

由同步电路输入的同步脉冲信号,触发发射电路工作,产生高频电脉冲信号激励晶片,产生高频振动,并在介质内产生超声波。

14、超声波探伤中,晶片表面和被探工件表面之间使用耦合剂的原因是什么?

晶片表面和被检工件表面之间的空气间隙,会使超声波完全反射,造成探伤结果不准确和无法探伤。

15.JB1150-73标准中规定的判别缺陷的三种情况是什么?

(1)无底波只有缺陷的多次反射波。

(2)无底波只有多个紊乱的缺陷波。

(3)缺陷波和底波同时存在。

16.JB1150-73标准中规定的距离――波幅曲线的用途是什么?

距离――波幅曲线主要用于判定缺陷大小,给验收标准提供依据它是由判废线、定量线、测长线三条曲线组成;

判废线――判定缺陷的最大允许当量;

定量线――判定缺陷的大小、长度的控制线;

测长线――探伤起始灵敏度控制线。

17.什么是超声场?

充满超声场能量的空间叫超声场。

18.反映超声场特征的主要参数是什么?

反映超声场特征的重要物理量有声强、声压声阻抗、声束扩散角、近场和远场区。

19.探伤仪最重要的性能指标是什么?

分辨力、动态范围、水平线性、垂直线性、灵敏度、信噪比。

20.超声波探伤仪近显示方式可分几种?

(1)A型显示示波屏横座标代表超声波传递播时间(或距离)纵座标代表反射回波的高度;

(2)B型显示示波屏横座标代表超声波传递播时间(或距离),这类显示得到的是探头扫查深度方向的断面图;

(3)C型显示仪器示波屏代表被检工件的投影面,这种显示能绘出缺陷的水平投影位置,但不能给出缺陷的埋藏深度。

21.超声波探头的主要作用是什么?

1、探头是一个电声换能器,并能将返回来的声波转换成电脉冲;

2、控制超声波的传播方向和能量集中的程度,当改变探头入射角或改变超声波的扩散角时,可使声波的主要能量按不同的角度射入介质内部或改变声波的指向性,提高分辨率;

3、实现波型转换;

4、控制工作频率;适用于不同的工作条件。

22.为什么要加强超波探伤合录和报告工作?

任何工件经过超声波探伤后,都必须出据检验报告以作为该工作质量好坏的凭证,一份正确的探伤报告,除建立可靠的探测方法和结果外,很大程度上取决于原始记录和最后

出据的探伤报告是非常重要的,如果我们检查了工件不作记录也不出报告,那么探伤检查就毫无意义。

23.无损检测有哪些应用?

应用时机:设计阶段;制造过程;成品检验;在役检查。

应用对象:各类材料(金属、非金属等);各种工件(焊接件、锻件、铸件等);各种工程(道路建设、水坝建设、桥梁建设、机场建设等)。

24.超声波焊缝探伤时为缺陷定位仪器时间扫描线的调整有哪几种方法?

有水平定位仪、垂直定位、声程定位三种方法

25.在超声波探伤中把焊缝中的缺陷分几类?怎样进行分类?

在焊缝超声波探伤中一般把焊缝中的缺陷分成三类:点状缺陷、线状缺陷、面状缺陷。

在分类中把长度小于10mm的缺陷叫做点状缺陷;一般不测长,小于10mm的缺陷按5mm计。把长度大于10mm的缺陷叫线状缺陷。把长度大于10mm高度大于3mm 的缺陷叫面状缺陷。

26.超声波试块的作用是什么?

超声波试块的作用是校验仪器和探头的性能,确定探伤起始灵敏度,校准扫描线性。

27.什么是斜探头折射角β的正确值?

斜探头折射角的正确值称为K值,它等于斜探头λ射点至反射点的水平距离和相应深度的比值。

28.当局部无损探伤检查的焊缝中发现有不允许的缺陷时如何办?

应在缺陷的延长方向或可疑部位作补充射线探伤。补充检查后对焊缝质量仍然有怀疑对该焊缝应全部探伤。

29.超声波探伤仪中同步信号发生器的主要作用是什么?它主要控制哪二部分电路工作?

同步电路产生同步脉冲信号,用以触发仪器各部分电路同时协调工作,它主要控制同步发射和同步扫描二部分电路。

30.无损检测的目地?

1、改进制造工艺;

2、降低制造成本;

3、提高产品的可能性;

4、保证设备的安全运行。

31.超探仪的作用及主要应用行业

超探仪是一种便携式工业无损探伤仪器,它能够快速便捷、无损伤、精确地进行工件内部多种缺陷(焊缝、裂纹、夹杂、折叠、气孔、砂眼等)的检测、定位、评估和诊断。既可以用于实验室,也可以用于工程现场。本仪器能够广泛地应用在制造业、钢铁冶金业、金属加工业、化工业等需要缺陷检测和质量控制的领域,也广泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。它是无损检测行业的必备仪器

32.有关超声波探伤的国家标准和行业标准

超声波探伤国家标准和行业标准有:

1、QB/T 12604.1–90 无损检测术语超声检测

2、JB/T 10061-1999 A型脉冲反射式超声探伤仪通用技术条件

3、JJG 746-91 超声探伤仪中华人民共和国国家计量检定规程

各种常见无损探伤方法简介与比较

各种常见无损探伤方法简介与比较 三种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。 常用的无损检测方法:超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性

a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1. 磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小 2. 磁粉检测的适用性和局限性: a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。 b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。 c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。 d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。 渗透检测(PT) 1.液体渗透检测的基本原理: 零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。 2.渗透检测的优点: a.可检测各种材料;金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式; b.具有较高的灵敏度(可发现0.1μm宽缺陷) c.显示直观、操作方便、检测费用低。 3.渗透检测的缺点及局限性: a.它只能检出表面开口的缺陷; b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件; c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择最适当无损检测方法。 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。

简述全自动超声波无损检测方法

简述全自动超声波无损检测方法 摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。 关键词:全自动超声环焊缝检测 引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。 1、AUT检测方法适用范围 本文论述了环向焊缝全自动超声检测的要求。在AUT检测所得到结论的基础上分析评定环焊缝。根据工程临界判别法(ECA)来最终确定检测验收标准。 2 AUT检测方法步骤 2.1 外观检查 工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。 所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。 2.2 超声波检测 工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。 3 超声波检测系统 AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。所有被选通道都应能显示一个线性A型扫查显示。检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。仪器的线性应按照相应标准来确定,每6个月测定一次。仪器的误差应该不大于实际满幅高的5%。这一条件应该适用于对数放大器及线性放大器。每一个检测的通道都应可以选择脉冲反射法或者直射法。每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。对于B扫查或者图像显示的资料记录也应该为0~100%。对于每个门都有两个可记录的输出信号。无论是模拟信号还是数字信号都包括信号的高度和渡越时间。它们都适于多通道记录仪或计算机数据采集软件的显示。 4 AUT的系统设置 4.1 AUT探头及探头灵敏度的确定 在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。 4.2 闸门的设置 4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。闸门的起点和长度应记录在工艺文件中。

拉曼常见问题

一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。 1. 两者是一回事。ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数wavenumber,单位cm-1。 2.两者一回事。 拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移是??波数,或??cm-1。 3.在Raman谱中,wavenumber有两种理解,一种是相对波数,这时就等于Ramanshift;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。 所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 1. 我今天还在用激光拉曼测聚苯乙烯,没有出现你说的情况啊是不是玻璃管被污染的厉害? 2. 你测出的玻璃的信号,有没有可能们焦点位置不对? 3. 应该是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。 4. 用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。 如果还不行,你可以查一下“液芯光纤”这个东东 5.建议: (1)有机液体里面的分析物质浓度多大? Raman测定的是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。 (2)你用的是共聚焦Raman吗?聚焦点要在毛细管的溶液里面才好。可以在溶液中放点“杂物”方便聚焦。(3)玻璃是无定形态物质,应该Raman信号比较弱才对。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别? 1. 原则上说,拉曼谱中的荧光和荧光谱中的荧光是一样的,只要激发波长和功率密度相同。注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了。但有一点要注意,不同波长的激发光照射样品,得到的拉曼相近,但荧光可以有很大不同,甚至相同波长不同功率激发,荧光谱都大不一样。 2. “注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了”? Raman测定的是散射光,得到的是Raman shift. Raman shift和绝对波长(荧光光谱)之间要一个转换的吧。 3. 生物样品一般荧光峰比较宽,用荧光光测试之前一般先会做仪器本身曲线校正也就是仪器本身的响应曲线,这样测出的荧光峰才比较准,特别是对于宽峰更要做这个较准。 而Raman光谱一般采集的区域比较窄(指的是波长区域),一般在窄的波长范围变化不大,因此一般不考虑仪器本身响应曲线误差,但是Raman光谱来测宽荧光峰,影响就比较大。 四、什么是共焦显微拉曼光谱仪? 1. 共焦拉曼指的是空间滤波的能力和控制被分析样品的体积的能力。通常主要是利用显微镜系统来实现的。 仅仅是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

常见的无损探伤方法

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种: 常规无损检测方法有: ●超声检测 Ultrasonic Testing(缩写 UT); ●射线检测 Radiographic Testing(缩写 RT); ●磁粉检测 Magnetic particle Testing(缩写 MT); ●渗透检验 Penetrant Testing (缩写 PT); ●涡流检测Eddy current Testing(缩写 ET); 非常规无损检测技术有: ●声发射Acoustic Emission(缩写 AE); ●泄漏检测Leak Testing(缩写 UT); ●光全息照相Optical Holography; ●红外热成象Infrared Thermography; ●微波检测 Microwave Testing X光射线探伤、超声波探伤对内部探伤适用,不适用表面探伤.磁粉探伤主要探表层深度3mm内缺陷.渗透探伤.着色探伤主要探工件表面缺陷(对不锈钢探伤比较适用). 常见的无损探伤方法 常见的无损探伤方法 VT-Visual Testing目测 RT-Radiographic Testing射线检测 UT-Ultrasonic Testing超声检测 PT-(Dye) Penetrant Testing渗透检测 MT-Magnetic particle Testing磁粉检测 ST-Spectrum Testing光谱测试 ET-Eddy Current Testing涡流检测 HT-Hardness Testing硬度检测 -Hydrostatic Testing 水压试验 MPT-Mechanical performance test机械性能 WT-Wall thickness Testing测厚 DT-Diameter Testing管径测试 MST-Metallographic inspection金相检验 ORT-Out of roundness testing不圆度检查 MMT-磁记忆

超声波无损检测的发展

超声无损检测仪器的发展 超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。计算机的介入,一方面提高了设备的抗干扰能力,另一方面利用计算机的运算功能,实现了对缺陷信号的定量、自动读数、自动识别、自动补偿和报警。20世纪80年代,新一代的超声检测仪器——数字化、智能化超声仪问世,标志着超声检测仪器进入一个新时代。 超声无损检测仪器将向数字化、智能化、图像化、小型化和多功能化发展。在第十三、十四世界无损检测会议仪器展览会、1996年中国国际质量控制技术与测试仪器展览会、1997年日本无损检测展览会等大型国际会议会展中,数字化、智能化、图像化超声仪最引人注目,显示了当今世界无损检测仪器的发展趋势。其中以德国Krauthammer公司、美国Panametrics公司、丹麦Force Institutes公司与美国PAC公司的产品最具代表性。真正的智能化超声仪应该是全面、客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析,提高可靠性。提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。 现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,检测结果准确性、可靠性都依赖于扫查装置。例如采用声藕合监视或藕合不良反馈控制方式提高探头与工件表面的耦合稳定度以及检测的可靠性。从20世纪90年代以来,出现的各种智能检测机器人,已经形成了机器人检测的新时代及工程检测机器人的系列与商业市场。例如日本东京煤气公司的蜘蛛型机器人,移动速度约60m/h ,重约140kg,采用16个超声探头可以对运行状态下的球罐上任意点坐标位置进行扫描。日本NKK公司研制的机器人借助管道内液体推力前进,可以测量输油管道腐蚀状况,其检测精度小于1mm。 丹麦Force研究所的爬壁机器人,重约10吨,采用磁吸附与预置磁条跟踪方式可检测各类大型储罐与船体的缺陷。 超声无损检测技术的发展 超声无损检测技术是国内外应用最广泛、使用频率最高且发展较快的一种无损检测技术, 体现在改进产品质量、产品设计、加工制造、成品检测以及设备服役的各个阶段和保证机器零件的可靠性和安全性上。世界各国出版的无损检测书

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

拉曼光谱实验问题

拉曼光谱实验问题 请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 请指教,谢谢!...谢谢专家。 多看看相关文献,我做的蛋白质常用514nm,也可以用紫外200nm附近激发即为共振拉曼,浓度低也可以测。 理论上讲,拉曼光谱与激发光的波长无关。但有的样品在一种波长的激光激发下会产生强烈荧光,对拉曼光谱产生干扰。这时要换一种激发光,以避开荧光的干扰。若样品在不同激光激发下都不发荧光,则随使用哪一种激光都可以。 拉曼散射是光子与分子的相互作用,当激发光子的能量接近两个电子态之间的跃迁能量时,就会出现共振拉曼或者共振荧光。共振效应(共振拉曼或共振荧光)的存在与否取决于激发激光的波长。如果激发光子不能给分子提供足够的能量,相应的产生荧光的跃迁将不能发生。然而,如果产生了荧光,其强度将远远大于拉曼散射光,从而会掩盖拉曼信号的特征。有时,荧光还来自于被污染的样品中所存在的杂质,或者来自于一种包裹物周围的本底物质。 选择激发激光波长是避免荧光辐射一种行之有效的方法。对于大多数样品而言,选择近红外或者紫外激光可以避免激发荧光。近红外激发下,激光光子没有足够的能量以激发出分子荧光;紫外激发下,虽然激发出分子荧光,但是荧光辐射和拉曼信号的能量相差甚多。 原文由wuzl发表: 感谢指教。喇曼位移应和激发光波长没有关系,但喇曼散射的强度应该和波长的有关,另外仪器光学系统对波长响应也应有最佳选择,选择波长时这2个方面要考虑吗? 根据瑞利定律,拉曼散射线的强度与激发光波长的四次方成反比。如果不考虑检测器等因素,当然是激发光的波长越短越好,最好是紫外激光。但可惜的是,现在用于拉曼光谱仪上的CCD最好的响应波长在620nm左右,480nm以下的响应非常差,若CCD技术不进一步改进,紫外激光器对拉曼光谱仪很难说是一种有用的激光器。 一种基于多波长激发的拉曼光谱的荧光消除方法,涉及一种化学分析和光电信号处理方法,它是通过激光光源依次产生的多个相近波长激光照射到同一被测样品上,依次激发出由荧光和拉曼光组成的混合光谱;光谱仪采集到各混合光谱信号,对齐各混合光谱,通过全光谱积分值归一化校正光谱信号幅度,得到经过横坐标对齐和纵坐标幅度校正的光谱;求取各混合光谱两两间差值,该差值即为荧光信号的差分值,计算该差分值的逆差分,逆差分除以差分步长得到的是荧光背景值与一个常数的和,最后从混合光谱中扣除该荧光背景值,即可分离出纯净的拉曼光谱,实现拉曼光谱的荧光消除目的。本发明方法合理,能有效地消除背景荧光,而且成本低、使用方便,易于推广使用。

无损检测介绍、检测内容、资质相关资料汇总

无损检测相关资料 一、什么是无损检测 无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。中国目前开设无损检测专业课程的高校有大连理工大学、西安理工大学、西安工程大学、南昌航空大学等院校。在无损检测的基础理论研究和仪器设备开发方面,中国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。 二、常用的无损检测方法 无损检测方法很多,据美国国家宇航局调研分析,其认为可分为六大类约70余种。但在实际应用中比较常见的有以下五种,也就是我们所说的常规的无损检测方法: (一)常规无损检测方法 目视检测Visual Testing (缩写 VT); 超声检测 Ultrasonic Testing(缩写 UT); 射线检测Radiographic Testing(缩写 RT); 磁粉检测 Magnetic particle Testing(缩写 MT); 渗透检测 Penetrant Testing (缩写 PT); 涡流检测 Eddy Current Testing (缩写 ET); 声发射 Acoustic emission (缩写 AE); 超声波衍射时差法 Time Of Flight Diffraction(缩写 TOFD)。 1、目视检测(VT) 目视检测,是国内实施的比较少,但在国际上非常重视的无损检测第一阶段首要方法。按照国际惯例,目视检测要先做,以确认不会影响后面的检验,再接着做四大常规检验。例如BINDT的PCN认证,就有专门的VT1、2、3级考核,更有专门的持证要求。经过国际级的培训,其VT检测技术会比较专业,而且很受国际机构的重视。

超声波无损检测技术的理论研究

毕业设计(论文) 题目超声波无损检测技术 的理论研究 系(院)物理与电子科学系 专业电子信息科学与技术 班级2006级4班 学生姓名李荣 学号2006080927 指导教师吴新华 职称讲师 二〇一〇年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

超声波无损检测技术的理论研究 摘要 本文首先针对波无损检测技术进行理论研究,简明扼要的介绍了超声波无损检测技术的研究意义和发展现状,超声波无损检测技术是当前一种较为先进的检测技术,应用领域更广,适用范围更宽。然后细致的分析了超声波无损检测技术的工作原理特性,基于超声波的优良特性,和传播机理,进行器件或工程的无损检测,并分析了超声波无损检测系统的噪声干扰来源,提出了降低噪声的方法。尝试用计算机模拟系统通过仿真软件来处理超声波无损检测过程中的庞大的数据信息。直观准确地定位缺陷的位置和类型。最后介绍了超声波在无损检测领域的两种典型应用,建筑方面,可以通过超声探头,利用声波的反射的折射来检测混凝土路基的厚度,电力系统方面,利用超声波无损检测技术确定次绝缘子的寿命定位绝缘子中缺陷的类型的具体位置,快速有效的解除安全隐患。 关键词:超声波;无损检测;计算机仿真;瓷绝缘子

无损检测超声检测公式汇总

无损检测超声检测公式 汇总 -CAL-FENGHAI.-(YICAI)-Company One1

超声检测公式 1.周期和频率的关系,二者互为倒数: T=1/f 2.波速、波长和频率的关系:C=f λ 或λ=f c ∶Cs ∶C R ≈∶1∶ 4.声压: P =P 1-P 0 帕斯卡(Pa )微帕斯卡(μPa )1Pa =1N/m 2 1Pa =106μP 6.声阻抗:Z =p/u =ρcu/u =ρc 单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s ) 7.声强;I =21Zu2=Z P 22 单位; 瓦/厘米2(W/cm 2)或 焦耳/厘米2·秒(J/cm 2·s ) 8.声强级贝尔(BeL )。△=lgI 2/I 1 (BeL ) 9.声强级即分贝(dB ) △=10lgI 2/I 1 =20lgP 2/P 1 (dB ) 10.仪器示波屏上的波高与回波声压成正比:△20lgP 2/P 1=20lgH 2/H 1 (dB ) 11.声压反射率、透射率: r=Pr / P0 t =Pt / P0 ?? ?=-=+21//)1(1Z t Z r t r r =12120Z Z Z Z P P r +-= t =122 02Z Z Z P P t += Z 1—第一种介质的声阻抗; Z 2—第二种介质的声阻抗 12.声强反射率: R= 2 12 1220???? ??+-==Z Z Z Z r I I r 声强透射率:T ()2122 14Z Z Z Z += T+R=1 t -r =1 13.声压往复透射率;T 往= 2 122 1)(4Z Z Z Z + 14.纵波斜入射: 1sin L L c α=1sin L L c α'=1n si S S c '=2sin L L c β=2sin S S c β CL1、CS1—第一介质中的纵波、横波波速; C L2、C S2—第二介质中的纵波、横波波速;αL 、α′L —纵波入射角、反射角; βL 、βS —纵波、横波折射角;α′S —横波反射角。 15.纵波入射时:第一临界角α: βL =90°时αⅠ=arcsin 21 L L c c 第二临界角α:βS =90°时αⅡ=arcsin 21S L c c 16.有机玻璃横波探头αL =°~°, 有机玻璃表面波探头αL ≥° 水钢界面 横波 αL =°~° 17.横波入射:第三临界角:当α′L=90°时αⅢ=arcsin 11 L S c c =°当αS ≥°时,钢中横波全反射。 有机玻璃横波入射角αS (等于横波探头的折射角βS )=35°~55°,即K=tg βS=~时,检测灵敏度最高。 18.衰减系数的计算 1. α=(Bn-Bm-20lg n/m)/2x(m-n) α—衰减系数,dB/m (单程); )(m n B B -—两次底波分贝值之差,dB ;δ为反射损失,每次反射损失约为(~1)dB ; X 为薄板的厚度 T :工件检测厚度,mm ;N :单直探头近场区长度,mm ;m 、n —底波反射次数

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

无损探伤常见问题汇总

无损探伤常见问题汇总 资料整理:无损检测资源网 沧州市欧谱检测仪器有限公司

物理探伤就是不产生化学变化的情况下进行无损探伤。 一、什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,无损检测资源网可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。

七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后为什么要退磁处理。 十、超声波探伤的基本原理是什么? 答:超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 十一、超声波探伤与X射线探伤相比较有何优的缺点? 答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。 十二、超声波探伤的主要特性有哪些? 答:1、超声波在介质中传播时,在不同质界面上具有反射的特性,如

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

无损探伤原理、无损检测原理、常用方法、相关问题(20101119094353)

无损探伤原理、无损检测原理、常用方法、相关问题 什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。 七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B =μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B 根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某

拉曼光谱问答总结

拉曼光谱问答总结(转自光谱网) 一、测试了一些样品,得到的是,但是文献是,不知道它们之间的转换公式是怎么样的?激光波长。 . 两者是一回事。即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图 横坐标就是波数,单位-。 .两者一回事。 拉曼频移指频率差,但通常用波数表示,单位-,可以说某个谱峰拉曼位移是??波数,或??-。 .在谱中,有两种理解,一种是相对波数,这时就等于;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时等于(激发波长减去 峰的绝对波数)。 所以通常在谱中,一般可理解为。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 . 我今天还在用激光拉曼测聚苯乙烯,没有出现你说的情况啊是不是玻璃管被污染的厉害? . 你测出的玻璃的信号,有没有可能们焦点位置不对? . 应该是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。 . 用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖 玻片,然后焦点聚焦到盖玻片以下。 如果还不行,你可以查一下“液芯光纤”这个东东 .建议: ()有机液体里面的分析物质浓度多大? 测定的是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。 ()你用的是共聚焦吗?聚焦点要在毛细管的溶液里面才好。可以在溶液中放点“杂物”方便聚焦。()玻璃是无定形态物质,应该信号比较弱才对。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用 其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面 的荧光图有什么区别? . 原则上说,拉曼谱中的荧光和荧光谱中的荧光是一样的,只要激发波长和功率密度相同。注意横坐标要

拉曼常见问题

一、测试了一些样品,得到的就是Ramanshift,但就是文献就是wavenumber,不知道它们之间的转换公式就是怎么样的?激光波长632、8nm。 1、两者就是一回事。ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就就是波数wavenumber,单位cm-1。 2、两者一回事。 拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移就是??波数,或??cm-1。 3、在Raman谱中,wavenumber有两种理解,一种就是相对波数,这时就等于Ramanshift;另一种就是绝对波数(这在荧光光谱中用的比较多),这个绝对波数就是与激发波长有关,不同的激发波长得到的绝对波数就 是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。 所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果就是玻璃的光谱。 1、我今天还在用激光拉曼测聚苯乙烯,没有出现您说的情况啊就是不就是玻璃管被污染的厉害? 2、您测出的玻璃的信号,有没有可能们焦点位置不对? 3、应该就是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。 4、用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。 如果还不行,您可以查一下“液芯光纤”这个东东 5、建议: (1)有机液体里面的分析物质浓度多大? Raman测定的就是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。 (2)您用的就是共聚焦Raman不?聚焦点要在毛细管的溶液里面才好。可以在溶液中放点“杂物”方便聚焦。 (3)玻璃就是无定形态物质,应该Raman信号比较弱才对。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,就是真正的荧光特征谱不?这与荧光光谱仪里面的荧光图有什么区别? 1、原则上说,拉曼谱中的荧光与荧光谱中的荧光就是一样的,只要激发波长与功率密度相同。注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了。但有一点要注意,不同波长的激发光照射样品,得到的拉曼相近,但荧光可以有很大不同,甚至相同波长不同功率激发,荧光谱都大不一样。 2、“注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了”? Raman测定的就是散射光,得到的就是Raman shift、 Raman shift与绝对波长(荧光光谱)之间要一个转换的吧。 3、生物样品一般荧光峰比较宽,用荧光光测试之前一般先会做仪器本身曲线校正也就就是仪器本身的响应曲线,这样测出的荧光峰才比较准,特别就是对于宽峰更要做这个较准。 而Raman光谱一般采集的区域比较窄(指的就是波长区域),一般在窄的波长范围变化不大,因此一般不考虑仪器本身响应曲线误差,但就是Raman光谱来测宽荧光峰,影响就比较大。 四、什么就是共焦显微拉曼光谱仪? 1、共焦拉曼指的就是空间滤波的能力与控制被分析样品的体积的能力。通常主要就是利用显微镜系统来实现的。 仅仅就是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

相关文档
最新文档