液晶光学相控阵关键技术研究

液晶光学相控阵关键技术研究

液晶光学相控阵关键技术研究

液晶光学相控阵(LC-OPA)是一种结合了微波相控阵天线技术与

液晶电光特性的新型无机械波束扫描控制器件,具有驱动电压器、功耗低、重量轻、抗振动、抗辐射干扰、大孔径和性价比高等优点,在激光雷达和空间光通信等领域具有重要的应用前景和应用价值,已成为光学相控阵中的研究热点。目前LC-OPA技术研究还存在系统分析模型不完善和偏转效率较低等问题,本文针对LC-OPA的系统建模、性能优化和波束控制三个方面开展研究,主要学术贡献如下:1、建立了完备的LC-OPA系统分析模型,包括空间传播模型、相位调制模型、波束偏转控制模型和影响因素模型,提出了反映系统对波束能量利用率的偏转效率指标;研究了液晶层厚度与LC-OPA相移特性的关系;分析了器件设计参数的选取、偏转控制方式的选择、边缘效应的大小、制作工艺误差的大小对LC-OPA偏转效率和偏转角度的影响,为LC-OPA 器件的研制提供了理论依据和指导。2、针对LC-OPA偏转效率优化的问题,设计了偏转性能闭环优化系统,提出了基于快速搜索法和随机

并行梯度下降法的偏转性能优化方法,提高了系统的偏转性能,提升

了优化过程的迭代速度,通过实验优化了LC-OPA的波束偏转效率。3、针对LC-OPA多波束形成问题,提出了子孔径多波束法,通过对LC-OPA 划分独立控制的子阵列,形成了低栅瓣干扰的多波束偏转;提出了阵

列复用多波束法,通过共享整个LC-OPA的孔径资源,形成了高分辨率的多波束偏转;提出了迭代傅里叶变换多波束扫描方法,利用阵列综

合和迭代运算的方式获得LC-OPA的多波束相位激励值,通过实验形

成了动态扫描的多波束。4、提出了LC-OPA的波束发散角控制方法,通过对LC-OPA加载不同焦距的透镜相位调制函数,实现了对高斯光

束传播参数的控制,并设计试验验证了对LCOPA入射波束发散角大小的控制能力。将该方法拓展应用于空间光通信系统,设计了基于

LC-OPA发散角控制振动干扰抑制系统,推导了振动干扰中通信波束最优发散角的计算方法,降低了振动导致的通信系统综合功率损失。5、提出了LC-OPA角度放大方法,通过级联倒置的望远镜系统,扩大了LCOPA的波束偏转角度;设计了粗-精扫级联扫描模式,实现了LC-OPA 大角度连续扫描的问题。

(工艺流程)图文详解液晶面板制造工艺流程

图文详解液晶面板制造工艺流程 时间:2009年11月02日来源:PCPOP作者:周冰【大中小】液晶显示器的核心:液晶面板 曾经爆发过的面板门事件,足以解释用户对于液晶显示器所采用液晶面板类型的重视,不仅如此,液晶显示器重要的技术提升,如LED背光,超广视角,都与面板有着直接的关系。而占一台液晶显示器80%成本的液晶面板,足以说明它才是整台显示器的核心部分,它的好坏,可以说直接决定了一台液晶显示器品质是否优秀。 如此来看,民用的液晶显示器的生产只是一个组装的过程,将液晶面板、主控电路、外壳等部分进行主装,基本上不会有太过于复杂的技术问题。难道这是说,液晶显示器其实是技术含量不好的产品吗?其实不然,液晶面板的生产制造过程非常繁复,至少需要300 道流程工艺,全程需在无尘的环境、精密的技术工艺下进行。 液晶面板的大体结构其实并不是很复杂,笔者将其分为液晶板与背光系统两部分。

液晶面板的LED背光系统 背光系统包括背光板、背光源(CCFL或LED)、扩散板(用于将光线分布均匀)、扩散片等等。由于液晶不会发光,因此需要借助其他光源来照亮,背光系统的作用就在于此,但目前所用的CCFL灯管或LED背光,都不具备面光源的特性,因此需要导光板、扩散片之类的组件,使线状或点状光源的光均匀到整个面,目的是为了让液晶面板整个面上不同点的发光强度相同,但实际要做到理想状态非常困难,只能是尽量减少亮度的不均匀性,这对背光系统的设计与做工有很大的考验。

液晶板在未通电情况下呈半透明状态 可弯曲的柔性印刷板起到信号传输的作用,并且通过异向性导电胶与印刷电路板(蓝 色PCB板的部分)压和,使两者连接想通 液晶板从外到里分别是水平偏光片、彩色滤光片、液晶、TFT玻璃、垂直偏光片,此外在液晶面板边上还有驱动IC与印刷电路板,主要用于控制液晶板内的液晶分子转动与

电光材料在光学相控阵技术中的应用

电工材料2007N o.2 32 电光材料在光学相控阵技术中的应用 梁鸿秋,杨传仁,张继华,冷文建,宋秀娟 (电子科技大学电子薄膜与集成器件国家重点实验室,成都 610054) 摘要:综述了光学相控阵的发展背景,对不同电光材料铌酸锂(LiNbO 3)、砷化镓铝(Al GaAs )、锆钛酸铅镧(PL ZT )陶瓷和液晶制作的光学相控阵进行了阐述,简要介绍了近期的一些研究成果,并对光学相控阵技术的发展前景进行了展望。 关键词:光学相控阵;光移相器;液晶;电光材料中图分类号:TM20;TN241 文献标志码:A 文章编号:1671-8887(2007)02-0032-04 A pp l ication of Electro-o p tic Materials in O p tical Phased Arra y Technolo gy L I A N G H o n g -Qi u ,YA N G C h ua n-Re n ,Z HA N G J i-Hua ,L EN G W e n-J i a n ,SO N G Xi u-J ua n (St a t e ke y L a bor a t or y o f Elect r onic Thi n Fil ms a n d I nt e g r a t ed Devices ,U ni versi t y o f Elect r onic Science a n d Tech n ol o gy o f Chi na ,Chen g d u 610054,Chi na ) Abstract :This p a p e r r e p or ts t he bac k g r oun d of o p tical p hase d a r r a y t ec h n ol o gy .Discusse d is o p tical p hase s hif t e r ’s dif f e r e nt ele me nt w hic h is o p tical p hase d a r r a y ’s mai n basic unit ,s uc h as L i N bO 3、Al Ga As 、PL Z T ce r a mics 、L i q ui d c r y st al.i nt r oduci n g r ece ntl y r esea rc h f i n di n g s a n d p r os p ecti n g de vel o p me nt of o p tical p hase d a r r a y t ec h n ol o gy . K e y words :o p tical p hase d a r r a y ;o p tical s hif t e r ;li q ui d c r y st al ;elect r o-o p tic mat e ri als 梁鸿秋等:电光材料在光学相控阵技术中的应用 基金项目:国家自然科学基金项目(60607004);电子科技大学青年科技基金项目(J X05015) 作者简介:梁鸿秋(1977-),女,硕士研究生,从事铁电薄膜光学性能研究,(电子信箱)aut umn97@https://www.360docs.net/doc/915812088.html, 。收稿日期:2006-12-07 1引言 光扫描技术在激光电视、激光打印、激光排版、特别是自由空间通信、激光相控阵雷达等国防领域有重要的应用前景,已成为各国密切关注的对象。传统的光扫描技术受限于机械性光束导向和稳定化机构的性能和成本。必需的瞄准和稳定化通常要求精确、快速的机械移动,甚至需要亚微米级的光源控制精度,这些对目前可获得的机械光束控制系统而言是不可实现的。与传统的机械式光学扫描系统相比,光相控阵天线小巧、重量轻、灵敏,无惯性、低功耗、可获得纳秒级的扫描速度并随机存取,可望克服机械光束控制的许多限制并显著增强光学系统的性能,包括光束的灵巧控制、可编程扫描、多光束产生、电子透镜化等。光学相控阵技术的突破 将对高性能激光雷达乃至光电传感器系统产生重大影响。本文对不同电光材料LiNbO 3、Al GaAs 、PL ZT 陶瓷和液晶制作的光学相控阵进行了阐述,介绍了光学相控阵的发展现状及前景。 2 光学相控阵技术的发展背景 光学相控阵的基本构成单元是光移相器,目前 国际上光移相器主要基于两类电光材料:一类是电光晶体LiNbO 3、Al GaAs ;另一类是电光陶瓷PL ZT 和液晶。 2.1 以L i NbO 3、Al G a As 为材料的移相器阵列20世纪70年代初美国开始研究激光相控阵技术。1971年,Me y er 提出了一种用于光束偏转的由许多LiNbO 3调制单元构成的阵列[1],偏转器由46个移相器构成,每个调制单元有独立的控制线以获 得连续扫描控制。通过这一简单的一阶偏转装置,验证了光学相控阵扫描的几个基本概念。随后Ni 2nomi y a 展示了由LiNbO 3构成的偏转单元形成的

液晶屏的种类

液晶屏,液晶屏的种类,液晶屏的原理作者:佚名来源:https://www.360docs.net/doc/915812088.html, 发布时间:2010-3-27 13:25:10 [收藏] [评论] 液晶屏,液晶屏的种类,液晶屏的原理 一个液晶显示器的好坏首先要看它的面板,因为面板的好坏直接影响到画面的观看效果,并且液晶电视面板占到了整机成本了一半以上,是影响液晶电视的造价的主要因素,所以要选一款好的液晶显示器,首先要选好它的面板。液晶面板可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度等非常重要的参数。液晶面板发展的速度很快,从前些年的三代,迅速发展到四代、五代,然后跳过六代达到七代,而更新的第八代面板也在谋划之中。目前生产液晶面板的厂商主要为三星、LG-Philips、友达等,由于各家技术水平的差异,生产的液晶面板也大致分为机种不同的类型。常见的有TN面板、MVA和PV A等VA类面板、IPS面板以及CPA面板。 1、TN面板 TN全称为TwistedNematic(扭曲向列型)面板,低廉的生产成本使TN成为了应用最广泛的入门级液晶面板,在目前市面上主流的中低端液晶显示器中被广泛使用。目前我们看到的TN面板多是改良型的T N+film,film即补偿膜,用于弥补TN面板可视角度的不足,目前改良的TN面板的可视角度都达到160°,当然这是厂商在对比度为10∶1的情况下测得的极限值,实际上在对比度下降到100:1时图像已经出现 失真甚至偏色。 作为6Bit的面板,TN面板只能显示红/绿/蓝各64色,最大实际色彩仅有262.144种,通过“抖动”技术可以使其获得超过1600万种色彩的表现能力,只能够显示0到252灰阶的三原色,所以最后得到的色彩显示数信息是16.2M色,而不是我们通常所说的真彩色16.7M色;加上TN面板提高对比度的难度较大,直接暴露出来的问题就是色彩单薄,还原能力差,过渡不自然。 TN面板的优点是由于输出灰阶级数较少,液晶分子偏转速度快,响应时间容易提高,目前市场上8 ms以下液晶产品基本采用的是TN面板。另外三星还开发出一种B-TN(Best-TN)面板,它其实是TN面板的一种改良型,主要为了平衡TN面板高速响应必须牺牲画质的矛盾。同时对比度可达700∶1,已经可以和MVA或者早期PVA的面板相接近了。台湾很多面板厂商生产TN面板,TN面板属于软屏,用手轻轻划会出现类似的水纹,另外仔细看屏幕大致是这样的: 2、VA类面板 VA类面板是现在高端液晶应用较多的面板类型,属于广视角面板。和TN面板相比,8bit的面板可以提供16.7M色彩和大可视角度是该类面板定位高端的资本,但是价格也相对TN面板要昂贵一些。VA 类面板又可分为由富士通主导的MVA面板和由三星开发的PVA面板,其中后者是前者的继承和改良。V A类面板的正面(正视)对比度最高,但是屏幕的均匀度不够好,往往会发生颜色漂移。锐利的文本是它 的杀手锏,黑白对比度相当高。 富士通的MVA技术(Multi-domainVerticalAlignment,多象限垂直配向技术)可以说是最早出现的广视角液晶面板技术。该类面板可以提供更大的可视角度,通常可达到170°。通过技术授权,我国台湾省的奇美电子(奇晶光电)、友达光电等面板企业均采用了这项面板技术。改良后的P-MVA类面板可视角度可达接近水平的178°,并且灰阶响应时间可以达到8ms以下三星Samsung电子的PVA(PatternedVerticalAlignment)技术同样属于VA技术的范畴,它是MVA技术的继承者和发展者。其综合素质已经全面超过后者,而改良型的S-PVA已经可以和P-MVA并驾齐驱,获得极宽的可视角度和越来越快的响应时间。PVA采用透明的ITO电极代替MVA中的液晶层凸

详细分析光学相控阵LiDAR

详细分析光学相控阵LiDAR 由于全固态LiDAR内部没有任何宏观或微观上的运动部件,耐久性和可靠性的优势不言而喻,且顺应了自动驾驶对LiDAR固态化、小型化和低成本化的趋势,因此成为车用激光雷达的趋势。下面就按照不同的固态激光雷达技术做简单介绍。首先要介绍的是光学相控阵LiDAR。 1.光学相控阵LiDAR 激光雷达从机械转动向聚束成形的进化趋势与雷达完全相同:军事上广泛应用的相控阵雷达一般拥有上千个发射天线单元,通过调节波束合成的方式,可以改变雷达扫描的方向而不需要机械部件运转,灵活性很高,适合应对高机动目标,还可发射窄波束作为电子战天线。 对于激光雷达,为了完全取消机械结构,考虑通过调节发射阵列中每个发射单元的相位差来改变激光的出射角度,采用相控阵原理实现固态激光雷达。 那么什么是相控阵原理呢?生活中最常见的干涉例子是水波,两处振动产生的水波相互叠加,有的方向两列波互相增强,有的方向正好抵消,将这个原理放大,采用多个光源组成阵列,通过控制各光源发射的时间差,就能合成角度灵活,且精密可控的主光束,这就是相控阵的原理。 在光学相控阵(OPA,Optical Phased Array)LiDAR中,相控阵发射器由若干发射接收单元组成阵列,通过改变加载在不同单元的电压,进而改变不同单元发射光波特性(如光强、相位),实现对每个单元光波的独立控制,通过调节从每个相控单元辐射出的光波之间的相位关系,在设定方向上产生互相加强的干涉从而实现高强度光束,而其它方向上从各个单元射出的光波彼此相消,因此,辐射强度接近于零。组成相控阵的各相控单元在程序的控制下,可使一束或多束高强度光束的指向按设计的程序实现随机空域扫描。 光学相控阵是怎样通过控制发射阵列中每个发射单元的相位差来改变激光的出射角度呢?

液晶光相控阵技术及应用研究

液晶光相控阵技术及应用研究 采用向列型液晶材料制作的纯相位液晶光相控阵具有响应速度快、分辨率高、体积小、重量轻、可编程性强等突出优点,成为近年 来国内外光学相控阵领域中研究的前沿热点。作为一种性能优良的光学器件,本文对液晶光相控阵技术及应用问题展开研究,主要工作与 贡献如下:1、针对基于液晶光相控阵实现高效率精确非机械式波束偏转问题,详细研究了液晶光相控阵的栅瓣形成机理,推导出了各个模 型下出射光束远场光强分布的解析表达式,并给出了栅瓣位置及强度 的估算公式,发现栅瓣的位置和强度由单缝衍射与多缝干涉共同决定。通过实验验证了二元光栅模型能够更准确地解释液晶光相控阵的栅 瓣形成机理。2、针对系统输出功率较低的问题,研究了基于二维液晶光相控阵阵列的激光相干合成原理,深入分析了不同情况下各子阵的 附加相位对光束相干合成的影响,提出了实现合成光束在阵列视场域 内连续扫描的方法。基于实验室自制的液晶光相控阵,验证了合成光 束的一维偏转。3、针对矢量光场的生成问题,设计并构建了基于液晶光相控阵的通用型矢量光场发生器,推导出了发生器中液晶光相控阵 四个部分之间的坐标关系以及各个部分相位图的计算公式。提出了实现矢量光场发生器中4 f系统非机械式横向精确对齐的方法,有效降 低了发生器中光路对齐的复杂度,增加了系统的灵活性。4、针对矢量光场发生器中存在的一些影响光场调控精度的不利因素,构建了矢量 光场发生器的自适应闭环结构,显著提高了系统的工作性能,并扩宽 了其应用范围。校正了矢量光场发生器的偏振调制,在提高偏振调制

精度的同时减小了调制过程中两个自由度之间的相互耦合。给出校正幅度调制的迭代优化算法,可以在几步之内快速收敛,实现像素级上的幅度优化。5、建立了控制衍射极限矢量光场自旋轴指向的通用型数学模型,通过将位于高数值孔径透镜焦点处的电耦极子辐射出来的电场进行相干叠加,推导出了透镜孔径面上所需的入射光场的解析表达式,利用优化后的矢量光场发生器准确生成了焦场在几种不同自旋轴指向下所需的入射光场,并通过Richard-Wolf矢量衍射理论详细仿真了理想和实验情况下强聚焦场的电场分布情况。同时计算了焦场的自旋密度,定量分析了其自旋轴指向。

液晶面板类型大全

液晶面板的类型 液晶显示器的好坏首先要看它的面板,因为面板的好坏直接影响到画面的观看效果,并且液晶电视面板占到了整机成本了一半以上,是影响液晶电视的造价的主要因素,所以要选一款好的液晶显示器,首先要选好它的面板。液晶面板可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度等非常重要的参数。液晶面板发展的速度很快,从前些年的三代,迅速发展到四代、五代,然后跳过六代达到七代,而更新的第八代面板也在谋划之中。目前生产液晶面板的厂商主要为三星、LG-Philips、友达等,由于各家技术水平的差异,生产的液晶面板也大致分为机种不同的类型。常见的有TN面板、MVA和PVA等VA类面板、IPS面板以及CPA面板。 1、TN面板 TN全称为Twisted Nem ati c(扭曲向列型)面板,低廉的生产成本使TN成为了应用最广泛的入门级液晶面板,在目前市面上主流的中低端液晶显示器中被广泛使用。目前我们看到的TN面板多是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,目前改良的TN面板的可视角度都达到160°,当然这是厂商在对比度为10∶1的情况下测得的极限值,实际上在对比度下降到100:1时图像已经出现失真甚至偏色。 作为6Bit的面板,TN面板只能显示红/绿/蓝各64色,最大实际色彩仅有262.144种,通过“抖动”技术可以使其获得超过1600万种色彩的表现能力,只能够显示0到252灰阶的三原色,所以最后得到的色彩显示数信息是16.2 M色,

而不是我们通常所说的真彩色16.7M色;加上TN面板提高对比度的难度较大,直接暴露出来的问题就是色彩单薄,还原能力差,过渡不自然。 TN面板的优点是由于输出灰阶级数较少,液晶分子偏转速度快,响应时间容易提高,目前市场上8ms以下液晶产品基本采用的是TN面板。另外三星还开发出一种B-TN(Best-TN)面板,它其实是TN面板的一种改良型,主要为了平衡TN面板高速响应必须牺牲画质的矛盾。同时对比度可达700∶1,已经可以和MVA或者早期PVA的面板相接近了。台湾很多面板厂商生产TN面板,TN面板属于软屏,用手轻轻划会出现类似的水纹,另外仔细看屏幕大致是这样的:

光学基础知识

光学基础知识 可见光谱只是所有电磁波谱中的一小部分,人眼可感受到可见光的波长为400nm(紫色)~700nm(红色)。 红、绿、蓝被称为三原色(RGB)。红色、绿色、蓝色比例的变化可以产生出多种颜色,三者等量的混合可以再现白色。 补色的概念:从白色中减去颜色A所形成的颜色,称之为颜色A的补色(complementary color)。 白色-红色red=青色cyan 白色-绿色green=洋红magenta 白色-蓝色blue=黄色yellow 白色-红色-绿色-蓝色=黑色 补色的特点:当使用某个补色滤镜时,该补色对应的原色会被过滤掉。 原色以及所对应补色的名称: 颜色再现有两种方式: 原色加法:三原色全部参与叠加形成白色,任意其中两种原色相加形成不参与合成的颜色的补色。 原色减法:三补色全部参与叠加形成黑色,任意其中两种补色相加形成不参与合成的颜色的原色。

原色加法比较简单,由原色叠加而形成其他颜色,但是应用较少;而原色减法是从白色中减掉相应原色而形成其他颜色,就是用补色来叠加形成其他颜色,应用的场合比较多。 光的直线传播定律:光在均匀介质中沿直线传播。 费马定律:当一束光线在真空或空气中传播时,由介质1投射到与介质2的分界面上时,在一般情况下将分解成两束光线:反射(reflection)光线和折射(refraction)光线。 反射定律:反射角等于入射角。i = i' 镜面表面亮度取决于视点,观察角度不同,表面亮度也不同。 一个理想的漫射面将入射光线在各个方向做均匀反射,其亮度与视点无关,是个常量。 折射定律:n1 sin i = n2 sin r 任何介质相对于真空的折射率,称为该介质的绝对折射率,简称折射率(Index of refraction)。公式中n1和n2分别表示两种介质的折射率。

不同类型液晶面板材料与结构的优缺点分析2

自所采用地液晶材料和面板结构,优缺点也不尽相同! 一、型: 全称为(扭曲向列型)面板,低廉地生产成本使成为了应用最广泛地入门级液晶面板.在目前市面上主流地中低端液晶显示器中被广泛使用地面板为类型面板.这种类型地液文档收集自网络,仅用于个人学习 晶面板应该算是应用于入门级和中端地面板产品,最为重要地有一点就是价格实惠、低廉,成为众多厂商选用地 产品. 在技术上,与前两种类型地液晶面板相比在技术性能上略为逊色,它不能表现出艳丽色彩(某些面板标称能达到色,实际是通过液晶显示器内部地电路芯片实现地),并且可视角度也受到了一定地限制.之文档收集自网络,仅用于个人学习 所以型这种面板产品仍然是众多厂商采用地主力还是因为由于他地输出灰接级数较少,液晶分子偏转速度快,文档收集自网络,仅用于个人学习 致使它地响应时间容易提高,出于成本控制,现在市场上大部分产品大多都采用地是液晶面板. 二、型: 型液晶面板在目前地显示器产品中应用较为广泛,色彩和大可视角度是它最为明显地技术特点,目前型面板主要分为两种,一种为型,另一种为型. 其中是富士通主导地一种面板类型,它地全称为,是一种多象限垂直配 .它是利用突出物使液晶静止时并非传统地直立式,而是偏向某一个角度静止;当施加电压让液晶分子改变成 水平以让背光通过则更为快速,这样便可以大幅度缩短显示时间,也因为突出物改变液晶分子配向,让视野角度 更为宽广.在视角地增加上可达度以上,反应时间缩短至以内. 而型则是三星推出地一种面板类型,它在富士通面板地基础上有了进一步地发展和提高,是一种图像垂直调整技术,该技术直接改变液晶单元结构,让显示效能大幅提升可以获得优于地亮度输出和对比度. 文档收集自网络,仅用于个人学习 此外在这两种类型基础上又延出改进型和两种面板类型,在技术发展上更趋向上,可视角度可达文档收集自网络,仅用于个人学习 度,响应时间被控制在毫秒以内(采用加速达到),而对比度可轻易超过地高水准,三星文档收集自网络,仅用于个人学习 自产品牌地大部份产品都为液晶面板. 广视角技术原理分析 广视角技术同样属于技术地范畴,实际上它跟极其相似,可以说是地一种变形.采文档收集自网络,仅用于个人学习 用透明地层代替中地凸起物,制造工艺与模式相容性较好.透明电极可以获得更好地开口率,最大文档收集自网络,仅用于个人学习 限度减少背光源地浪费.和毕竟一脉相承,在实际性能表现上两者都是相当地.也属于(常暗) 文档收集自网络,仅用于个人学习 模式液晶,在受损坏而未能受电时,该像素呈现暗态.这种模式大大降低了液晶面板出现“亮点”地可能性. 文档收集自网络,仅用于个人学习 文档收集自网络,仅用于个人学习 不用屋脊形地凸起物如何生成倾斜地电场呢很巧妙地解决了这一问题.如图,上地不再是一个文档收集自网络,仅用于个人学习 完整地薄膜,而是被光刻了一道道地缝,上下两层地缝并不对应,从剖面上看,上下两端地电极正好依次错开,平 行地电极之间也恰好形成一个倾斜地电场来调制光线. (连续焰火状排列) 模 式广视角技术

LCD面板类型

LCD面板类型 一个液晶显示器的好坏首先要看它的面板,因为面板的好坏直接影响到画面的观看效果,并且液晶电视面板占到了整机成本了一半以上,是影响液晶电视的造价的主要因素,所以要选一款好的液晶显示器,首先要选好它的面板。液晶面板可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度等非常重要的参数。液晶面板发展的速度很快,从前些年的三代,迅速发展到四代、五代,然后跳过六代达到七代,而更新的第八代面板也在谋划之中。目前生产液晶面板的厂商主要为三星、LG-Philips、友达等,由于各家技术水平的差异,生产的液晶面板也大致分为机种不同的类型。常见的有TN面板、MVA和PVA等VA类面板、IPS面板以及CPA面板。 1、TN面板 TN全称为Twisted Nem ati c(扭曲向列型)面板,低廉的生产成本使TN成为了应用最广泛的入门级液晶面板,在目前市面上主流的中低端液晶显示器中被广泛使用。目前我们看到的TN面板多是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,目前改良的TN面板的可视角度都达到160°,当然这是厂商在对比度为10∶1的情况下测得的极限值,实际上在对比度下降到100:1时图像已经出现失真甚至偏色。 作为6Bit的面板,TN面板只能显示红/绿/蓝各64色,最大实际色彩仅有262.144种,通过“抖动”技术可以使其获得超过1600万种色彩的表现能力,只能够显示0到252灰阶的三原色,所以最后得到的色彩显示数信息是16.2 M色,而不是我们通常所说的真彩色16.7M 色;加上TN面板提高对比度的难度较大,直接暴露出来的问题就是色彩单薄,还原能力差,过渡不自然。 TN面板的优点是由于输出灰阶级数较少,液晶分子偏转速度快,响应时间容易提高,目前市场上8ms以下液晶产品基本采用的是TN面板。另外三星还开发出一种B-TN(Best-TN)面板,它其实是TN面板的一种改良型,主要为了平衡TN面板高速响应必须牺牲画质的矛盾。同时对比度可达700∶1,已经可以和MVA或者早期PVA的面板相接近了。台湾很多面板厂商生产TN面板,TN面板属于软屏,用手轻轻划会出现类似的水纹,另外仔细看屏幕大致是这样的:

基于二维材料/相变材料/半导体的集成光相移器的制作方法

基于二维材料/相变材料/半导体的集成光相移器的制作方法 本发明属于光学领域,涉及光学器件,具体涉及一种基于二维材料/相变材料/半导体的集成光相移器。 背景技术:

半导体技术所催生的光电集成技术可以将庞大的光学系统和链路芯片化,从而极大地降低功耗和成本,在通信互联上已有了广泛的应用,在传感成像、人工智能等领域也有着巨大的应用前景。在集成光电芯片中,通过调控波导中传播的光信号即可实现光芯片所设计的功能。 集成光相移器是对光波相位进行调控的光器件,而通过相移还可以实现光学相控阵、调制器、延迟线、可调光衰减器等器件。光波的相位调控主要依赖于对波导折射率的控制,目前可调相移器的实现方式主要有热光调控、电光效应、自由载流子色散和等离子体效应等。这些折射率调控方法在高速或低功耗调制等方面各有千秋,但由于调控中折射率所能达到的改变量不大,器件长度通常较长。此外,外部供能停止后,器件被改变的状态就会恢复至调控前,即这类调控手段都不具有非易失性,因而静态功耗较高。 硫系相变材料是一种可在光/电脉冲诱导下发生快速(可达亚纳秒级)、可逆的固态相转变,并在相变前后产生巨大光学性能差异的材料。由于其具有独特的非易失性,将硫系相变材料集成,可以实现无需静态功耗的非易失性光器件。此前,由于传统硫系相变材料(如Ge2Sb2Te5等)对折射率的调控都伴随着光吸收损耗的上升,虽然容易实现光的强度调控,但却无法在保证光强不变的前提下仅针对光的相位进行操控。 相变集成光器件的可逆调控主要依靠激光脉冲或电脉冲来实现。电调控具有稳定性高、集成度高等优势,是一种非常适合应用于光电集成芯片中的调控方式。然而,以往电调控中所使用的氧化铟锡或金属电极等都

LCD液晶面板全解析

导读:液晶显示器已经成为了消费者装机时的宠儿。本内容全面诠释了lcd液晶面板的知识,包括理lcd液晶面板的鉴别液晶面板,液晶显示器的品牌等各方面。 液晶显示器已经成为了消费者装机时的宠儿。消费者在各个品牌各个档次的液晶显示器中进行选择时,最有力的根据往往就是液晶显示器的性能参数。响应时间、对比度、亮度、可视角度这些名词都是消费者耳熟能详的性能参数,而惟一不了解的概念便是液晶面板的等级。笔者将在这篇文稿中叙述液晶面板的等级概念,消费者在购买液晶显示器尤其是低价产品时或许就会用到! 1.液晶面板的坏点 在未介绍液晶面板的等级之前,笔者先为各位读者介绍液晶面板上所存在的“坏点”的具体概念,以便于后面以此为根据来区分液晶面板的等级。液晶面板是由大量的像素点所组成的,它们都能够显示黑白两色和红、黄、蓝三原色。再由显示着不同颜色的像素点进行组合,我们便可以看到液晶面板所显示的图像。但液晶面板上的少数像素点则无法产生颜色变化,不管液晶屏幕所显示的是怎样的图像,这些像素点都永远显示着同一种颜色。这些存在故障的像素点是无法修复的,只能更换整个液晶面板才能够解决。而这些存在故障的像素点又通常分为两类,其中“暗点”是无论屏幕显示图像如何变化都无法显示的“黑点”,而更令人讨厌的则是那种只要开机便一直发光的“亮点”。 液晶显示技术发展到现在,仍然无法从根本上克服这一缺陷。因为液晶面板由两块玻璃板所构成,中间的夹层是厚约5微米的水晶液滴。这些水晶液滴被均匀分隔开来,并包含在细小的单元格里,每三个单元格构成屏幕上的一个像素点。在放大镜下像素点呈正方形,一个像素点即是一个发光点。每个发光点都有独立的晶体管来控制其电流的强弱,如果控制该点的晶体管坏掉,就会造成该光点永远点亮或不亮。这就是前面提到的亮点或暗点,统称为“坏点”! 2.液晶面板的等级

液晶光学相控阵关键技术研究

液晶光学相控阵关键技术研究 液晶光学相控阵(LC-OPA)是一种结合了微波相控阵天线技术与 液晶电光特性的新型无机械波束扫描控制器件,具有驱动电压器、功耗低、重量轻、抗振动、抗辐射干扰、大孔径和性价比高等优点,在激光雷达和空间光通信等领域具有重要的应用前景和应用价值,已成为光学相控阵中的研究热点。目前LC-OPA技术研究还存在系统分析模型不完善和偏转效率较低等问题,本文针对LC-OPA的系统建模、性能优化和波束控制三个方面开展研究,主要学术贡献如下:1、建立了完备的LC-OPA系统分析模型,包括空间传播模型、相位调制模型、波束偏转控制模型和影响因素模型,提出了反映系统对波束能量利用率的偏转效率指标;研究了液晶层厚度与LC-OPA相移特性的关系;分析了器件设计参数的选取、偏转控制方式的选择、边缘效应的大小、制作工艺误差的大小对LC-OPA偏转效率和偏转角度的影响,为LC-OPA 器件的研制提供了理论依据和指导。2、针对LC-OPA偏转效率优化的问题,设计了偏转性能闭环优化系统,提出了基于快速搜索法和随机 并行梯度下降法的偏转性能优化方法,提高了系统的偏转性能,提升 了优化过程的迭代速度,通过实验优化了LC-OPA的波束偏转效率。3、针对LC-OPA多波束形成问题,提出了子孔径多波束法,通过对LC-OPA 划分独立控制的子阵列,形成了低栅瓣干扰的多波束偏转;提出了阵 列复用多波束法,通过共享整个LC-OPA的孔径资源,形成了高分辨率的多波束偏转;提出了迭代傅里叶变换多波束扫描方法,利用阵列综 合和迭代运算的方式获得LC-OPA的多波束相位激励值,通过实验形

成了动态扫描的多波束。4、提出了LC-OPA的波束发散角控制方法,通过对LC-OPA加载不同焦距的透镜相位调制函数,实现了对高斯光 束传播参数的控制,并设计试验验证了对LCOPA入射波束发散角大小的控制能力。将该方法拓展应用于空间光通信系统,设计了基于 LC-OPA发散角控制振动干扰抑制系统,推导了振动干扰中通信波束最优发散角的计算方法,降低了振动导致的通信系统综合功率损失。5、提出了LC-OPA角度放大方法,通过级联倒置的望远镜系统,扩大了LCOPA的波束偏转角度;设计了粗-精扫级联扫描模式,实现了LC-OPA 大角度连续扫描的问题。

LCD液晶屏的种类

LCD 笔记本电脑显示屏种类与分辨率(具体参数) 现在的本本种类繁多,我们在看其配置时,往往会出现如:14.1英寸XGA TFT 显示屏、15.4英寸SXGA TFT显示屏。那么XGA和SXGA等等这些英文字母是什么意思呢?下面我就来给大家解释一下: VGA:全称是Video Graphics Array,这种屏幕现在一般在本本里面已经绝迹了,是很古老的本本使用的屏幕,支持最大分辨率为640×480,但现在仍有一些小的便携设备还在使用这种屏幕。 SVGA:全称Super Video Graphics Array,属于VGA屏幕的替代品,最大支持800×600分辨率,屏幕大小为12.1英寸,由于像素较低所以目前采用这一屏幕的本本也是少之又少了。 XGA:全称Extended Graphics Array,这是一种目前笔记本普遍采用的一种LCD 屏幕,市面上将近有80%的笔记本采用了这种产品。它支持最大1024×768分辨率,屏幕大小从10.4英寸、12.1英寸、13.3英寸到14.1英寸、15.1英寸都有。 SXGA+:全称Super Extended Graphics Array,作为SXGA的一种扩展SXGA+是一种专门为笔记本设计的屏幕。其显示分辨率为1400×1050。由于笔记本LCD 屏幕的水平与垂直点距不同于普通桌面LCD,所以其显示的精度要比普通17英寸的桌面LCD高出不少。 UVGA:全称Ultra Video Graphics Array,这种屏幕应用在15英寸的屏幕的本本上,支持最大1600×1200分辨率。由于对制造工艺要求较高所以价格也是比较昂贵。目前只有少部分高端的移动工作站配备了这一类型的屏幕。 以上为大家列举的这几种笔记本中较为常见的LCD屏幕类型,不过这些诸如VGA、XGA以及SXGA+的屏幕是针对标准设计的笔记本屏幕也就是以4:3比例扩展的产品。而随着技术的进步,尤其是DVD-ROM成为笔记本表配的时候。宽屏幕设计的产品越来越受到用户们的喜爱。所谓的宽屏笔记本也就是按照16:10比例加宽屏幕的本本。相对于目前大多数4:3设计的屏幕,这种产品更加适合DVD影片的长宽比,所以看DVD时不会有图象变形或两边图象显示不出来的问题。这种比例的笔记本LCD屏幕大致分为以下几种类型。 WXGA(Wide Extended Graphics Array):作为普通XGA屏幕的宽屏版本,WXGA 采用16:10的横宽比例来扩大屏幕的尺寸。其最大显示分辨率为1280×800。由于其水平像素只有800,所以除了一般15英寸的本本之外,也有12.1英寸的本本采用了这种类型的屏幕。 WXGA+(Wide Extended Graphics Array):这是一种WXGA的的扩展,其最大显示分辨率为1280×854。由于其横宽比例为15:10而非标准宽屏的16:10。所以只有少部分屏幕尺寸在15.2英寸的本本采用这种产品。 WSXGA+(Wide Super Extended Graphics Array):其显示分辨率为1680×1050,除

光学基本知识及LED基本知识

光学基础知识及LED基本理论 第一部分LED基本理论知识 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 图1 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即 λ≈1240/Eg(mm) 式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性

1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。 图2 由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 (2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。 半值角的2倍为视角(或称半功率角)。

手机LCD基本知识

LCD原理大剖析 ZDNET China 03/01/2002 LCD (Liquid Crystal Display)对于许多的用户而言可能是一个比较新鲜的名词,不过这种技术存在的历史可能远远超过了我们的想象 --在 1888 年,一位奥地利的植物学家 F. Renitzer便发现了液晶特殊的物理特性。 在 85年之后,这一发现才产生了商业价值, 1973 年日本的夏普公司首次将它运用于制作电子计算器的数字显示。现在, LCD是笔记型计算机和掌上计算机的主要显示设备,在投影机中,它也扮演着非常重要的角色,而且它开始逐渐渗入到桌面显示器市场中。 为什么叫液晶? 液晶得名于其物理特性:它的分子晶体,不过以液态存在而非固态。大多数液晶都属于有机复合物。 被动矩阵液晶显示技术 高信息密度显示技术中首先商品化的是「被动矩阵显示技术」。它得名于控制液晶单元的开和关的简单设计。 主动矩阵LCD及其弱势 主动矩阵 LCD的上下表层也纵横有序排列着用铟锡氧化物做成的透明电极。所不同的是在每个单元中都加入了很小的晶体管,由晶体管来控制电流的开和关。 传统工艺流程 LCD 的面板最早使用非常薄的玻璃制造。大约只有 1.1-0.4毫米厚,由于玻璃生产中,设备不同会造成玻璃厚度不同。所以,显示器只能在一套模具中制造。 你不能不知道的LCD 被动矩阵液晶显示技术视角及反应速度耗电量 为什么叫液晶?主动矩阵LCD及其弱势显示色彩传统工艺流程

为什么叫液晶? ZDNET China 2002/01/03 液晶得名于其物理特性:它的分子晶体,不过以液态存在而非固态。大多数液晶都属于有机复合物。这些晶体分子的液体特性使得它具有两种非常有用的特点:如果你让电流通过液晶层,这些分子将会以电流的流向方向进行排列,如果没有电流,它们将会彼此平行排列。如果你提供了带有细小沟槽的外层,将液晶倒入后,液晶分子会顺着槽排列,并且内层与外层以同样的方式进行排列。 液晶的第三个特性是很神奇的:液晶层能够使光线发生扭转。液晶层表现的有些类似偏光器,这就意味着它能够过滤掉除了那些从特殊方向射入之外的所有光线。此外,如果液晶层发生了扭转,光线将会随之扭转,以不同的方向从另外一个面中射出。 液晶的这些特点使得它可以被用来当作一种开关 - 即可以阻碍光线,也可以允许光线通过。液晶单元的底层是由细小的脊构成的,这些脊的作用是让分子呈平行排列。上表面也是如此,在这两侧之间的分子平行排列,不过当上下两个表面之间呈一定的角度时,液晶成了随着两个不同方向的表面进行排列,就会发生扭曲。结果便是这个扭曲了的螺旋层使通过的光线也发生扭曲。 如果电流通过液晶,所有的分子将会按照电流的方向进行排列,这样就会消除光线的扭转。如果将一个偏振滤光器放置在液晶层的上表面,扭转的光线通过了,而没有发生扭转的光线将被阻碍。因此可以通过电流的通断改变 LCD 中的液晶排列,使光线在加电时射出,而不加电时被阻断。也有某些设计了省 电的需要,有电流时,光线不能通过,没有电流时,光线通过。 液晶可以阻碍(左)也可以允许(右)光线通过显示技术由于不同的应用目的而分成不同的类型。 有的是成了静态显示,比如道路标志和显示牌,它 们的显示信息是不变的。平面显示技术则被用于传 递发生变化的显示信息,所以显示信息量的大小就 决定了所采用的显示技术类型。对于便携式的计算 器等设备而言,由于所传递的信息量相对较低,被 称为「低信息密度」显示技术;对于计算机显示器 而言,由于传递的信息量大,则相应被称为「高信 息密度」显示技术。

液晶面板种类介绍及辨别

液晶板类型 一个液晶显示器的好坏首先要看它的面板,因为面板的好坏直接影响到画面的观看效果,并且液晶电视面板占到了整机成本了一半以上,是影响液晶电视的造价的主要因素,所以要选一款好的液晶显示器,首先要选好它的面板。液晶面板可以在很大程度上决定液晶显示器的亮度、对比度、色彩、可视角度等非常重要的参数。液晶面板发展的速度很快,从前些年的三代,迅速发展到四代、五代,然后跳过六代达到七代,而更新的第八代面板也在谋划之中。目前生产液晶面板的厂商主要为三星、LG-Philips、友达等,由于各家技术水平的差异,生产的液晶面板也大致分为机种不同的类型。常见的有TN面板、MVA和PVA等VA类面板、IPS面板以及CPA面板。 1、TN面板 TN全称为Twisted Nem ati c(扭曲向列型)面板,低廉的生产成本使TN成为了应用最广泛的入门级液晶面板,在目前市面上主流的中低端液晶显示器中被广泛使用。目前我们看到的TN面板多是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,目前改良的TN面板的可视角度都达到160°,当然这是厂商在对比度为10∶1的情况下测得的极限值,实际上在对比度下降到100:1时图像已经出现失真甚至偏色。 作为6Bit的面板,TN面板只能显示红/绿/蓝各64色,最大实际色彩仅有262.144种,通过“抖动”技术可以使其获得超过1600万种色彩的表现能力,只能够显示0到252灰阶的三原色,所以最后得到的色彩显示数信息是16.2 M色,而不是我们通常所说的真彩色16.7M 色;加上TN面板提高对比度的难度较大,直接暴露出来的问题就是色彩单薄,还原能力差,过渡不自然。 TN面板的优点是由于输出灰阶级数较少,液晶分子偏转速度快,响应时间容易提高,目前市场上8ms以下液晶产品基本采用的是TN面板。另外三星还开发出一种B-TN(Best-TN)面板,它其实是TN面板的一种改良型,主要为了平衡TN面板高速响应必须牺牲画质的矛盾。同时对比度可达700∶1,已经可以和MVA或者早期PVA的面板相接近了。台湾很多面板厂商生产TN面板,TN面板属于软屏,用手轻轻划会出现类似的水纹,另外仔细看屏幕大致是这样的: 2、VA类面板 VA类面板是现在高端液晶应用较多的面板类型,属于广视角面板。和TN面板相比,8bit的面板可以提供16.7M色彩和大可视角度是该类面板定位高端的资本,但是价格也相对TN面板要昂贵一些。VA类面板又可分为由富士通主导的MVA面板和由三星开发的PVA面板,其中后者是前者的继承和改良。VA类面板的正面(正视)对比度最高,但是屏幕的均匀度不够好,往往会发生颜色漂移。锐利的文本是它的杀手锏,黑白对比度相当高。 富士通的MVA技术(Multi-domain Vertical Alignment,多象限垂直配向技术)可以说是最早出现的广视角液晶面板技术。该类面板可以提供更大的可视角度,通常可达到170°。通过技术授权,我国台湾省的奇美电子(奇晶光电)、友达光电等面板企稻捎昧苏庀蠲姘寮际酢8牧己蟮腜-MVA类面板可视角度可达接近水平的178°,并且灰阶响应时间可以达到8ms

-光学基础知识

光学基础知识 物理学的一个部门。光学的任务是研究光的本性,光的辐射、 传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的 机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。 17世纪末,牛顿倡立“光的微粒说”。当时,他用微粒说解释观察到的许多光学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。1678 年惠更斯创建了“光的波动说”。波动说历时一世纪以上,都不被人们所重视, 完全是人们受了牛顿在学术上威望的影响所致。当时的波动说,只知道光线会在 遇到棱角之处发生弯曲,衍射作用的发现尚在其后。1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。他让光源S的光照亮一个狭长的缝隙S,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通1 过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说 光线通过双缝以后,在每个缝上形成一新的光源。由这两个新光源发出的光波在 抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带, 若位相相反,则相互抵消表现为暗带。杨格的实验说明了惠更斯的波动说,也确

定了惠更斯的波动说。同样地,19世纪有关光线绕射现象之发现,又支持了波动说的真实性。绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。 20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种现象称为“光电效应”。并发现光电子的发射率,与照射到金属表面的光线强度 成正比。但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限 度时,既使照射光的强度再强也无法从金属表面释放出电子。这是无法用波动说 解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电 子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振 幅成正比。光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到 足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。 但实验结果却违反这种波动说的解释。爱因斯坦通过光电效应建立了他的光子学 说,他认为光波的能量应该是“量子化”的。辐射能量是由许许多多分立能量元 组成,这种能量元称之为“光子”。光子的能量决定于方程 E=hν

相关文档
最新文档