世界生物学史

世界生物学史
世界生物学史

世界生物学史

世界生物学史 (1)

一: 古代和中世纪的生物学 (1)

二:文艺复兴时期有关生物学的贡献及近代生物学发展概况 (4)

三: 显微镜及动、植物微细结构的发现 (4)

四:分类原理的发现 (5)

五:胚胎学研究的起源 (7)

六:植物生理学研究的兴起 (7)

七: 动物生理学研究的兴起 (8)

八: “自然发生说”的否定 (9)

九: 微生物学研究的开端 (10)

十: 细胞学说的建立 (11)

十一: 进化理论的确立 (12)

十二: 遗传规律的发现 (14)

十三: 20世纪的生物学 (15)

十四: 在细胞水平上遗传规律研究的发展 (16)

十五: 20世纪前期生物大分子和代谢途径研究的进展 (17)

十六: 激素研究的进展 (19)

十七: 植物的光合作用 (20)

十八: 病毒和噬菌体本质的阐明 (21)

十九: 分子生物学的建立和发展 (22)

二十: 重组DNA技术的出现 (24)

二十一: 细胞生物学的兴起 (25)

二十二: 神经生物学的新进展 (26)

二十三: 进化论在20世纪的发展 (28)

二十四: 生态学和生态系统的研究 (29)

二十五: 动物行为的研究 (30)

一: 古代和中世纪的生物学

随着人类为了自身生存的需要和对有机界奥秘探索兴趣的增长,有关动植物的知识逐渐积累。早在文艺复 兴前,包括解剖学和生理学知识的医学已在大学中占有重要地位。文艺复兴后的17世纪,生理学继解剖学而成为医学的重要部分。实验方法也继观察、描述、比较和推测之后,开始在生物学中应用。显微镜的发明,标志着揭示微观生物界的开始。18世纪动物学、植物学已经进入大学的讲堂,集前人大成的动植物分类学也为以后的系统的分类学奠定了基础。19世纪作为生物学基础的细胞学说和达尔文进化理论先后建立,微生物学和胚胎学等学科均取得重大进展,生物学呈现空前的繁荣。20世纪的生物学由于越来越多地受到化学、物理学、数学从原理到方法的巨大影响。在微观方面向着生物大分子的水平发展,在宏观方面生态学向着生态系统的水平发展。20世纪50年代分子生物学的兴起,改变着生物学的面貌而被誉为“生物学的革命”,随着这些发展,生物学跨入了精确科学的行列。同时,生物学对医疗卫生和农

业生产,以至于工业生产都显示出强大的推进作用。古代人在采集野果、从事渔猎和农业生产的过程中,逐步积累了动植物的知识;在抵御恶劣的环境条件,防 治瘟疫疾病的过程中也积累了医药知识。约公元前5000 年古巴比伦人及亚述人就知道枣椰树 (Phoenix dact-lifera) 有雌雄之分, 约公元前 2000年汉穆拉比王朝(Ham-murabi dynasty)时,第一次报道了人工授粉。古代埃及人制作了木乃伊(mummy),表明已了解草药的防腐性能。在埃及找到的公元前2500年的医生作手术的古雕塑,表明那时已经有一些解剖学的知识。公元前1500年印度的医学已较发达。在释迦(公元前560~前480)时就有医学学校,在梵文本的医学内记述了割治白内障、疝气等的手术知识以及 960余种药草。

中国在公元前4000年前就开始养蚕。在商代(约公元前1600~前1100)中期的甲骨文中有 500余条关于疾病的记载。到西周(约公元前 1100~前771)时期医学又分为“食医”、“疾医”、“病医”和“兽医”。出现于战国(公元前476~前222)晚期的《黄帝内经》论述了人体解剖、生理、病理、病因、诊断以及针灸、经络、卫生保健等多方面的知识。由汉初学者缀辑周秦诸书、递相增益而成的《尔雅》,把植物分为草、木两大类。动物分为虫、鱼、鸟、兽四大类。从战国至汉初陆续写成的《山海经》中的《五藏山经》记载动物 270种,植物160种。秦汉时的《神农本草经》记载药物365种,其中植物药252种,动物药67种,矿物药46种〔见生物学史(中国)〕。

近代自然科学的萌芽起于希腊。当时的生物学是自然哲学的一个主要组成部分。公元前 600年前后,希腊哲学家相信万事必有原因,而且特定的原因产生特定的效果。这些哲学家还设想存在一种统治宇宙的“自然法则”,认为这种自然法则通过人们的观察与推论是可以理解的。这种因果关系和理性思想的概念对以后的科学研究有深刻的影响。希腊哲学家阿那克西曼德认为世界万物产生于一种没有固定形态和性质的物质,称为“无定限”(aperion),由此产生热与冷、形成水,再形成土、空气和火。他提出生命是在泥土内自然发生的,最初产生动物和植物,以后产生人;最初的人象鱼,生活在水中,以后脱去鱼的外皮,到陆地上生活。恩培多克勒认为物质的“根源”或“元素”是土、水、气和火。这 4种元素受吸引力与排斥力的影响,按不同比例结合,形成各种类型的物质。他第一个描述了内耳迷路,他把眼睛比作灯,认为血液是智慧的所在地。希波克拉底等人代表一个讲究实际的理性医疗学派,他们把病因与神鬼分开。详细地观察记录病症,并采用适当的治疗方法,开辟了走向近代临床医学的道路。希波克拉底的女婿波利布斯在《人类的本性》一书中提出所有生物都由 4种体液即血液、黑胆汁、粘液与黄胆汁构成,它们分别起源于心脏、脾脏、脑与肝脏,如果某种液体失调就会生病。亚里士多德是哲学家柏拉图的学生。他创立了吕克昂学园,又称逍遥学派。他是古代知识的集大成者,又是第一个系统掌握生物学知识的人。他在动物分类、解剖、胚胎发育等方面做了大量工作,著有《动物志》、《动物的结构》(包括“动物的运动”与“动物的行进”二短篇)、《动物的繁殖》和《论灵魂》等。在动物分类方面,他所用的“属”(Genus)和“种”(Species)是一种逻辑概念。在实际分类时,他一方面使用逻辑上的两分法,如有血或无血,有毛或无毛,另一方面也注意根 据动物的外部形态、内部器官、栖居地、生活习性、生活方式等许多特征。他把动物分成有血动物与无血动物: 有血动物分为①有毛胎生四足类(哺乳类),②鸟类,③ 鲸类,④鱼类,⑤蛇类,⑥卵生四足类(大多数的爬行类与两栖类);无血动物分为①软体类;

②甲壳类,③有壳类,④昆虫类。他正确描述了哺乳类的特点,并能区分哺乳类的真胎生和哺乳类以外的卵胎生。他描述了500多种动物,并对其中50多种做了解剖。他根据物质的热、冷、湿、燥 4种特性,他把热、湿列于冷、燥之上,依此形成的生物阶梯图把温暖、潮湿的人和哺乳类排在生物的顶端,把低等植物排在底层。在对动物发育的观察研究基础上,他把动物的繁殖分为有性、无性与自然发生3类。他提出灵魂是生命与非生命物质的区别,而灵魂又有植物性、动物性与理性 3个等级。亚里士多德的开创性研究使他被公认为生物学的创始人。亚里士多德在植物学方面的著作没有留存下来。他的学生泰奥弗拉斯托斯对植物分类、植物解剖和植物生理做了许多研究,著有《植物志》和《论植物的本源》等。他的著作中涉及500多种植物,把许多种类归为现在的属,把植物分为果实植物与无果实植物,显花植物与隐花植物,常绿植物与落叶植物,他还记录了显花植物中双子叶植物与单子叶植物的差异,这是一项重大进展。

他详细描述了枣椰的人工授粉,还记录了种子的萌发与发育过程。公元前4世纪末或3世纪初学术中心从雅典转移到亚历山大里亚。亚历山大学派的希腊医生、解剖学家希罗菲卢斯把人体结构与大型哺乳类结构进行了比较。他认识到脑是神经系统的中枢,智慧的所在,并把神经区分为感觉神经和运动神经,把血管区分为动脉与静脉,认为动脉内是空气中的灵气与血液的混合物,而静脉内只流过血液。稍后希腊生理学家、医生克奥斯的埃拉西斯特拉图斯精确地描述了心脏,把心脏看作一个水泵,把瓣膜看成是单向泵中的可动阀门。他研究了动脉与静脉在人体内的分布,猜测有毛细血管存在,并提出生命活动过程依靠血液和灵气的新理论。公元前 1世纪罗马人的版图不断扩大。由于他们比较重视实用,因此与农、医有关的生物学有一定的发展。如P.迪奥斯科里德斯随罗马远征军到过许多国家,广泛考察了植物。他的《医药资料》一书是西方最早的本草学著作。同时代的老普林尼著有《博物志》37卷,详细记述了多种动、植物的习性及其同人类生活的益害关系,对后世有较大影响。生于小亚细亚帕加马、在罗马行医的加伦,在古代生物学中有光辉成就。他把希腊解剖知识和医学知识系统化,并把一些医学学派统一起来,是古代解剖学、医学知识的集大成者。他用实验方法证明流动于动脉内的是血液而不是空气。他的生理学贯穿着“元气”的思想。他认为“元气”在不同场所分别为自然元气、活力元气、动物元气3种。他同意埃拉西斯特拉塔的血液产生于肝脏的观点,认为血液是由食物的有用部分变成的“乳糜”从肠道经门脉进入肝脏,受元气作用变成暗色静脉血,元气也被改造成自然灵气。血液带着自然元气在静脉内通过涨落分布到全身组织,其中一部分经静脉主干进入内脏的右边。同时一部分血液内的不纯物质通过动脉样静脉(即肺动脉)运送到肺部蒸发到体外,另一部分通过心脏隔膜上的小孔,进入心脏的左边,静脉血遇到田气管和静脉样动脉(即肺静脉)带来的元气,两者混和产生颜色鲜艳的动脉血和活力元气。两者通过动脉系统分布到身体各部分使器官发挥功能。一部分动脉血流到大脑基部的称“迷网”的血管网中,在这里活力元气变成动物灵气。动物元气不与血液混合,却沿着神经流动,分布到全身,成为运动与感觉等动物性功能的原动力。加伦在从事外科治疗时,虽有机会接触到人体,但由于当时不准解剖尸体,他就对猴体做了很完整的解剖研究。著有《解剖纲要》16卷及《人体各部分的功能》等,但他以猴体代替人体,有不少结论是错误的。加伦还做过切断中枢神经的实验,发现切断第1、第2节脊椎骨之间的脊髓,引起动物死亡;切断第3、第4节间的,则动物停止呼吸;切断第6节以下,发生胸腔肌肉麻痹,但并不防碍膈肌运动,动物仍可继续呼吸。加伦的著作阐述清楚而有条理,但他用有神论的观点解释他的实验和观察,带有浓厚的宗教色彩。由于加伦在学术上的辉煌成就和教会的支持,使他的学说统治医学界长达1000多年之久,其错误的观点对医学和生物学的发展也起着阻碍作用。

中世纪(从476年西罗马帝国灭亡到1453年君士坦丁堡陷落、东罗马帝国灭亡)虽然长约1000年,但生物学基本上没有什么重大发展,特别是其中的“黑暗时代”[从476年起到教皇西尔威特二世(999~1003在位)],从3世纪至11世纪初,生物学却成了阿拉伯科学的一个组成部分。但在这期间阿拉伯人并不重视对实物的观察研究,而把主要精力用于发现、翻译、注释和阐述亚里士多德、加伦等的著作,并把它们奉为“圣书”,这样不可能使生物学得到较大发展。11世纪初,阿拉伯医学家和哲学家伊本·西拿所著的《医典》是古代和穆斯林全部医学知识的汇合,是阿 拉伯文化的最高成就之一,它作为欧洲大学医学教科书一直沿用到17世纪。12世纪植物学和动物学开始从医药、兽医方面独立出来。13世纪科学活动的重点移到了欧洲。在1200~1225年间,亚里士多德全集被译成了拉丁文。德国学者大阿尔伯特的动物学、植物学著作虽仍以亚里士多德的学说为基础,但已补充了许多新的观察事实。随后,意大利成为中世纪最活跃的科学中心。14世纪初,意大利解剖学家蒙迪诺·戴·柳奇亲自解剖尸体,纠正了前人的一些错误,于1316年出版了《解剖学》一书,在阐述人体结构时也记述了器官的功能,使中世纪的解剖生理学达到了高峰。

二:文艺复兴时期有关生物学的贡献及近代生物学发展概况

文艺复兴最早发生于14~15世纪的意大利。开始 是对古典文献和古典思想的再发现,继而冲破宗教与神 学的思想束缚,使许多学者抛弃了对权威的盲从,树立 起独立思考和批判的精神。同时,地理上的新发现和海 外贸易与工商业的发展也促进了学术研究。意大利文艺复兴时期的巨人著名画家达?芬奇摆脱 了神学偏见,从事观察和实验,开展了多方面的研究。起 初,他出于艺术需要,研究了光学定律、眼睛构造、人 体解剖的细节以及鸟雀的飞翔。他不顾当时的传统,亲 自解剖尸体,绘制了精确的解剖图,提出人体运动是骨 骼和肌肉的作用。他以牛心为材料,指出心脏分左右心 房和左右心室,并正确记述了房室间有尖瓣,心室与动 脉间有半月瓣。他抛弃了加伦关于血管起始于肝脏的见 解,认为一切血管均起始于心脏。他比较了动物与人体 的结构,指出同源现象,对进化思想也有一定贡献。

比利时解剖学家A.维萨里通过解剖大量人的尸体, 发现加伦基于猴体解剖的人体解剖描述有不少的错误。 1543年,他的解剖学巨著《人体构造》出版,震惊了整个 科学界和宗教界。1555年,他在该书的再版本中更明确 指出心脏的膈膜和心脏其他部分一样,都是厚实致密的,血液不可能从右心室通过膈膜流入左心室。与此同时,西班牙的宗教改革者和医生M.塞尔韦图斯于1553年出版了《基督教的复兴》一书,在讨论神圣精神的同时也谈及人体构造与功能。他摒弃了加伦有关血液运行的观点,提出了肺循环的推测。以后,A.维萨里的助手与继承者R.哥伦布用观察和实验方法证明了肺循环的存在。

文艺复兴时期生物学上最重要的成就是英国医生、生理学家W.哈维建立的血液循环学说。W.哈维根据他对几十种动物所做的实验与观察,首次认识到血液并非在静脉内涨落,而是从心脏通过动脉流向各种组织,再经静脉流回心脏的一种闭路循环。1628年,他出版《动物心血运动的研究》一书,阐明血液在体内不断循环的新概念,指出心脏是主动收缩、被动舒张的;血液从心脏经动脉流向全身,是由于心脏收缩的机械力而不是缓慢的渗透过程。W.哈维首先把物理学的概念和数学方法引入生物学中,并坚持用观察和实验代替主观的推测,使他被公认为近代实验生物学的创始人。

文艺复兴后,地理探险和海外贸易迅速发展,到17、18世纪随着动、植物标本的大量采集和积累,分类学得到了很大的发展。首先从草药、草本植物为主转向研究所有植物,从种类记述到建立分类系统,从分别对动、植物进行分类发展到建立动、植物统一的分类范畴和命名方法。同时,在分类方法上,则从亚里士多德以逻辑区分的向下分类法,发展为以经验为主的向上分类法。对物种的认识也从长期占主导地位的物种不变观点,逐步过渡到生物进化的思想。

17世纪显微镜的发明,揭示了动植物的微细结构与微生物世界,促进了组织学、细胞学、微生物学的发展。19世纪是生物学取得重要进展和巨大成就的时代,动、植物间相似性与亲缘关系的揭示,形态学、比较解剖学、胚胎学、古生物学得到较大的发展。在自然哲学原型思想的影响下,随着显微镜的改进,30年代末,M.J.施莱登与T.A.H.施万建立了细胞学说,提出细胞是构成动、植物的基本结构与功能单位并具有共同的形成规律,大大促进了细胞学和胚胎学的发展。1859年,达尔文进化论的建立,对生物学及其他有关学科的发展产生了重大影响。19世纪中后叶,物理、化学和一些数学的知识和研究方法,逐渐渗入生物学的研究领域,使生物学、特别是生理学向着较深的层次发展。总之,19世纪生物学的巨大成就,是20世纪生物学的深入发展的先导。

三: 显微镜及动、植物微细结构的发现

G.伽利略在1609年,根据望远镜倒视有放大物体的效应,制成一台复合显微镜,并对昆

虫进行了观察。英国物理学家R.胡克于1665年用自制的复合显微镜观察软木薄片,发现有许多蜂窝状小空室并称之为细胞(cell)。这个名词一直沿用至今。这张软木显微结构图,登载于1665年英国出版的《显微图谱》上。他还对鱼鳞、蜜蜂螫针、家蚕卵、家蝇的头和足以及跳蚤等进行了精细的描绘。

意大利解剖学家M.马尔皮基开创了动物与植物的显微解剖工作。1660年他通过向蛙肺动脉注水的方法,发现有连接动脉与静脉的毛细血管,证实了W.哈维未能观察到的由毛细血管连接动、静脉的血液循环。他描述了肝脏的微细结构,舌的乳头突,大脑皮层,以及用他名字命名的肾小体和皮肤微细结构等。他对家蚕进行了显微解剖,发现同样具有复杂的微细结构。他关于家蚕的著作是无脊椎动物方面的第一本专著。他对不同的植物进行了比较研究,系统地描述了植物各部分的结构,指出单子叶植物与双子叶植物间的区别,以及虫瘿是由昆虫引起等。并且提出植物的各部分是由“小囊”(即细胞)组成的。他在植物解剖方面的许多精确绘图未能为当时的植物学家所理解,直到19世纪才被重新认识。

英国植物学家N.格鲁在显微镜下发现植物叶面有气孔,它们可使植物体内的水分蒸发并吸入空气。他发现植物的组织是由多孔的小胞(即细胞)所组成,但他经 常描述的只是小胞的壁。他认识到花是植物的生殖器官,可区分为萼、花冠、雄蕊与雌蕊,并指出雌蕊、雄蕊和花粉分别相当于雌性器官和雄性器官,而且植物一般是雌雄同体的。他的著作《植物解剖》由M.马尔皮基译成拉丁文,流传了100多年后才有人做了一些重要补充。

荷兰显微镜学家 A.van列文虎克自制了许多性能优良的显微镜,最高的放大倍数达270倍。他通过大量细微的观察,解释并完善了M.马尔皮基提出的关于毛细血管系统的知识,证明动脉与静脉分别和毛细血管直接相连。他发现人和哺乳类的红细胞是无核的,而鸟类、两栖类、鱼类的红细胞是有核的;发现了人的精子,并研究了各种动物特别是鱼和蛙的受精作用;还发现了许多小的水生生物,如轮虫、水螅、纤毛虫等。还在19世纪显微镜改进之前,他首先看到并记述了细菌,实属难得。

荷兰显微镜学家J.斯瓦默丹对不同类型的昆虫发育 做了许多研究。他的著作《昆虫志》、《蜉蝣的生活》 中有许多出色的显微解剖图,如昆虫的神经节,气管系 统等。他去世几十年后出版的《自然的圣经》是当时显微镜观察的最好著作,其中对蜜蜂内部器官、蚊子、蜻蜓发育的描述,都非常精确但由于复合显微镜的色差问题,使这方面的工作在其后的100多年内没有多大进展。

四:分类原理的发现

16世纪德国神学家和植物学家O.布龙费尔斯、德国植物学家H.T.博克及L.福克斯等对植物分类都作出了贡献。他们对植物进行了观察和生动逼真的描述并试图编写地方植物志,由此在中欧发现了许多植物的新种。O.布龙费尔斯描述了 260种植物。H.T.博克和L.福克斯描述了 500多种植物。但他们缺少比较一致的分类系统,而且不甚关注属以上的较高分类阶元。O.布龙费尔斯关于属的顺序是随意的,L.福克斯主要按字母排列,只有H.T.博克按植物营养部分的特征及其相互关系,提出了比较符合自然的系统。

意大利植物学家A.切萨皮诺首先在其巨著《植物十六卷》(1583)一书内应用了一致的植物分类法。他为提出一个易于鉴定的系统,借用了亚里士多德通过逻辑区 分的向下分类法。这种方法的特点是两分法,适合于构 想鉴定的关键特征,但易于导致人为分类。A.切萨皮诺 认识到应用逻辑区分最重要的是选择区分特征,并首先 重视了果实的分类价值。由于他在实际分类时先把植物 分成自然类群,然后再寻找适用的关键特征,所以他划 分的32类植物从整体上看是符合自然分类的。尽管他的 分类系统有明显缺点,但对以后200年的植物学,包括对 瑞典的 C.von林奈都很有影响。以后荷兰植物学家M.德 尔奥贝尔进一步探寻植物的自然相似性,并以叶的形态为分类特征。 瑞士植物学家G.博安追随M.德尔奥贝尔的 思路

按自然相似性对植物进行从简到繁的排列,同时考 虑了大量不同的特征。有意识地划分了种、属之间的区别,还指出了同种异名现象,但并未描述属的特征。他 描述的植物约有6000种,对每种植物都在属名后面接以 “种加词”。例如在区别两种相似的牧草时就分别给予共同的属名和不同的“种加词”,成为最早的双名法。G.博安的主要目的是想提供一份使用方便的植物名录, 故未提出更高的分类阶元名称。

法国植物学家J.P.de图 内福尔把重点放在“属”上,把相似的植物放在一起,并 用单个名词来代替属名。他划分并描述的 698个属大多 数为以后 C.von林奈所采用。他首先提出属以上的正式分类阶元。但他划分的22个纲和122个组,大多是人为的。

当植物分类不断取得进展时,动物分类却一直停滞 不前。16世纪有几位博物学家描述了鸟、鱼的种类,瑞 士博物学家C.格斯纳编撰了《动物志》,按字母顺序编 排了文献上所有的动物。英国博物学家J.雷首先根据分 类原理进行植物与动物的分类。他比前人更透彻地讨论 了种的概念,这种概念在其后150年内仍被广泛采用。他 对动物分类既采用了亚里士多德的传统分类原理,也采 用新的以解剖学和生理学知识为基础的分类标准。他对 两栖类、爬行类、昆虫的分类,做了许多工作,较前人 更重视以结构(如齿、趾的排列)为依据,而较少采用颜色、大小、习性等。因此他提出的动植物界的某些大类,是较为符合自然分类的。

瑞典植物学家 C.von林奈以雄蕊和雄蕊作为系统分类的基础,根据它们的数目与排列,把植物分成24个纲。1735年,他出版了《自然系统》一书,把自然物分为植物、动物、矿物3大界;把动、植物各分成纲、目、属、种4个阶元,首先实现了植物和动物分类范畴的统一,增强了生物科学的整体性。 C.von林奈对动植物命名时采用由属名和“种加词”组成的双名名称,完善和推广了“双名法”。他起初用单个词代表属名,用几个词简述种的特征。以后改用两个词命名每种植物,并将此种方法扩展到动物方面。他统一采用拉丁文命名。属名采用大写的名词,种名采用小写的形容词。林奈认为种和属都是从一开始就被创造出来的,但他更重视属的作用。他以属作为分类基础,把向下分类法严格限制在属的水平。他强调的是“发现”属而不是“设置”属。林奈在确定属时,首先根据植物的外形,随后再详述其本质。因此,他划分的许多属符合自然分类。但他出于应用方便而划分的“纲”和“目”,则多是人为的。林奈是自A.切萨皮诺以来的动、植物分类知识的集大成者。他对双名法的发展与完善,对分类系统及其方法的建立,使他被公认为近代植物和动物分类学的奠基人。

林奈及其先驱大都认为自然界的多样性反映了某种深刻的顺序或和谐,但却归之为造物主的设计,这种人为 的分类方法使分类系统因人而异,造成许多混乱。从17 世纪末到19世纪,由于向下分类法在实际工作中遇到了 困难,逐渐兴起一种完全不同的方法,即向上分类法或 综合分类法。这种方法把各个种归纳为相似的类群,再 把相似的类群结合成更高的分类阶元。这在原则上是严 格的经验方法,标志着一种全面的方法学上的革命。这 种方法不仅方向相反,而且从依靠单一特征转向利用并 同时考虑多种特征。

法国是欧洲受“本质论”哲学思想影响最少的国家,因而首先发展了这种新的分类方法。法国植物学家P.马尼奥尔在分类时不仅采用果实的特征,而且利用植物各部分的特征,并强调“整体途径”即通过观察归类的重要性。法国博物学家 G.-L.de布丰也强调把相似种归类,把相异种分开,并考虑全部特征的分类方法。法国博物学家M.阿当松首先对逻辑区分的有效性提出了疑问,建议代之以经验的归纳法。法国生物学家 J.-B.de拉马克也主张用归类而不是逻辑区分进行分类。法国动物学家、古生物学家G.居维叶关于各种器官的形态结构与功能之间的相关理论,更促进了分类阶元多特征概念的发展。这样,对特征的评价是根据其是否有助于形成“自然”类群而定的,而且特征的分类价值也随分类阶元的不同而改变。随着新种的不断增加,属的变动也较大,因此,分类的重点也从 C.von林奈的属转到较高的等级──科(family),成为最稳定的分类阶元。但是经验分类学家根据“相似性”进行归类,并无因果性的关系。直到C.R.达尔文运用进化论明确指出同一分类阶元内各成员间的相似性来自它们共同的祖先,才为进化分类学奠定了基础。

五:胚胎学研究的起源

亚里士多德认为胚胎发育或是预先形成、或是从无结构状态分化而成,但他更倾向于卵是未分化的物质,受精后才开始形成器官。这是关于胚胎发育的先成论与后成论的最早起源。W.哈维对鸡胚、鹿胚发育做了许多研究,于1651年出版《动物的生殖》一书。他的工作纠正了许多前人的 错误,并使他接受亚里士多德的后成论思想。17世纪后 叶,M.马尔皮基对鸡胚早期发育做了详细描述,但他认为心脏是一开始就有的,40小时后才开始跳动。他还观察过一枚产下两天未经孵化的鸡蛋,发现已能看到鸡胚 的外形。他的这些看法为先成论提供了依据。J.斯瓦默 丹在研究蛙卵发育和昆虫变态时,发现蛹内有蝶类成虫,蛹又来自幼虫和卵,因此认为在卵内就有隐蔽着的微小成体,由此主张先成论。法国哲学家N.de马勒布朗什进一步发展这种观点,认为预成胚胎中存在着更微小的成体,就象一个套一个的盒子,以致在夏娃的卵内已经套装着所有的人体,称为套装学说。1677年荷兰的A.van列文虎克用显微镜发现精子。N.哈尔措克描绘了自称用显微镜看到的含有小人的精子。他们主张一切生命起源于精子。因此,先成论又以卵原论及精原论两种形式出现,直到18世纪仍占统治地位。如瑞士著名解剖生理学家A.von哈勒等都坚持先成论看法,这与当时显微镜学家反对亚里士多德提出的自然发生说有关,而且他们的机械论观点也受到当时哲学上的机械学派的支持。 18世纪后叶,德国胚胎学家C.F.沃尔夫证明植物的 叶、茎、根等,是由植物的生长点分化发育成的,鸡血管 与肠道的形成也有一个过程,不是一开始就存在的。他 主张后成论反对 A.von哈勒的先成论观点,但是由于先成论占很大优势,他的工作直到19世纪才被承认。

19世纪早期。俄国胚胎学家、潘德尔研究鸡胚发育,证明各种器官都是由原始胚层形成的。随后,俄国胚胎学家贝尔肯定了C.F.沃尔夫、潘德尔的观点,进一步提出动物胚胎发育过程中出现4个胚层,以后形成各种器官。这个观点经德国生物学家R.雷马克认为只有3个胚层,即沿用至今的外胚层、中胚层和内胚层。贝尔通过他的工作彻底否定了预成微小个体的先成论观点。他还发现了哺乳动物的卵;发现脊椎动物在胚胎发育过程中曾出现过脊索;提出高等动物的胚胎与低等动物并不相似,但高等动物的胚胎与低等动物的胚胎在发育的早期彼此却很相似。由于贝尔的出色工作,使他被公认为近代胚胎学的奠基人。

19世纪后期,描述与比较方法显然已不足以解释发育的原因,实验胚胎学遂逐步兴起。德国生物学家W.鲁 在1888年用热针刺死蛙卵的两个分裂球中的一个,剩下 一个的发育成半个胚胎。他认为卵子的各部分已预定为某些器官,是不能改变的,因此支持先成论。但这个实验为德国生物学家H.A.E.德里施所否定。1891年H.A.E.德 里施发表了海胆卵的实验,他将两细胞时期的卵依分裂 面分开,每个分裂球都能发育为完整的、体形较小的幼 体。他认为卵子中形成器官的物质可经调整而改变,并 假定卵内存在控制卵调整和发育的活力。以后,随着胚胎学的研究进展及卵母细胞发育过程中轴和极性的发现,在某种意义上使先成论与后成论在新的高度实现了综合。

六:植物生理学研究的兴起

1691年,德国植物学家R.J.卡梅拉里乌斯发现雌性桑树及移植的一年生山靛(Mercu-rialis annua)在附近没有雄树情况下不能产生种子。1694年他根据详细观察和移去雄花实验,证明花药是植物的雄性器官,子房与花柱是雌性器官。德国植物学家J.G.克尔罗伊特于1761~1766年认识到昆虫对传粉的重要作用,他用实验证明当用同种花粉与异种花粉同时向一种植物的柱头传粉时,一般只有前者能起受精作用。1793年德国的C.K.施普伦格尔指出由于许多花是雌雄异株的,雌雄同株的花也很可能是雌雄异熟的,因而植物界存在同种不同花之间或同种不同个体之间的杂交。1830年意大利天文学家、显微镜制造者G.B.阿米奇观察

到花粉管进入子房并进入胚珠的珠孔。1879年德国植物细胞学家E.A.施特拉斯布格确定花粉粒中通常有二核结构,并且他的学生还看到了 3个核。E.A.施特拉斯布格描述了胚囊发育与精卵结合,但不了解另一精子的去向。直到1898年俄国植物学家С.Г.纳瓦申发现被子植物双受精现象,才揭示了受精的全过程。

18世纪前叶一些学者在隐花植物中寻找与被子植物相似的两性器官。他们发现藓类的精子器和颈卵器相当于被子植物的雄蕊和子房。以后瑞士植物学家 C.W.von内格利于1844年发现蕨类原叶体上的相应结构。德国植物学家W.霍夫迈斯特于1849年确定了游动精子与颈卵器内卵细胞的受精,指出藓类和蕨类的生长发育为有性生殖所中断,成为一种世代交替。这在具有维管束的隐花植物内发生于萌发后不久,而在藓类内则晚得多。1855年德国植物学家N.普林斯海姆首先在一种最普通的藻类中观察到受精的具体过程。

植物营养研究可以说是从 J.B.van黑尔蒙特所做著名的柳树桶栽实验开始的。17世纪早期比利时人黑尔蒙特把一棵柳树种在一桶土内,只浇雨水,5年后长到约170磅,而桶内土壤损失极少,18世纪英国的S.黑尔斯测定了从根吸收的水和从叶面散失的水,以确定蒸腾作用,并与土壤湿度相较,查明了二者的关系。并计算植物茎内水的上升速率,证明与叶子蒸腾速率有关。他于1727年提出植物通过叶子吸收空气中的某些成分,使它转变为植物体内的固体成分。1771年英国牧师和化学家J.普里斯特利根据容器内不更换空气则燃烧不能持久,动物不能继续存活的实际观察,推测自然界有复原空气的途径,并通过在玻璃罩内放入绿色薄荷的实验证明植物可以恢复因蜡烛燃烧而“损坏了”的空气。继而荷兰人奥地利宫廷医生J.英恩豪斯于1779年在3个月内做了500多次植物对空气影响的试验,指出植物只能在阳光下通过其绿色部分改善空气,在阴暗处或夜间,植物也会“损坏”空气。1782年,瑞士牧师J.塞内比埃证明植物利用溶于水的“燃烧过的空气”(即二氧化碳)可恢复空气的活性。随后,日内瓦的化学家N.-T.de索绪尔于1804年指出植物产生的有机物总量及释放的氧远超过所消耗的二氧化碳,由此断定光合作用还必须以水为反应物,从而查明了光合作用是绿色植物以阳光为能源,以二氧化碳和水为原料而形成有机物和氧的过程。1845年德国医生J.R.迈尔引入能量概念,指出植物可以把太阳能转变为化学能贮存起来,成为能量的供给者。随后,德国植物生理学家 J.von萨克斯把物质消耗与物质运输和同化作用联系起来进行研究,并总结出叶绿素(包含在某些特殊的小体内)中的淀粉是同化作用的最初产物,是到处被消耗并贮藏于某些器官内的物质。他指出淀粉不是一次化学变化就产生的,而是在叶绿素内发生一系列化学变化的结果。

七: 动物生理学研究的兴起

法国生理学家M.-F.-X.比夏认为“物理定律”与“生命力”间有明显区别,前者是不变的,后者则不断变化。他从解剖学、生理学的角度考虑不同结构对有机体功能的重要性,提出有机体由21种组织构成,但他轻视显微镜的观察结果。法国生理学家F.马让迪继比沙之后也承认“生命力”。在其科学生涯中,他既利用物理学来类比生物活动,又告诫人们不要过分寻求用支配无机界的定律去解释一切生命活动。他肯定英国C.贝尔提出的两种神经根具有不同功能的观点,证明脊髓神经的前根向外传导运动冲动,而后根则从周缘传递感觉至中枢神经系统(贝尔-马让迪定律,1822)。他还通过对毒药和催吐剂的研究开辟了实验药理学的新领域。法国生理学家C.贝尔纳是马让迪的学生。他在消化生理、糖代谢、交感神经作用、病理生理学等方面充分利用物理学和化学的技术,开展许多工作。例如,他发现胰液的消化作用,肝脏的糖原合成功能,控制血管舒张和收缩的神经,箭毒、一氧化碳以及其他毒性物质的作用性质等。他否定身体由各具独立功能的器官所组成的概念,认为各种功能彼此相关,从属于机体的生理需要,提出生理综合概念。根据这种认识,他还进一步提出高等动物生命的特点是保持内环境的稳定而不受外环境的干扰。他写的《实验医学研究导论》(1865)奠定了现代实验生理学的方

法论基础。他虽然不是活力论者,但他反对当时德国人的还原论倾向,否认一切有机过程可以还原为物理-化学定律。

瑞士生理学家 A.von哈勒通过实验并应用动力学原理,以解剖学和生理学相结合,研究各种器官及器官系统的形态和功能。特别是肌肉的“应激性”和神经的“感受性”。他的百科全书式的《生理学纲要》(8卷,1757~1766)体现了这门学科的近代精神。德国生理学家J.P.弥勒克服了当时盛行的自然哲学的影响,开创了德国生理学实验研究的新时代。他发现了“特殊性神经能力律”,即刺激神经的反应,取决于受刺激的有机物质的特性,而不在于刺激的性质。他还设计一些实验,用直流电在蛙腿的离体神经肌肉上测定引起肌肉收缩的条件,成为电生理研究的最初进展之一。他用简单实验肯定了贝尔-马让迪定律,并通过切断蛙神经后根与前根的实验,发现导致失去知觉或肢体麻痹的不同结果。他还研究并确定了不同类型的神经。此外,对颜色感觉的解释,对内耳的阐述、对发声器官结构与功能的阐述也都是近代生理学的重要起点。J.P.弥勒的《人体生理学手册》(1833、1840)是W.哈维以来的生理学巨著,不仅包括他的许多研究成果,而且首先在生理学上综合了比较解剖学、化学、物理学的成就。他还培养了一批象T.A.H.施万、F.G.J.亨勒、R.C.菲尔肖、E.海克尔、H.von亥姆霍兹和 E.H.杜布瓦-雷蒙等著名科学家。但他本人始终是一位活力论者,对生理学的许多解释中仍有“活力”的概念。

J.P.弥勒以后德国生理学的研究,出现了以物理、化学定律来阐明生命现象的趋势和哲学上还原论的倾向。T.A.H.施万于1835年进行的肌肉实验,主要是对生理现象进行了物理测量,这是对活力概念的直接挑战。1839年他在细胞的学说论述中也强调细胞形成过程与无机界晶体形成过程的某种相似性。1847年,4位德国生理学家C.F.W.路德维希、H.von亥姆霍兹、E.W.von布吕克、E.H.杜布瓦-雷蒙相聚,一致表示应在化学-物理学基础上建立生理学。当时,应用化学、物理学与物理学-数学名词来解释生命现象虽盛极一时,但实际上以物理学为方向的实验远较活体解剖或组织学研究困难得多。因此到70年代,除杜布瓦-雷蒙继续电生理学研究外,亥姆雷兹已放弃生物物理学与生理学的研究,转而研究物理学,其他两人则主要从事一般生理学的研究。他们的学生却继续致力于经典生理学有重要意义的两个生物物理学领域的研究:用力学和热力学方法研究肌肉收缩和用电学方法研究神经冲动。然而,他们的反活力论立场,以及在生理学研究中提倡用物理、化学技术的实验方法确为推动实验生理学的发展作出了贡献。 另一方面,通过J.李比希、C.贝尔纳、L.巴斯德等人工作的推动,以及F.沃勒、E.弗兰克兰等在有机化学方面的工作,又发展了生理化学,这主要是用化学分析方法了解生命过程中各种物质的化学本质和作用。对蛋白质的研究较早,在19世纪30年代末已为其定名。60年代前后蛋白质已被认为是在生命过程中起重要作用的物质。其组成单位氨基酸,到19世纪末已有12种被分离并测定。德国生理化学家 E.F.霍佩-赛勒及其后的许多学者研究了有机体内起作用的几乎一切物质,丰富了这方面的认识。 70年代霍佩-赛勒主张“生理化学”从“医学生理学”中独立出来,并于1877年创办了第一个“生理化学”期刊。1869年他的学生、瑞士生理学家J.F.米舍尔用胃蛋白酶水解脓细胞,得到一种不同于蛋白质的含磷物质,他称之为“核素”;以后因核素呈酸性故又称为“核酸”。1878年W.F.屈内把组织器官分泌出的酵素同组织内存在的酵素相区分,称前者为“酶”。1894年E.H.菲舍尔证实酶的专一性,并用“锁钥原理”解释酶与底物之间的关系。以上许多工作都为生物化学的发展奠定了基础。

八: “自然发生说”的否定

从古希腊到19世纪中叶,在生命起源问题上流传时间最长、影响最大的是自然发生说。这种学说认为有机体可从无生命物质自发地产生。17世纪W.哈维提出一切有机体都来自卵。1668年意大利宫廷医生佛罗伦萨实验科学院成员F.雷迪用实验证明腐肉生蛆是蝇类产卵的结

果,首先对自然发生说提出异议。但由于他未能正确解释虫瘿与肠道蠕虫的来源,人们认为低等动物仍可自然发生。虽然,A.van列文虎克在1674年发现了微生物,但对微生物的进一步的研究受到许多条件的限制,微生物可以自然发生的信念反而活跃起来,并于18、19世纪达到了顶峰。1745年英国天主教神甫、显微镜学家J.T.尼达姆用各种浸泡液经消毒后,仍有微生物发生,而坚持自然发生说;他由于受到法国博物学家G.-L.de布丰的支持,曾在科学界轰动一时。1775年意大利生理学家L.斯帕兰扎尼通过一系列实验,证明J.T.尼达姆实验结果是由于加热不够和封盖不严所造成,因而确信微生物是从空气带入的。他的观点在当时已接近胜利。但他的批评者宣称,由于他使浸出液在密闭管内煮沸了45分钟,杀死了管内空气中的“活力”,因而影响了自然发生。同时,法国化学家J.-L.盖-吕萨克证明发酵和腐烂都必需氧,也使反对意见得到支持,使斯帕兰扎尼的观点未能取胜。1837年T.A.H.施万改进了斯帕兰扎尼的实验,通入事前经过加热或“焙烧”的空气,并以青蛙仍能在其中生活,证明并未影响“活力”的存在。但T.A.H.施万的实验由于存在某些技术问题,结果并不稳定。其后一些学者采取措施消除空气中的微生物,但也未能保证实验取得成功。因而仍有利于自然发生的观点。

1859年法国博物学家、巴黎科学院通讯院士 F.A.普歇发表“异源发生论或自然发生论”的论文与法国微生物学家L.巴斯德间又展开类似的争论。F.A.普歇认为在具备有机物、水、空气和适当温度的条件下自然发生能被促进,并设计实验企图证明他的观点。巴斯德根据他从事发酵工作的经验,认为“酵素”实际是生命有机体,并确信空气中的微生物也来自酵素。1860~1861年L.巴斯德用火棉及S形长颈瓶进行实验,证明空气中的尘埃携带着各种微生物;而且随着场所和高度的不同,空气中微生物的含量也不一样。他在高山上做实验,由于高山上空气新鲜,微生物及孢子少,所以酵母浸液受污染的机会也少。1863年普歇在西班牙做了类似的试验,得到与巴斯德相反的结果。于是引起了论战。1864年法国科学院安排论战双方做实验,巴斯德做完上述实验后,普歇就宣布退出争论,未做实验。1876年英国H.C.巴斯特兰作为自然发生说的支持者,就微生物能否在中性或碱性尿液内自然发生与巴斯德展开争论。巴斯德重复了他的实验,认为它只证明某些低等芽孢在中性或微碱性培养基内能抗 100℃高温。1877年巴斯德又提出巴斯特兰的容器可能已受污染。以后通过R.科赫、J.廷德尔等的工作,表明确实存在着一种高度抗热的细菌内生孢子,某些微生物也能在 100℃酸性培养基内存活。而且尽管对实验容器预先消毒,在某些溶液内仍有微生物出现。巴斯德这才充分认识到在普歇及巴斯特兰等自然发生说的支持者所用的溶液内,有时可能一开始就有这样的微生物存在,而非由于实验技术操作不慎所致。以后巴斯德提出外科医生在更多注意消灭器具或手上的微生物,而不是空气中的。1879年C.E.钱伯兰证明,消灭液体内的抗热微生物至少要115℃,而消灭干燥表面的则要180℃。1897年E.毕希纳证实无细胞酵母提取液可使糖发酵产生酒精,驳斥了巴斯德关于酵素是生命有机体的观点。但这并不影响巴斯德在否定自然发生说中的重要地位。

九: 微生物学研究的开端

自A.van列文虎克发现微生物到18世纪,微生物研究没有多大进展。19世纪30年代,法国生理学家C.C.de拉图尔于1836年和T.A.H.施万于1837年分别报道了酒精发酵与酵母有关。1857年L.巴斯德在关于乳酸发酵的报告中指出,除了啤酒酵母之外,在糖变成乳酸的过程中,还有乳酸酵母(即乳链球菌)在起作用。他对发酵所必需的化学物质和发酵产物的化学成分也作了较详细的分析。1865~1870年,巴斯德为挽救法国的蚕丝业,曾去南方研究蚕病。他发现蚕病有两种,即蚕微粒子 (Nosema bombysis)病和软化病,并通过选用健康蚕蛾的卵以及防止病原感染等措施保证了蚕丝生产。1877~1881年,巴斯德从事炭疽病研究。德国细菌学家R.科赫于1876年已揭示炭疽病杆状弧菌(后称炭疽杆菌)的生活史,确定它有一内生孢子期,指出了传病途径,并首先证明这是由细菌感染引起的疾病。巴斯德发现埋有病尸的田地,通过蚯蚓活动,把孢子带到地面,当牛羊取食带刺植物时,孢子随之传入体内,并据此提出了预防

的措施。但到1877年仍有人断言这些杆菌不是炭疽病的致病因子。同年,巴斯德通过 100多次转移稀释实验,证明只有在转移过程中增殖的有机体才是毒性因子。如果把杆菌过滤或沉淀,剩下的清液是无害的。从而证明微生物是引起传染病的致病因子。1878年,巴斯德检验因炭疽病致死动物不同时间的血液,发现随着时间的延长,血液内的杆菌(后称炭疽杆菌)逐渐为败血弧菌所代替,从而说明了死后二、三天的病畜血液内没有杆菌的原因。由此澄清了关于炭疽病争论中的一些问题。1878~1879年,巴斯德发现经连续培养可减低鸡霍乱病菌毒性,使鸡得病而不死亡,由此试制鸡霍乱疫苗获得成功。1880年,他转向研究炭疽病疫苗,以后又研究猪丹毒疫苗,均获成功。1881~1884年,巴斯德研究狂犬病疫苗,并于1885年7月救活一名9岁的男孩。

英国外科医生J.利斯特受到巴斯德工作的启发,联系到外科手术中的感染问题。于1867年发现用石炭酸作消毒剂可大量减少手术后的败血症,使病人死亡率明显降低。1882年 3月R.科赫在柏林生理学会作题为《论结核病》的报告,指出结核杆菌是当时发生普遍、危害严重的肺结核病的根源。1883年,R.科赫受命去埃及研究霍乱,后又去印度继续研究,分离并鉴定了霍乱病菌。1884年,他成功地找到霍乱交叉感染的途径及隐患,以乃有效控制霍乱的方法。同年他明确提出鉴定某一特定病疾是否由某种特定的微生物引起时所要遵循的几个步骤(世称“科赫法则”):①首先确定某种微生物与某种病理状况的恒定关系;②分离致病有机体并在实验室进行纯菌培养;③将培养的致病有机体接种于健康动物并能表现出这种疾病特有的症状和特性。R.科赫还不断改进对细菌的染色法和培养法,这对以后发现各种病原菌起了很大作用。 19世纪后期,在巴斯德、科赫等工作的基础上,对免疫机制的研究形成了两个学派。俄国动物学家、免疫学家И.И.梅契尼科夫在研究炎症时发现微生物在血细胞内被消耗的现象,认为血细胞具有保护有机体防止感染性物质侵袭的作用,提出细胞吞噬理论。R.科赫则主张体液论,认为免疫依赖于血液和体液中诱导出来的某些因子,为以后免疫学说的发展提出了重要的依据。

1892年,俄国微生物学家Д.И.伊万诺夫斯基发现烟叶可被能通过滤器过滤的花叶病汁所感染。1897年,德国细菌学家F.A.J.勒夫勒证明引起牲畜口蹄疫的也是一种可通过滤器过滤的病毒。这是揭开非细胞微生物──病毒奥秘的开端。

十: 细胞学说的建立

18世纪末、19世纪初,德国诗人、自然科学家 J.W.von歌德认为有机界的多样性是从物质的神圣统一性与第一原理衍生出来的,即由共同的原型所组成。德国自然哲学家、生物学家L.奥肯根据自然哲学思想与不确切的观察,提出由球状小泡发展成的纤毛虫是构成生命的共同单位。学者们寻找动植物原型的思想对细胞学说的提出有一定影响。

19世纪20、30年代,有些学者提出“小球”可能是植物或动植物的基本结构。其中法国生理学家H.J.迪特罗谢曾明确指出所有动植物的组织和器官都由小球构成。但是他所指的小球比较含糊,有时是细胞,有时是细胞核,也有时甚至是早期显微镜缺陷所造成的衍射圈。与此同时,有些学者开始采用消色差显微镜。1831年,英国植物学家R.布朗在兰科植物叶片表皮细胞中发现了细胞核。1835~1837年,捷克生物学家J.E.浦肯野及其学生G.G.瓦伦廷对构成动物某些组织的“小球”进行描述,并提到与植物细胞有相似性。

1838年德国植物学家M.J.施莱登发表《植物发生论》,提出只有最低等的植物,如某些藻类和真菌是由一个单细胞组成的。高等植物则是各具特色的、独立的单体即细胞的集合体;因而认为细胞是组成植物的基本生命单位。他还认为细胞的生命现象有两重性:一方面细胞是独立的,只与自身生长有关;另一方面又是附属的,是构成植物整体的一个组成部分。他研究植物的个体发育、发展了R.布朗关于细胞核的看法,认为核与细胞的产生有密切关系,并把它称为细胞形成核(cytoblast)。他描述了先由粘液颗粒长成细胞形成核,再在其表面出现小囊,

逐步形成细胞的过程。他认为所有显花植物都具有共同的细胞形成规律。德国动物学家 T.A.H.施旺于 1837年10月,获悉M.J.施莱登的研究成果而受到启发,认识到从细胞核入手对论证植物细胞与动物细胞的一致性有重要意义。他于1839年出版《动植物的结构和生长一致性的显微研究》,提出了细胞学说。他通过对蝌蚪脊索细胞和不同动物软骨细胞的研究,阐述了动物细胞与植物细胞的相似性。他把动物的永久性组织分为5类,分别研究了血细胞,指甲、腱、骨、齿、肌肉、神经等,证明它们都是有核的细胞或是细胞分化的产物。他接受M.J.施莱登的观点,并发展为细胞可由细胞内或细胞间的一种无结构物质即细胞形成质(cytoblastema)产生。他根据研究结果提出一切动物和植物都是由细胞组成的,有机体的各种基本组成都有一个共同的发育原则,即细胞形成的原则,并认为细胞是生命的基本单位。一切有机体都从单个细胞开始生命活动,并随着其他细胞的形成,不断发育成长。他还明确指出细胞有两类现象,一类是塑造现象,与细胞由分子组成有关;另一类是代谢现象,与细胞本身组成成分或周围的细胞形成质中发生的化学变化有关。

细胞学说建立后的主要进展是原生质理论的建立和动植物细胞有丝分裂、减数分裂一致性的证实。继1835年法国原生动物学家F.迪雅尔丹将根足虫的内含物称为肉浆,1839年浦肯野把动物胚胎细胞内的物质,称为原生质。1844年 C.W.von内格利发现植物细胞壁内有一颗粒状的无色粘液层,同年H.von莫尔称它为原囊,1846年又称它为原生质。1850年F.J.科恩证明肉浆和植物原生质为同一物质。以后M.舒尔策于1861年证实植物和动物的原生质和最低等生物的肉浆是同一物质。

1844~1846年 C.W.von内格利和 H.von莫尔提出植物细胞通过分裂形成,但并不排除细胞游离形成。1852年,德国动物学家R.雷马克与德国病理学家R.C.菲尔肖分别明确指出动物细胞分裂的普遍性,并由R.C.菲尔肖于1855年总结提出“一切细胞来自细胞”的名言。但他们并未正确认识细胞分裂过程,而且也未完全排除细胞游离形成。直到19世纪70年代和80年代中期,通过德国植物细胞学家E.A.施特拉斯布格、德国细胞学家W.弗勒明等许多学者的努力,才正确阐明了动、植物细胞有丝分裂的过程,并证明它遵循着共同的规律。比利时胚胎学家E.van贝内登于 1883年发现马蛔虫性细胞染色体数目的减少是对于细胞减数分裂的认识的开始。后来德国动物学家H.亨金于1891年指出减数过程是染色体配对及染色体对之间的分离,并指出了脊椎动物、植物和昆虫细胞减数分裂的一致性。但是H.亨金的研究成果在当时并未得到承认。1905年英国植物学家J.B.法默和生物学家J.E.S.穆尔在总结前人工作的基础上,进一步证实了动、植物细胞减数分裂的共同性,以及两者之间的某些差异。

十一: 进化理论的确立

18世纪,法国博物学家G.-L.de布丰早期赞成物种不变的观点,但他不同意C.von林奈那种注重微小差异的人为分类方法。他把自然界作为一个整体来考虑,并着重寻找生物间的相似性。后来他根据对地球的历史和化石资料的研究,认为生活条件的改变一定会反映到生物的结构上,明确提出物种并非永久不变的,近似的物种可能有共同的祖先等观点。晚年他对上述两种观点采取了妥协的态度,提出一些不合情理的猜测,如说猪是其他动物的复合体,驴是退化了的马,猿是退化了的人等。他一生讨论了大量生物进化的问题,使进化成为科学研究的对象,推动了进化思想的发展。

英国医生、哲学家E.达尔文是C.R.达尔文的祖父。曾受 G.-L.de布丰进化思想的影响。他认为人工饲养、气候、杂交等原因可使动物发生变异,而且这种变异是可以遗传的,许多动物的结构相似表明它们有共同的祖先。法国生物学家 J.-B.de拉马克认为对各个动、植物的研究虽是必要的,但为了探讨作为一个整体的生命世界的共同法则,一定要对动物和植物进行统一的研究。他早期研究植物时,相信 C.von林奈的物种不变说。90年代后期,通过软体动物化石及与近代种类的比较研究,发现彼此间的相似性,才使他相信存在着许多种系系列

(Phyleticseries),在整个历史时期内,经历着缓慢的渐变。他于1800年开始持有这种进化观点,并在1809年出版的《动物哲学》一书中对有关进化的问题进行了全面系统的讨论。他认为物种变异的机制主要是用进废退和获得性遗传。他的进化学说由于思辨性较强,不少解释缺乏事实根据,因此很少为生物学家所接受。当时法国科学界、教育界的权威,比较解剖学家和古生物学家G.居维叶根据对地层化石的研究提出“灾变论”,反对拉马克的进化论,不仅在法国而且在英国也很有影响。

19世纪前期,自然神学在英国学术界有很大影响,许多生物学家认为生命世界的奇妙适应与和谐都出自上帝的设计。英国比较解剖学家R.欧文就持这类观点。他是居维叶的学生,也是拉马克进化论的反对者,在英国学术界很有影响。 英国地质学家 C.莱尔反对灾变论,是“均变说”的积极拥护者。但他在《地质学原理》第二卷(1831)讨论到动物变异等问题时,对拉马克学说进行了尖锐批评,他的著作对C.R.达尔文及其进化论的传播虽有重要影响,但他本人在较长时间内也是反对进化论观点的。1844年英国博物学家R.钱伯斯以化名出版了《自然创造史的痕迹》,书中大胆表明进化观点,曾轰动一时,成为畅销书。但由于该书内容粗糙,缺乏根据,特别是用一种神秘的“法则”来代替上帝,所以对学术界实际影响很小。总之,在C.R.达尔文的《物种起源》出版之前,在英国接受进化思想的人极少。

C.R.达尔文于1831年,参加“贝格尔”号舰的环球航行,在5年航海生活中他观察到大量的现象,收集到丰富的材料。南美洲从北到南相似的动物化石类型逐渐更替,加拉帕戈斯群岛的地雀既具有南美大陆鸟类的特性,又在岛屿之间略有差异。这些现象使他产生了物种渐变的想法。1837年 3月,当他从鸟类学家J.古尔德处获悉,在加拉帕戈斯群岛的3个岛屿上采集到的地雀,确有种的差异时,使他终于认识到地理因素引起物种形成的过程,从而彻底否定了物种不变的观念。1837年7月他开始就物种变异问题进行写作;根据他的亲自观察和阅读过的大量书刊,使他相信自然界的一切变化都是逐渐的而不是突然发生的。1838年10月当他阅读T.R.马尔萨斯的《人口论》时,使他体会到在动、植物界到处进行着生存斗争,在这样的环境条件下有利的变异将被保存,不利的变异将被消灭。其结果就是新种的形成。因而得出了自然选择的理论。1842年 6月达尔文用铅笔写出了这种观点的摘要,共35页;1844年夏季,又把它扩充到300页。但这仅是一个手稿,且只有很少人知道。此后,他一直持慎重态度,继续收集有关资料。1846年当他完成地质学的有关研究后,又用了8年时间从事藤壶的分类研究。 1855 年英国博物学家 A.R.华莱士发表了一篇题为“制约新种出现的规律”的短文,它并未引起重视。直到1858年A.R.华莱士寄去请求发表的论文──“论变种无限地离开其原始模式的倾向”,才使达尔文感到震惊,促使他加快了《物种起源》的写作。A.R.华莱士曾先后去过亚马孙河及马来群岛考察,并受C.莱尔和C.R.达尔文著作的启发,研究物种起源并独立地得出了生物通过自然选择而形成新种的概念。与达尔文不同的是他更多依据动物地理分布的材料,指出一个物种种群的大小,毫不取决于生殖力,而取决于对潜在的种群增长的自然控制。每年有大量动物死去以保持数量稳定,这样必然是最弱的死去,最健壮的存活。因而通过生存斗争而实现自然选择。华菜士强调个体的变异,即种群内的各个个体并不具有完全相同的特性。一个物种如产生出一优良的变种,它在数量上也必占优势。在C.莱尔和J.

D.胡克的建议下,达尔文和华莱士的联合论文于1858年7月1日在伦敦林奈学会上宣读,并于8月20日发表于林奈学会会刊上。

从1858年起到1859年 3月,达尔文完成了《物种起源》一书的写作。鉴于英国当时接受进化思想的人很少,他预见到该书的出版一定会引起激烈的争论,因此,他把样书分送给C.莱尔、J.D.胡克、T.H.赫胥黎及A.格雷以争取他们的支持。1859年11月24日《物种起源》出版,当天即被抢购一空。同时,《物种起源》也遭到了学术界、宗教界等方面的强烈反对,甚至恶毒诽谤。这主要因为达尔文以自然界的规律代替了“造物主的智慧”,并直接涉及人类自身的由来及历史,使宗教的基本信念发生了动摇,导致科学与宗教间的更深刻冲突。但是《物种起源》也受到英国和其他国家一些学者的积极支持,象英国的T.H.赫胥黎、德国的E.海克尔等,都为达尔文进化论的传播作出了重要贡献。

19世纪后期德国生物学家A.魏斯曼通过他的“种质学说”坚决否认获得性遗传。他把

生物的遗传物质设想为种质,种质由微小的遗子(id)组成,遗子又由更小的定子(determinant)组成,定子是确定身体细胞分化和器官组织特征的单位。在他看来,生命世界的一切,都是长期自然选择的结果。他于1895~1896年间还进一步提出了“种质选择学说”,认为种质细胞中各个定子吸收营养的同化力和所处位置是不同的,同化力强和位置有利的定子在竞争过程中被选择,由它决定的器官也较健壮而进化,反之就较萎弱而趋于退化。魏斯曼的这种把选择原理推广到一切生命单位的见解,使他后来被公认为新达尔文主义的创始人.

十二: 遗传规律的发现

欧洲从18世纪以来就大量开展了植物杂交的实验。德国植物学家J.G.克尔罗伊特在18世纪60年代首先从事各种烟草的杂交试验,发展了人工杂交技术。他发现无论是正交还是反交,杂种的外表都难以区分,由此他指出在决定杂种性质时,两个亲本起着同等的作用。他通过与亲种反复回交的方法,把亲种的性质逐步转移给了杂种。但由于当时受物种不变信念的影响,他的试验结果未得到重视。19世纪40年代德国植物学家C.F.格特纳在实验方法和对杂种及其亲种的比较描述方面,较之前人又有了很大的进展。他细致分析了9000多个实验的结果,发现纯种之间杂交总是产生相同形态的杂种;认为杂种形成不象一种化学过程,而类似于动物的生殖过程。他早在20年代就统计出玉米杂交第二代的性状分离比率为3.18:1,但无法给予解释。C.R.达尔文曾高度评价C.F.格特纳的工作,认为他的研究价值超过了所有其他学者的总和。以后,法国植物学家C.诺丹在60年代发现杂种第一代表现一致,而第二代则出现杂乱的变异,各种类型的数目,完全由机遇决定。认为“配子的纯度”和各种杂交类型的产生都服从于概率定律。 此外,还有一批植物育种工作者长期从事品种间杂交。他们经常研究植物的个别性状,并在许多世代中追踪其结果。其中法国农学家A.萨热雷于1826年就两个甜瓜品种5组相对性状做了杂交试验,根据杂交结果,他指出性状的自由组合,并引进了“显性”的概念。另外,这期间欧洲有些育种学家已发现豌豆作为杂交育种实验材料的优越性。以上的大量工作,均为以后发现遗传规律奠定了基础。

奥地利布隆(Brunn)〔今捷克和斯洛伐克布尔诺(Brno)〕修道院修道士G.J.孟德尔对植物杂交和遗传现象很感兴趣,仔细阅读过前人的工作,包括C.F.格特纳的著作。他于1856年开始从事豌豆杂交试验,由于受F.翁格尔关于研究变种是解决物种起源的关键这一思想的影响,他采用了种群分析法,而不是研究单个个体。他选择了豌豆品种这一理想材料作为研究对象,又把工作限于彼此间差异十分明显的单个性状的遗传过程,而使实验结果大大便于统计分析。经过 8年研究,孟德尔于1865年2月8日和3月8日两次在布隆自然科学协会上报告了他的实验研究结果。反映实验结果的论文《植物杂交的试验》发表在1866年《布隆自然科学协会会刊》第4卷上。他的主要结果可概括为:①分离规律。杂交第一代通过自花授粉所产生的杂种第二代中,表现显性性状与表现隐性性状个体的比例约为 3:1;②自由组合规律。形成有两对以上相对性状的杂种时,各相对性状之间发生自由组合。孟德尔为解释这些结果,提出一些假设。如遗传性状由遗传因子所决定;每一植株含有许多成对的遗传因子;每对遗传因子中,一个来自父本雄性生殖细胞,一个来自母体雌性生殖细胞;当形成生殖细胞时,每对遗传因子互相分开,分别进入一个生殖细胞等等。他的实验结果及其假设表明遗传决不是融合式的,而是“颗粒式的”,亦即决定某一相对性状的成对遗传因子在个体内各自独立存在,互不沾染,不相融合。刊载孟德尔这一突破性的重大研究成果的布隆自然科学协会会刊曾被分送到 120个单位,在欧洲很多图书馆内都可找到这篇论文。他本人还把论文寄给当时植物学界的权威人士内格利。但他的成就对他同时代的生物学家和有关遗传的研究没有产生影响,被埋没了35年之后,直到1900年才被重新发现。

与孟德尔同时代的C.R.达尔文在1868年出版的《动物和植物在家养下的变异》一书中,提出“泛生论”的暂定假说,说明他并未看到孟德尔的论文。达尔文设想体内的各类细胞

中,均具有代表其自身的胚芽。杂种内的镶嵌特征是亲本胚芽混合所致。他认为在生活周期的任何阶段细胞都可放出胚芽,胚芽随血流循环,通过分裂而增殖并发育成同样的细胞。胚芽也可积累在生殖细胞内,并传递给后代。当环境条件发生变化时,胚芽也会发生改变,并将此新的获得特性传给后代,但是达尔文的这一假说很快就被其表弟F.高尔顿的输血实验所推翻。 1884年内格利根据受精卵内卵子原生质多于精子原生质但并不体现出更多遗传性状的事实,推测有两种原生质。一种称种质 (idioplasm)。它在卵细胞和精子细胞内是等量的,控制个体发育和系统发育,是遗传性状的携带者和变异的决定者;另一种为营养质(trophoplasm)大量贮存在卵内,主要起营养作用。内格利的上述观点,对 E.A.施特拉斯布格、O.赫特维希、R.A.von克利克、A.魏斯曼等后来提出核物质是遗传性状的载体,很有影响。

十三: 20世纪的生物学

20世纪特别是50年代以后,生物学同化学、物理学和数学相互交叉渗透,取得了一系列划时代的科学成就,使它跻身精确科学,成为当代成果最多和最吸引人的基础学科之一。关于生命的研究,已经不只是生物学家的任务,也是物理学、化学家以及数学家兴趣较大的领域。现在的生物学常被称为“生命科学”,不仅因为它更深入到生命本质问题,还因为它是多学科的共同产物。在微观方面生物学已经从细胞水平进入到分子水平去探索生命的本质。在宏观方面生态学的发展已经成为综合探讨全球问题的环境科学的主要组成部分。

生物学的各个分支学科,包括分类学、生理学、进化论等,都取得了重要进展,然而促使生物学的面貌发生根本变化的主要分支学科则是遗传学、生物化学和微生物学。遗传学的研究从1900年孟德尔定律的再发现以后与细胞学相结合,随之建立了基因论。到30年代,基因论已被公认是在生物个体水平和群体水平上研究性状遗传的指导理论。遗传学也因而在生物学中甚至在整个科学中占有重要地位。生物化学自1877年提取出离体的“酿酶(zymase)”以后,对生物体内新陈代谢的研究进展迅速,到40年代生物体内分解代谢途径已基本阐明。同时,酶的本质和生物能的研究也有长足进展。对蛋白质、核酸、糖、脂肪等生命基本物质则不仅阐明其基本组分,并且开始了三维结构的探索。微生物学除了对霉菌、细菌继续研究外,在20世纪30~40年代还阐明了病毒与噬菌体的本质。这 3个分支学科各自的发展和相互交叉,为分子生物学的出现奠定了基础。

第二次世界大战以后,生物学发生了质的飞跃。1953年DNA双螺旋结构的发现标志着分子生物学的诞生,也标志着生物学的探索开始进入了揭开生命之谜的大门。此后,遗传密码的破译,重组DNA技术的建立,不仅创建起分子遗传学,而且使肿瘤学和免疫学都在分子水平上取得突出成就。神经生物学,特别是在大脑的研究方面也都出现重大突破。可见,20世纪的生物学不仅直接影响着本身各分支学科的发展,而且对农学和医学,甚至对方兴未艾的产业革命已经和将要产生巨大的影响。科学史家普遍认为在20世纪50年代以后生物科学发生了一场革命。这场革命从其开辟新领域,从其对其他科学所产生的作用、从其对社会和人们思想的冲击等方面来考察,其影响之大绝不逊色于20世纪前30年中发生的物理学革命。

20世纪生物学的迅速发展,受到社会经济高速发展的有力支持,使生物学的研究能够迅速大量的应用现代物理学、化学的原理、方法和精密仪器。这样,生物学的定量研究逐渐得到发展。由于一些物理学家和数学家被吸引来探索生命之谜的未知领域,理论生物学这一新学科开始出现。理论生物学是主要用数、理、化方法研究各种生命现象的一个分支学科。早期的代表著作有奥地利L.von贝塔兰菲的《理论生物学》(第一卷1932、第二卷1942);M.贝格纳的《生物学的思想方法》(1959)等。

19世纪生物学主要在欧洲各国发展,特别是在英国、德国和法国。例如,英国的剑桥和牛津等几所有悠久历史和科学基础的大学和皇家学会的学术活动;德国的格丁根、海德堡、柏林等多所大学和凯撒-威廉研究所所属的生物实验室;法国的巴黎大学和1888年在巴黎建

立起来的巴斯德研究所以及俄国的圣彼得堡大学等。20世纪这种情况发生了很大的变化。这是因为:欧洲曾是两次世界大战的主要战场;1933年希特勒法西斯专制统治德国,推行残酷的排犹种族主义政策。迫使大批犹太血统的和反法西斯统治的德国科学家移居国外,其中大部分辗转到了美国。美国的科学在第二次世界大战后发展迅速,后来居上,成为世界科学的发展中心。生物学的情况也基本如此。美国本土的生物学家从19世纪末就已逐渐成长,经过20世纪30~40年代与欧洲各国,特别是德国大量移民生物学家的汇合,到20世纪后期无论从质量上或数量上来看美国的生物学都已居于领先地位。当然,上述欧洲国家经过战后40年的恢复和发展,科学技术仍居世界前列。亚洲、南美一些国家也在积极开展这方面的研究。下面几讲只介绍在20世纪中发展较快和影响较大的几个分支学科的简要历史轮廓。

十四: 在细胞水平上遗传规律研究的发展

一. 孟德尔规律的再发现 1900年荷兰的H.德?弗里斯、德国的C.E.科伦斯和奥地利的E.von切尔马克3人先后分别再发现了孟德尔的遗传规律,并查阅到了被淹没在图书馆文献中达35年之久的《植物杂交的实验》原文,把它重新公诸于世。从此,G.J.孟德尔的发现得到了高度评价,他所发现的遗传规律被称为孟德尔定律,他本人被誉为现代遗传学的奠基人。孟德尔定律再发现的1900年则标志着现代遗传学的开始。H.德?弗里斯和C.E.科伦斯都是当时著名的植物学家,对植物杂交和遗传颇有研究,E.von切尔马克则是较年轻的植物育种学家。科学史界一般对前两人的评价较高,尤其是对科伦斯;但无论如何,他们都以自己的工作为基础,充分认识到孟德尔发现的意义。科伦斯曾说过,“再发现远比不上孟德尔原来的发现,其份量要轻得多”。英国遗传学家W.贝特森立即找到孟德尔的报告,于1901年译成英文,从而促使它在英语国家中,更广泛地传播。

二. 细胞遗传学的建立 孟德尔定律再发现以后的年代中生物学家用许多其他动植物为材料进行了多方面的实验验证,结果表明孟德尔定律是动、植物界普遍遵循的遗传规律。许多重要的遗传学概念都是在1900~1910年间建立起来的。美国细胞学家W.S.萨顿于1902~1904年和德国的细胞学家T.H.博韦里都发现,在雌雄配子形成和受精过程中,染色体的行为同孟德尔假设的因子行为是平行的,从而提出孟德尔式的遗传是以染色体为物质基础的理论。英国的W.贝特森于1906年提出了遗传学这一名词,而且早在1902年他就提出了“杂合子”、“纯合子”、“等位基因”等重要概念。H.德?弗里斯则提出“突变”的概念。丹麦生物学家W.L.约翰森建立了纯系理论,并于1909年提出了“基因”、“基因型”、“表型”等名词及概念。从1901~1905年美国细胞学家C.E.麦克朗、E.B.威尔逊和W.L.史蒂文斯等证明了动物细胞核有两种粒子:一种含有副染色体(accessory chromosome)(或称X染色体);另一种则不含。认为性别就是由这种额外染色体决定的。E.B.威尔逊著的《在发育和遗传中的细胞》于1896年初版,1900年再版,到1925年第3版时几乎完全重写,它对细胞遗传学的发展起了积极的促进作用。

从1910年到30年代,主要由于美国遗传学家T.H.摩尔根其学派的科学贡献,建立起细胞遗传学,丰富并发展了孟德尔定律。T.H.摩尔根与E.B.威尔逊是同事和密友。他得到威尔逊从学术到行政各方面的支持。摩尔根最初并不信服孟德尔定律,这一方面是出于胚胎学家的偏见,另一方面也因为他所观察到的遗传现象远较孟德尔定律复杂。但他在细胞学和胚胎学基础上,用果蝇为材料进行的大量杂交实验,终于建立起细胞遗传学或染色体遗传学。1910年他发现了果蝇的白眼突变型总是同雄性相联系的伴性遗传现象,第一次用实验证明遗传白眼的“基因”是坐落在性染色体上的物质。以后他和他的合作者以及其他单位和国家的遗传学家用果蝇作了大量的系统研究,表明不同的“基因”在遗传过程中有“连锁”现象,同源染色体之间有“交换”现象。他们的大量的杂交实验证明基因在染色体上有固定的位置。通过在显微镜下对染色体的观察和大量实验数据的计算,找到各种基因在染色体上的相对位置(见连锁和交换、基因

定位)。1915年,摩尔根同他实验室里的年轻学者A.H.斯特蒂文特、H.J.马勒和C.B.布里奇斯合著的《孟德尔遗传原理》一书的出版在学术界产生了相当大的影响。1927年H.J.马勒用X 射线人工诱发果蝇突变,这是第一个被公认的用人工方法改变基因的最有说服力的事例,开辟了遗传研究和实际应用的广阔前景。1933年,其他科学家发现了唾液腺细胞的巨大染色体。其后,布里奇斯在1938年绘制出近4000个基因的果蝇染色体图。这些工作对基因论的确立提供了重要依据。

T.H.摩尔根于 1928年修订了 1926年出版的《基因论》一书,把基因在遗传学上的地位同原子、电子在物理学和化学上的地位相比,把基因论同物理学和化学的理论相比,说:“只有当这些理论能帮助我们作出特种数字的和定量的预测时,它们才有存在的价值,这便是基因论同以前许多生物学理论的主要区别。”这段话基本概括了30多年来遗传学的成就。在结尾的一段话中,他提出了“基因是属于有机分子一级”的问题,认为“基因之所以稳定是因为它代表着一个有机的化学实体。这是现在人们能够作出的最简单的假设,并且这项见解既然符合有关基因稳定性的已知实体,那么,至少它不失为一个良好的试用假说”。这一预见在以后的科学发展中得到了证实。

三. 细胞遗传学在苏联等国一度被否定正当遗传学向前发展之际,在苏联,以农学家Т.Д.李森科为代表的一方,同以植物学家兼遗传学家Н.И.瓦维洛夫为另一方,在1935年米丘林逝世之后展开了争论。由于李森科得到政治上的支持,特别在1948年8月全苏列宁农业科学院会议后,G.J.孟德尔、A.魏斯曼、T.H.摩尔根的遗传学说遭到全盘否定,并被戴上“反动的”、“唯心主义的”、“形而上学的”等政治帽子,同时下令停止了有关的教学和研究工作,有关遗传学家的各种职务也都被撤掉。这种情况直到1964年才恢复正常。近30年的批判和否定,使苏联的遗传学和有关学科从先进变为落后,并且同样地影响了包括中国在内的许多社会主义国家。

十五: 20世纪前期生物大分子和代谢途径研究的进展

一. 对生物大分子的认识 生物化学起源于19世纪的生理化学,发展于20世纪。起先,由于一些有机化学家对动植物化学的研究,开始认识了组成生命的重要物质──蛋白质、核酸、糖和脂肪的化学成分和部分结构。科学家们用了100多年的时间,到1940年才全部阐明了组成蛋白质的20种氨基酸。19世纪末、20世纪初,德国化学家E.菲舍尔和F.霍夫迈斯特先后分别提出蛋白质的结构是由肽键把各种氨基酸连接为长链的理论,并指出了天然氨基酸都是L系(左旋)的。但直到1929年,瑞典化学家T.斯韦德贝里用他自己发明的超速离心机进行了测定后才证明了蛋白质的大分子本质。1869年,J.F.米舍尔发现核酸以后,德国生化学家A.科塞尔和美籍俄裔的生化学家P.A.T.列文等从世纪交替时起到20世纪30年代,对核酸的结构作了系统的研究,发现核酸是由4种不同的含氮的杂环化合物(嘌呤和嘧啶的衍生物,通称碱基)同核糖、磷酸结合成核苷酸,然后再聚合为大分子。1929年P.A.T.列文发现,由于核糖含氧量不同,而有脱氧核糖核酸(DNA)与核糖核酸(RNA)之分。由于当时条件的局限,他根据不够精确的测定,误以为核酸中4种碱基的含量相等,于1921年提出关于核酸结构的错误的“四核苷酸”假说,把复杂的核酸结构简单化了。30年代这一假说被普遍接受,影响了人们揭示核酸作为生命物质的重要功能。直到40年代中期核酸在遗传上的功能被肯定,才有人再次用刚建立不久的精确方法进行分析,发现四种碱基含量并不完全相等。这才推翻了“四核苷酸”假说,有助于以后DNA双螺旋结构模型的建立。

二.代谢基本途径、酶和生物能本质的阐明生物体内代谢途径复杂多端,在20世纪前叶基本上阐明了糖、脂肪和蛋白质三种主要物质的分解代谢途径。

1897年,德国生化学家 E.毕希纳发现离开活体的酿酶具有活性以后,极大地促进了生物体内糖代谢的研究。酿酶发现后的几年之内,就揭示了糖酵解是动植物和微生物体内普遍存在

的过程。英国的F.G.霍普金斯等于1907年发现肌肉收缩同乳酸生成有直接关系。英国生理学家A.V.希尔,德国的生物化学家O.迈尔霍夫、O.瓦尔堡等许多科学家经历了约20年,从每一个具体的化学变化及其所需用的酶、辅酶以及化学能的传递等各方面进行探讨,于1935年终于阐明了从葡萄糖(6碳)转变其中乳酸(3碳)或酒精(2碳)经历的12个中间步骤,并且阐明在这过程中有几种酶、辅酶和ATP等参加反应。

脂肪酸的代谢一直遵循着从1904年德国生化学家F.克诺普建立的β-氧化理论,即从羧基端依序以两个碳为单位解离。

蛋白质的代谢则主要是氨基的去向问题。1930~1938年,经苏联生化学家A.E.布劳恩施泰因、克里茨曼和M.李约瑟夫人等许多科学家的努力,基本上阐明了氨基的转化过程。1932年德国生化学家H.A.克雷布斯发现了氮的代谢废物尿素是由转化的氨基通过鸟氨酸循环不断产生的。这一发现不但阐明了尿素生成的途径,而且给代谢途径建立了“循环形式”的新概念。 三羧酸循环这一代谢基本途径的阐明是H.A.克雷布斯于30年代末在英国作出的。他总结分析了前人在与呼吸作用有关的化学物质的化学结构及其变化和自己的实验结果,指出,柠檬酸经过一系列的已知的变化可以变为草酰乙酸,而草酰乙酸也可以变为比它多两个碳的柠檬酸,从而提出柠檬酸循环的设想。在这个过程中产生了二氧化碳和水。但是对于同草酰乙酸结合的两个碳原子化合物的来源问题,H.A.克雷布斯只是提出设想:是糖酵解或脂肪酸β-氧化的产物。证实这一重要设想的是德国出生的生物化学家,O.迈尔霍夫的学生和助手、1939年到美国工作的F.A.李普曼。1945年他从研究生物化学能的重要传递物──ATP入手,发现了活性很强的含两个碳原子的化合物──辅酶A。正是辅酶A促进了两个碳原子化合物同草酰乙酸的缩合。后来直到50年代初,才弄清了丙酮酸氧化脱羧后同草酰乙酸缩合的整套多酶体系。 在代谢途径的研究过程中,能量的产生和转化始终是一个引人注意的问题。英国生理学家A.V.希尔和O.迈尔霍夫分别于1912和1922年发现肌肉收缩过程中伴随着能量变化。1929年,德国生化学家C.H.菲斯克和K.洛曼等分别从肌肉中分离出腺苷三磷酸(ATP)。1935年,K.洛曼测定出ATP的分子式。与此同时,发现不论在糖酵解或三羧酸循环等代谢过程中,都有伴随着ATP磷酸根的放出或 ADP得到磷酸根的变化──化学能量高效率的传递方式。1941年F.A.李普曼引入“高能磷酸键 (~P)”的概念。1949年美国生化学家E.P.肯尼迪和A.L.莱宁格报道了线粒体含有三羧酸循环所需要的全部酶系统,并且与磷酸化偶联,产生大量ATP,而酵解作用则在细胞质中进行。以后线粒体就成为能量代谢研究的主要材料。

关于在代谢物氧化过程中,氢如何变为水的问题,曾有过不少争论。O.瓦尔堡在第一次世界大战前后,经过多年的研究,到20年代初明确提出氧分子能使2价铁变为3价铁,3价铁使代谢物氧化的同时又还原为 2价铁。他称这种铁的化合物为呼吸酶,但他所用的铁是血红素烧成的灰。O.瓦尔堡从事这项研究的副产品就是后来为世界各国生化实验室内所广泛采用的瓦伯呼吸仪。但他的结论却引起不少争论。德国化学家H.O.维兰德在1912~1913年间用一系列的实验表明,细胞内代谢物的氧化主要是由于酶的作用先脱氢,脱下的氢再同氧结合为水。不久就分离出脱氢酶。于是,在O.瓦尔堡和H.O.维兰德之间,对究竟是先激活氧还是先激活氢的问题上,发生了一场历时十余年的争论。英国寄生虫学家和生物化学家D.基林于1924年用实验表明在细胞中广泛存在的、含铁的细胞色素在代谢物氧化过程中起氧化作用。为此,O.瓦尔堡同D.基林间也发生了争论。到20年代末,经过D.基林和匈牙利生物化学家(第二次世界大战定居美国)A.圣捷尔吉等的努力,明确了代谢物的氧化过程中既有脱氢作用,也有氧被激活的作用,还有细胞色素在中间的作用。50年代许多人的工作结果表明代谢物在细胞内从脱氢到同氧结合为水,是一个多步骤的电子传递过程。这里同位素示踪技术对代谢途径的最后确定起着决定性的作用。从 1932年美国化学家 H.C.尤里发现氢同位素“氘”,1933年匈牙利化学家G.C.de海韦希制得放射性P32,特别是40年代初原子反应堆建立以后,在生化研究上很快得到了应用。如德国出生的生物化学家R.舍恩海默在美国于1933年用氘研究脂肪酸代谢,1937年用N15研究蛋白质代谢,发现代谢物质间存在着动态平衡。此后,同位素应用日益广泛,成为生物化学研究的一种重要手段。酶究竟是大分子还是小分子,在20年代前半期还在争论不休。1926年,美国生物化学家J.B.萨姆纳成功地从刀豆中提取出能分解尿素的尿素酶结晶,

并证明这个结晶是蛋白质。4年后美国生物化学家 J.H.诺思罗普又得到胃蛋白酶和胰蛋白酶的结晶,并证明它们也是蛋白质。从此,酶是蛋白质的概念才被肯定。30年代,发现酶除了大分子蛋白质的部分以外,还有许多种辅酶配合着起作用。经过包括O.瓦尔堡等许多生物化学家的研究证明了许多维生素,如B2、B2、B3、…等都得各种辅酶必不可少的成分。至于酶反应的原理和动力学,又为人们开辟了一个广阔的研究新领域。酶的专一性的研究在20世纪初已见端倪。E.H.菲舍尔就曾提出“锁钥理论”。即在酶同反应底物的结构之间有一定的互相嵌合的关系。以后又有不少修改和补充。60年代初D.小科什兰提出了根据比较充分的“诱导配合理论”。1965年法国分子生物学家J.莫诺出了调控酶活性的“变构”理论。

十六: 激素研究的进展

激素缺乏的临床症状早就为人所知,如1891年英国生物学家G.R.默里第一个用羊甲状腺提取液喂粘液性水肿病人,取得惊人疗效。但对激素的科学认识则开始较晚。1902年英国生理学家W.M.贝利斯和E.H.斯塔林从小肠粘膜提取液中发现了促使胰脏分泌的“肠促胰液肽”。他们根据这种物质的生物活性,命名为激素。 其拉丁文“Hormone”,意为“我激发起活性”。1905年,他们又提出激素在血液中起化学信使作用的概念。在其后的40年内人们取得了很多内分泌器官的提取液,其中包括肾上腺素、胰岛素和性激素等。很多有机化学家也卷入了纯化粗提液和化学分析的工作。1915年在美国生物化学家E.C.肯德尔报道了提取出具有活性的甲状腺提取物。1926年,英国生物化学家C.R.哈林顿改进了提取方法,提高了产量,并阐明了它的组成是酪氨酸的衍生物,称之为甲状腺素。1921年加拿大内分泌学家F.G.班廷和C.H.贝斯特从胰腺中提取出能使血糖降低的提取液,命名为胰岛素。1925年,经过许多人特别是美国生物化学家J.J.埃布尔的努力得到了胰岛素的结晶,并证明它是一种蛋白质。50年代胰岛素成为第一个分析出全部氨基酸顺序的蛋白质。60年代,胰岛素又成为第一个被中国化学家和生物化学家人工合成的蛋白质。从而使胰岛素在分子生物学的研究中也占有特别的地位。

性激素功能早已为人熟知,但对性激素的提取及分析则是20世纪前叶的工作。1923年美国解剖学家E.艾伦和生化学家E.A.多伊西发现雌性激素存在于卵泡液、羊水中。1931年美国生化学家A.布特南特等从睾丸中提取出的脂类成分,具有高效雄性激素作用。以后发现性激素都是类固醇结构。1930~1940年间,E.C.肯德尔等提取并分离出多种肾上腺皮质激素,分析出其化学结构,并发现其具有对体内新陈代谢调节的重要功能。30年代前后,发现了脑下垂体分泌的激素具有调节控制体内其他激素的功能。由于垂体小,所含激素量极少,因此提取工作困难很大。1943年,华裔美国生物化学家李卓浩和美国生物化学家H.M.埃文斯等从数以万计的垂体中提取出促肾上腺皮质激素(ACTH)大大促进了垂体激素的分离以及垂体激素同体内其他激素之间相互控制和反馈调节的研究。

20世纪后半叶在激素方面最激动人心的成果是提纯并分析了下丘脑分泌的神经激素。这主要是由两位生物化学家法裔美国人R.吉耶曼和出生于波兰后定居于加拿大的A.V.沙利在美国国家卫生研究院支持下,从1955年起进行了十多年工作的结果。1966年,他们提取出 1毫克的促甲状腺素释放因子,并分析出其化学结构为三肽。以后又继续分离出其他 9种多肽激素。他们的研究表明,下丘脑是比垂体更高一级的调节控制激素分泌的场所。而且在这里神经和内分泌两大系统,通过神经递质乙酰胆碱、多巴胺等的作用而连接起来,形成一个统一体。对血液中微量激素的测定手段也越来越精确。1959年美国物理学家R.S.耶洛和医生S.伯森长期合作,建立了放射免疫分析方法,测定血液中的微量多肽类激素和类固醇激素等,为激素研究和临床诊断提供了灵敏的工具。

细胞生物学和分子生物学的发展促进了对激素作用原理的探索。1970年前后,生物膜的研究表明激素的作用是通过与细胞膜上激素的受体结合,刺激细胞内cAMP量升高,从而引起一系列变化。在这些方面美国生物化学家E.W.萨瑟兰作出了开创性贡献。他早在1958年就

报道了发现cAMP,又经过多年研究,于1965年提出cAMP是激活“激素──第一信使”的“第二信使”。这一成就进一步促进了cGMP等一系列研究的开展。

十七: 植物的光合作用

20世纪对光合作用的探讨,向着物理学和化学两个方面不断深入。1905年英国植物学家F.F.布莱克曼提出光合作用包括需要光照的“光反应”和不需光照的“暗反应”两个过程,二者相互依赖,光反应时吸收的能量,供给暗反应时合成含高能量的多糖等的需要。20年代,O.瓦尔堡进一步提出在光反应中不是温度而是光的强度起作用。1929~1931年荷兰微生物学家C.B.范尼尔通过比较生化研究,发现光合硫细菌与绿色植物一样,也进行光合作用。只是绿色植物的供氢体是水,而光合硫细菌的供氢体是硫化氢或其他还原性有机物。C.B.范尼尔的工作改变了长期以来认为光合作用一定要放氧的看法,扩大了光合作用的概念,对以后有深远影响。对于光合作用的重要参与物质叶绿素,早就引起人们的注意。德国化学家R.M.维尔施泰特经过了8年的努力,于1913年阐明了叶绿素的化学组成。另一位德国化学家H.菲舍尔于1940年确定了它的结构,这些都为50年代“光合作用中心”的提出,以及色素吸收光子、能量传入作用中心等的发现奠定了基础。虽然光合作用的部位早就被认为是叶绿体,但真正用实验加以证实则在20世纪30年代末40年代初。英国植物生理学家R.希尔用离体叶绿体作实验,测到放氧反应,这是绿色植物进行光合作用的标志。但是否代表光合作用未能肯定。希尔称它为叶绿体的放氧作用,亦被称为“希氏反应”。这一工作直到1951年才被证实是光合作用的一部分。1954~1955年,美国生物化学家D.I.阿尔农美国微生物学家M.B.艾伦又证明离体叶绿体不仅能放氧,而且也能同化二氧化碳。这也就证实了叶绿体确是光合作用的部位。

美国伯克利加州大学的M.卡尔文、A.A.本森、J.A.巴沙姆等,利用劳伦斯实验室制备的同位素的和其他新的生化技术,花了10年的时间于50年代中期阐明了“光合碳循环”,或称“卡尔文循环”的过程。他们证明,在叶绿体内一种 5碳糖起了二氧化碳接收器的作用经过一系列的酶促反应,不断地循环同化二氧化碳,形成一个一个的6碳糖,再聚合成蔗糖或淀粉。 光合磷酸化是光合作用中的重要的能量传递过程。1954年D.I.阿尔农在用菠菜叶绿体研究二氧化碳同化的同时,发现叶绿素受光的激发产生电子,在传递过程中与磷酸化偶联,产生ATP,电子仍回到叶绿素分子上,继续上述过程,这一过程被称为循环光合磷酸化。几乎同时别人也证明,细菌中也存在着类似的过程。1957年D.I.阿尔农等又发现另一类型的光合磷酸化。在这个过程中,光使叶绿素从水中得到电子,电子传递过程中与希尔反应偶联,还原辅酶Ⅱ,放氧,同时产生ATP,这一过程称为非循环光合磷酸化。

光合作用中两个光反应系统的发现推动了光合磷酸化研究的不断深入。这项工作主要是美国植物生理学家R.埃默森及其合作者从40年代初到他逝世这十几年内进行的。1943年他们发现红光波段中,短波(~650纳米)区比长波区 (~700纳米)的光合效率高。1957年他们又发现两者同时照射比单一照射所产生的光合效率高。根据他们的工作以及其他人的工作,英国的R.希尔等提出可能存在着两个光反应系统:系统Ⅰ由远红光(~700纳米)激发,系统Ⅱ则依赖于较高能的红光(~650纳米)。非循环光合磷酸化对此就是一个有力的支持事例。根据这一设想及大量实验结果,设计出一个“Z图解”,表达两个光反应系统的协同作用,得到了广泛的支持。由此掀起了研究两个光反应系统结构与功能的热潮,推动了光合作用的核心问题──原初反应和水的光解问题的研究。

进入80年代,光合反应中心的结构研究取得了重要突破,1982年西德生化学家H.米舍尔成功地分离提取出生物膜上的色素复合体,即光合反应中心。以后德国的蛋白质晶体结构分析专家R.休伯和J.戴维森,经过4年的努力,用X射线衍射分析的方法,测定出这个复合体的复杂的蛋白质结构。这一成果在光合作用研究上是一个飞跃,有力地促进了太阳光能转变为植物能的瞬间变化原理的研究.

生物学分类门科整理

一 简介界门纲目科属种的分类来历:近代分类学诞生于18世纪,它的奠基人是瑞典植物学者林奈。林奈为分类学解决了两个关键问题:第一是建立了双名制,每一物种都给以一个学名,由两个拉丁化名词所组成,第一个代表属名,第二个代表种名。第二是确立了阶元系统,林奈把自然界分为植物、动物和矿物三界,在动植物界下,又设有纲、目、属、种四个级别,从而确立了分类的阶元系统。生物分类阶元从大到小:界——门——纲——目——科——属——种,详细分类为:界(K i n g d o m)门(P h y l u m) 亚门(S u b p h y l u m) 总纲(S u p e r c l a s s) 纲(C l a s s) 部(C o h o r t) 总目(S u p e r o r d e r) 目(O r d e r) 亚目(S u b o r d e r) 总科(S u p e r f a m i l y) 科(F a m i l y) 亚科(S u b f a m i l y) 族(T r i b e) 属(G e n u s) 亚属(S u b g e n u s) 种(S p e c i e s) 亚种(S u b s p e c i e s)。生物分类等级界门纲目科属种各级的分类依据是:1、生物分类学是研究生物分类的方法和原理的生物学分支。分类就是遵循分类学原理和方法,对生物的各种类群进行命名和等级划分。地球上现生的物种以百万计,千变万化,各不相同,如果不予分类,不立系统,便无从认识,难以研究利用。分类的对象是形形色色的种类,都是进化的产物。因而从理论意义上说,分类学是生物进化的历史总结。分类学是综合性学科。生物学的各个分支,从古老的形态学到现代分子生物学的新成就,都可吸取为分类依据。分类学亦有其自己的分支学科,如以染色体为依据的细胞分类学,以血清反应为依据的血清分类学,以化学成分为依据的化学分类学,等等。动物、植物和细菌,作为三门分类学,各有其特点;病毒分类则尚未正式采用双名制和阶元系统。生物分类学的历史人类在很早以前就能识别物类,给以名称。汉初的《尔雅》把动物分为虫、鱼、鸟、兽4类:虫包括大部分无脊椎动物;鱼包括鱼类、两栖类、爬行类等低级脊椎动物及鲸和虾、蟹、贝类等,鸟是鸟类;兽是哺乳动物。这是中国古代最早的动物分类,四类名称的产生时期看来不晚于西周。这个分类,和林奈的六纲系统比较,只少了两栖和蠕虫两个纲。古希腊哲学家亚里士多德采取性状对比的方法区分物类,如把热血动物归为一类,以与冷血动物相区别。他把动物按构造的完善程度依次排列,给人以自然阶梯的概念。17世纪末,英国植物学者雷曾把当时所知的植物种类,作了属和种的描述,所著《植物研究的新方法》是林奈以前的一本最全面的植物分类总结,雷还提出“杂交不育”作为区分物

生物技术的发展史

生物技术的发展史 生物技术不完全是一门新兴学科,它包括传统生物技术和现代生物技术两部分。传统生物技术是指旧有的制造酱、醋、酒、面包、奶酪及其他食品的传统工艺。现代生物技术则是指70年代末80年代初发展起来的,以现代生物学研究成果为基础,以基因工程为核心的新兴学科。当前所称的生物技术基本上都是指现代生物技术。生物技术是指:应用生物或来自生物体的物质制造或改进一种商品的技术,其还包括改良有重要经济价值的植物与动物和利用微生物改良环境的技术。 当今世界各国综合国力的竞争,实际上是现代科学技术的竞争。现代生物技术被世界各国视为一种二十一世纪高新技术。我国早在1986年初制定的《高技术研究发展计划纲要》中就将生物技术列于航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术等高技术的首位。第一次技术革命,工业革命,解放人的双手;第二次技术革命,信息技术,扩展人的大脑;第三次技术革命,生物技术,改造生命本身。现代生物技术之所以会被世界各国如此重视和关注,是因为它是解决人类所面临的诸如食品短缺问题、健康问题、环境问题及资源问题的关键性技术;还因为它与理、工、医、农等科技的发展,与伦理、道德法律等社会问题都有着密切的关系,对国计民生将产生重大的影响。现代生物技术的主要内容包括:基因工程、细胞工程、发酵工程、蛋白质(酶)工程,此外还有基因诊断与基因治疗技术、克隆动物技术、生物芯片技术、生物材料技术、生物能源技术、利用生物降解环境中有毒有害化合物、生物冶金、生物信息等技术。直接相关联的学科:分子生物学、微生物学、生物化学、遗传学、细胞生物学、化学工程学、医药学等。对人类和社会生活各方面影响最大的生物技术领域:农业生物技术、医药生物技术、环境生物技术、海洋生物技术。 现代生物技术使用了大量的现代化高精尖仪器。这些仪器全部都是由微机控制的、全自动化的。这就是现代微电子学和计算机技术与生物技术的结合和渗透。如超速离心机、电子显微镜、高效液相色谱、DNA合成仪、DNA序列分析仪等。没有这些结合和渗透,生物技术的研究就不可能深入到分子水平,也就不会有今天的现代生物技术。 现代生物技术的主要内容:疾病治疗--用于控制人类疾病的医药产品,包括抗生素、生物药品、基因治疗。快速而准确的诊断--临床检测与诊断,食品、环境与农业检测。农业、林业与园艺--新的农作物或动物的基因改造、保存,肥料,杀虫剂:如生物农药、生物肥料等。食品--扩大食品、饮料及营养素的来源:如单细胞蛋白等。环境--废物处理、生物净化及新能源。化学品--酶、DNA/RNA及特殊化学品、金属。设备--由生物技术生产的金属、生物反应器、计算机芯片及生物技术使用的设备等。 现代生物技术的发展:(1)提高农作物产量及其品质。培育抗逆的作物优良品系。 通过基因工程技术对生物进行基因转移,使生物体获得新的优良品性,称之为转基因技术。通过转基因技术获得的生物体称为转基因生物。至1994年全世界批准进行田间试验的转基因植物已达1467例,涉及的作物种类包括马铃薯、油菜、烟草、玉米、水稻、番茄、甜菜、棉花、大豆等。转基因性能包括抗除草剂、抗病毒、抗盐碱、抗旱、抗虫、抗病以及作物品质改良等。例如我国首创的两系法水稻杂交优势利用,已先培育出了具实用价值的梗型光敏核不育系N5047S、7001S等新品系,一般增产达10%以上,高产可达40%。国家杂交水稻工程技术中心袁隆平教授,1997年试种其培育的“超级杂交稻”3.6亩,平均亩产达884kg。1998年总理特批基金1000万元,用于支持该项研究的深化与推广。我国学者还将苏云金杆菌的Bt杀虫蛋白转入棉花,培育抗虫棉,对棉铃虫杀虫率高达80%以上。(2)植物种苗的工厂化生产;利用细胞工程技术对优良品种进行大量的快速无性繁殖,实现工业化生产。该项技术又称植物的微繁殖技术。植物细胞具有全能性,一个植物细胞有如一株潜在的植物。利用植物的这种特性,可以从植物的根、茎、叶、果、穗、胚珠、胚乳、官或组织取得一定量的细胞,在试管中培养这些细胞,使之生长成为所谓的愈伤组织;愈伤组织具有很强的繁殖能力,可在试管内大量繁殖。(3)提高粮食品质;生物技术除了可培育高产、抗逆、抗病虫害的新品系外,还可以培育品质好、营养价值高的作物新品系。例如美国威斯康星大学的学者将菜豆储藏蛋白基因转移到向日葵中,使用权向日葵种子含有菜豆储藏蛋白。利用转基因技术培育番茄可延缓其成熟变软,从而避免

世界生物学史资料

世界生物学发展史 生物学的发展经历了萌芽期、古代生物学时期、近代生物学时期和现代生物学时期。 生物学发展的萌芽时期是指人类产生(约300万年前)到阶级社会出现(约4000年)之间的一段时期。这时人类处于石器时代,原始人开始了栽培植物、饲养动物并有了原始的医术,这一切为生物学发展奠定了基础。 到了奴隶社会(约4000年前开始)和封建社会后期,人类进入了铁器时代。随着生产的发展,出现了原始的农业、牧业和医药业,有了生物知识的积累,植物学、动物学和解剖学还停留在搜集事实的阶段。但在搜集的同时也进行了整理,并被后人叫做所谓的古代生物学。古代的生物学在欧洲以古希腊为中心,著名的学者有亚里士多德研究(形态学和分类学)和古罗马的盖仑(研究解11剖学和生理学),他们的学说在生物学领域内整整统治了1000年。中国的古代生物学,则侧重研究农学和医药学。 从15世纪下半叶到18世纪末是近代生物学的第一阶段,这一时期,在生物学研究中,主要的有维萨里等人的解剖学,哈维的生理学,林耐的分类学以及从18世纪末并继续到19世纪初的拉马克等人的进化学说。 19世纪的自然科学,进入了全面繁荣的时代。近代生物学的主要领域在19世纪都获得重大进展。如细胞的发现,达尔文生物进化论的创立,孟德尔遗传学的提出。巴斯德和科赫等人奠定了微生物学的科学基础,并在工农业和医学上产生了巨大影响。17世纪建立起来的动物(包括人体)生理学到19世纪有了明显的进展,著名学者有弥勒、杜布瓦·雷蒙、谢切诺夫和巴甫洛夫等人。由于萨克斯、普费弗和季米里亚捷夫的努力,使植物生理学在理论上达到了系统化。 20世纪的生物学即属于现代生物学的范畴,始于1900年孟德尔学说的重新发现。此后,遗传学向理论(包括生物进化)和实践(主要是植物育种)两个方面深入发展。与此同时,由于物理学、化学和数学对生物学的渗透以及许多新的研究手段的应用,一些新的边缘学科如生物物理、生物数学应运而生。50年代中期,由于华生和克里克等人的努力,产生了分子生物学。随着分子生物学和分子遗传学的发展以及形态研究的深入,细胞学也进入分子水平,出现了细胞生物学。20世纪蓬勃发展的生态学在生物学中的地位日益增长。它的研究范围从群落扩大到生态系统,以至包括多种类型生态系统的综合考察和全球性的“生物圈”。它与地学、环境科学以及社会科学的结合,对生产和社会已产生重大的影响。此外另一门崭新的学科——神经生物学猛然崛起,人们愈来愈体会到神经系统,尤其是大脑的研究对生物学和人类发展的作用。20世纪的进化论研究也有明显的突破,集中表现在对进化机制和微观层次规律的揭示方面。总之,现代生物学正向微观和综合方向深入。 诺贝尔生理学医学奖 诺贝尔(Nobel.A,1833~1896),瑞典化学家、发明家、企业家。因硝化炸药、无烟炸药等的发明和制造而著称。拥有发明专利355项以上。1895年立遗嘱,将其遗产作为基金,

中国近现代史论文

中国近现代史论文题目:晚清风云人物李鸿章姓名:杨婷 班级:生物工程(2) 学号:1209034228

晚清风云人物李鸿章 【摘要】李鸿章是晚清重臣,是中国近现代史上举足轻重的人物。每当揭开中国近现代史,就不可能不面对李鸿章及其所代表的晚清政府。作为晚清政坛的肱骨之臣为维护清廷的统治,致力于引进西方先进的科学技术开办近代工矿与交通运输业,建立新式陆海军,创办学堂,培养人才揭开了中国近代化的序幕,是晚清洋务运动的代表人物。然李鸿章也代表清廷同列强签订了一系列不平等条约。李鸿章终其一生受到政敌的谩骂与围攻。今天,我们应该本着尊重历史尊重现实的态度和原则,来重新审视这一风云人物,做出较为客观公正的评价。 【关键词】李鸿章晚清洋务运动 (一)李鸿章简介 李鸿章,字少荃,晚年自号仪叟,别号省心,谥文忠。世人多称“李中堂”。道光18年与曾国藩同年考取同榜进士。1872年,被任命为直隶总督,兼任北洋通商事务大臣。自此,李鸿章在直隶总督兼北洋大臣任上秉政达25年,参与了清政府有关内政、外交、经济、军事等一系列重大举措,成为清廷倚作畿疆门户、恃若长城的股肱重臣。随着李鸿章地位、权利的上升,责任愈巨,视野愈阔,综观世界各国的发展,李鸿章痛感中国之积弱不振,原因在于“患贫”,得出“富强相因”,“必先富而后能强”的认识,将洋务运动的重点转向“求富”。他一手创建出的淮军,陆续被清廷派防各地,成为充当国防军角色的常备军;而以他为领袖的淮系集团,成为当时实力最强的一个洋务派集团,并在其带领下,开始了中国早期的洋务——自强——近代化运动。 (二)李鸿章与太平军 李鸿章帮助镇压了太平天国运动,维护了封建统治,在他的人生留下了挥之不去的污点,被后世史家和百姓骂成是镇压农民起义的刽子手。然而从现在看来,此运动的局限性更加明显,综观历史,农民起义,无法克服小生产者所固有的阶级局限性,无法从根本上提出完整的、正确的政治纲领和社会改革方案,无法制止和克服领导集团自身腐败现象的滋长,无法长期保持领导集团的团结,只是以武力实现了改朝换代。它并不能直接地推动文化和文明的进步,也不能引导先进的科学技术的发明创造;更不能派生出伟大的学说和先进的理论。它只能以一个新政权,取代一个旧政权。正是因为大清帝国有像李鸿章这样的臣子拼命保驾,有像李鸿章这样的才学超人之士运筹帷幄,太平天国才没有完成他们消灭大清的志向,洪秀全才会兵败如山。 (三)近代化思想引导下的洋务实践 李鸿章不仅是洋务运动的倡导者,更是实践者。他主持的洋务事业涉及到军

世界医药发展史

这篇文章引自网络,是《化学和工程新闻》中由Daemmrich和Mary Ellen所撰写的长篇文章的一部分内容,阐述了制药工业的历史和将来的发展。我觉得不错,特转过来跟大家分享。 世界医药发展史 引 制药工业开始于19世纪中叶,从医疗事业的边缘进入了医疗事业的核心,并成为全球的工业行业。制药工业获得了现今显着的地位,政府一方面支持药品的研究开发,以提高人类寿命,提高人类的生活质量,预防疾病;同时,也强化了监管,包括其安全性和药效。政府还要采取措施平息民众对于制药企业通过新药产品和促销得到高额回报的怨言。医疗体制改革在全球都在展开。 医药行业面临的挑战是科学家、工业界、政府相关部门、医生、病人在新药从实验室走向实际使用的过程中复杂的相互作用和影响。 作为政府批准部门也处于两难的境地,如果不批准,很多人的心血将白费,如果批准,可能在上市后带来一系列的不良反应,甚至诉讼。最近发生的COX-2抑制剂事件、抗抑郁药物自杀倾向不良反应等就是很好的例证。而对于FDA的职员审查近5万页的注册资料又谈何容易。 制药界面临同样的困难,投资者需要及早的投资回报,高的投资回报率,希望制药企业研制和上市所谓“重磅炸弹”药品,但是,实际上,药品开发难度越来越大,新药往往后继无产品,随着FDA等药品监管部门的谨慎态度和病人对于不良反应的自觉认识提高,对于制药企业开发HIV/爱滋病、疟疾等预防药物,病人反应是不能治根,价格昂贵。Harris Poll咨询公司最近的民意调查发现人们对于制药企业的满意度从1997那的79%降到2004年的44%,下降幅度之大达到35%。其实中国的病人和消费者对于制药企业和保健品行业,包括卫生部门的支持率可能也在下降。只是缺乏统计数据。这可能是公众的道德标准和制药企业作为企业要最大化盈利之间的矛盾。 1870-1930 在这个阶段,早期的药剂师在实验室开始成批生产当时常用的药品,如吗啡、奎宁、马钱子碱等;同时在1880年,当时的染料企业和化工厂开始建立实验室研究和开发新的药物。例如,默克制药公司开始时就是1668年在德国Darmstadt建立的一个小药房,它开始批发药品始于1840年代。在1830年代到1890年代从药房成长为药品批量生产商的类似的企业还有德国先令制药公司、瑞士的霍夫曼-拉-罗氏制药公司、英国的威康制药公

世界生物学史之十三20世纪的生物学(精)

世界生物学史之十三: 20世纪的生物学 20世纪特别是50年代以后,生物学同化学、物理学和数学相互交叉渗透,取得了一系列划时代的科学成就,使它跻身精确科学,成为当代成果最多和最吸引人的基础学科之一。关于生命的研究,已经不只是生物学家的任务,也是物理学、化学家以及数学家兴趣较大的领域。现在的生物学常被称为“生命科学”,不仅因为它更深入到生命本质问题,还因为它是多学科的共同产物。在微观方面生物学已经从细胞水平进入到分子水平去探索生命的本质。在宏观方面生态学的发展已经成为综合探讨全球问题的环境科学的主要组成部分。 生物学的各个分支学科,包括分类学、生理学、进化论等,都取得了重要进展,然而促使生物学的面貌发生根本变化的主要分支学科则是遗传学、生物化学和微生物学。遗传学的研究从1900年孟德尔定律的再发现以后与细胞学相结合,随之建立了基因论。到30年代,基因论已被公认是在生物个体水平和群体水平上研究性状遗传的指导理论。遗传学也因而在生物学中甚至在整个科学中占有重要地位。生物化学自1877年提取出离体的“酿酶(zyma se)”以后,对生物体内新陈代谢的研究进展迅速,到40年代生物体内分解代谢途径已基本阐明。同时,酶的本质和生物能的研究也有长足进展。对蛋白质、核酸、糖、脂肪等生命基本物质则不仅阐明其基本组分,并且开始了三维结构的探索。微生物学除了对霉菌、细菌继续研究外,在20世纪30~40年代还阐明了病毒与噬菌体的本质。这3个分支学科各自的发展和相互交叉,为分子生物学的出现奠定了基础。 第二次世界大战以后,生物学发生了质的飞跃。1953年DNA双螺旋结构的发现标志着分子生物学的诞生,也标志着生物学的探索开始进入了揭开生命之谜的大门。此后,遗传密码的破译,重组DNA技术的建立,不仅创建起分子遗传学,而且使肿瘤学和免疫学都在分子水平上取得突出成就。神经生物学,特别是在大脑的研究方面也都出现重大突破。可见,2 0世纪的生物学不仅直接影响着本身各分支学科的发展,而且对农学和医学,甚至对方兴未艾的产业革命已经和将要产生巨大的影响。科学史家普遍认为在20世纪50年代以后生物科学发生了一场革命。这场革命从其开辟新领域,从其对其他科学所产生的作用、从其对社会和人们思想的冲击等方面来考察,其影响之大绝不逊色于20世纪前30年中发生的物理学革命。 20世纪生物学的迅速发展,受到社会经济高速发展的有力支持,使生物学的研究能够迅速大量的应用现代物理学、化学的原理、方法和精密仪器。这样,生物学的定量研究逐渐得到发展。由于一些物理学家和数学家被吸引来探索生命之谜的未知领域,理论生物学这一新学科开始出现。理论生物学是主要用数、理、化方法研究各种生命现象的一个分支学科。早期的代表著作有奥地利L.von贝塔兰菲的《理论生物学》(第一卷1932、第二卷1942);M.贝格纳的《生物学的思想方法》(1959)等。

地球与生物的进化详细史

生物进化史 一、冥古宙(地球形成——亿年前) .古地理 地球从亿年前形成,从一个炽热地岩浆球逐渐冷却固化(计算表明仅需亿年),出现原始地海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在亿年前到亿年前地球持续遭到了大量小行星与彗星地轰击.冥古宙在亿年前结束后,内太阳系不再有大规模撞击事件. 因为这个时期地岩石几乎没有保存到现在地(已知地地球最古老地岩石位于北美地台盖层地艾加斯塔片麻岩及西澳洲那瑞尔片麻岩层地杰克希尔斯部分),所以并没有正式地细分.但月岩从多亿年前就比较好地保存下来,因此月球地质年代地某些主要划分可参照用于地球地冥古宙划代.冥古宙地最后一个代对应为月球地质年代中地早雨海世,以月球地东海撞击事件为结束时间(约为亿年),这也是内太阳系地后期重轰击期地结束标志. 零散地锆石结晶沉积在西加拿大和西澳地杰克山中地沉积物里,对锆石地研究发现,液态水必然已存在了有四十四亿年之久,非常接近地球形成地时刻. .气候 在形成地球地物质当中,曾经存在过大量地水.在地球地形成时期,其质量比现在地小,水分子也就更容易挣脱重力.据推测,当时氢气和氦气在大气层中持续不断地逸散,然而,现时大气中高密度地稀有气体却相对缺乏,这表明,在早期大气层中可能发生过什么剧变. 有理论认为,在地球地年轻时期,它地一部分曾受过撞击而分裂,分裂出去地部分后来形成了月球.然而,在这种说法下,撞击应该会令一到两个大区域融化,现时地组成成份却与完全融化地假设并不相符,事实上也很难将巨大地岩石完全融化并混在一起.不过相当一部分地物质仍被此次撞击所蒸发,在这颗年轻地行星周围形成了一个由岩石蒸汽组成地大气层. 岩石蒸汽在两千年间逐渐凝固,留下了高温地易挥发物,之后有可能形成了一个混有氢气和水蒸气地高密度二氧化碳大气层.另外,尽管当时表面温度有℃,但液态地海洋依然能够存在,这得益于大气层带来地高气压.随着冷凝过程继续进行,海水通过溶解作用除去了大气中地大部分,不过其含量水平在新地层和地幔循环出现时产生了激烈地震荡. 二、太古宙(亿年前) .古地理 太古宙起始于内太阳系晚期重轰击期地结束,地球岩石开始稳定存在并可以保留到现在.太古宙结束于亿年前地大氧化事件,以甲烷为主地还原性地太古宙原始大气转变为氧气丰富地氧化性地元古宙大气,并导致了持续亿年地地球第一个冰期——休伦冰期. 太古宙形成地地壳厚度还不大,同时尚未进行充分地分异过程.由于地壳厚度较小,幔源物质容易沿裂隙上行,常有大规模地超基性、基性断裂喷溢活动.此外,也有频繁地中酸性岩浆活动和火山活动.多次地岩浆活动、构造运动使岩石变质很深,再加上缺少生物化石,给恢复古地理面貌和沉积环境造成很大困难. 在当今大陆壳地范围内,长期处于活动不稳定状态,陆表海占绝对优势. 在太古代中晚期,随着陆壳某些部分开始固结硬化,终于形成了稳定地基底地块——陆核.陆核地形成标志着地壳构造发展地第一大阶段地结束. 太古宙有多少次构造运动,目前研究地很不清楚.在世界范围内可能有次主要地构造运动,在中国比较确认地是太古宙晚期地阜平运动. 大约在亿年前,出现了目前已知最早地大陆——乌尔大陆(),它可能是当时地表上面积最

生物学史复习题

生物学史复习题 一、生物学史的内涵、研究对象及研究内容。 内涵:生物学史是研究生物学的产生与发展,揭示其发展规律的历史科学。 研究对象:前人探究生物学知识的科学过程,包括科学家的思维过程(好奇心、求知欲、质疑、推理等)和研究方法。 研究内容:1)生物学的形成与发展; 2)生物学在人类社会发展中的地位和作用; 3)人类社会(尤其是创新意识)对生物学发展的影响; 4)科学方法论对生物学发展的影响。 二、学习生物学史有何意义? 1、揭示了人们思考和解决生物学问题的思想历程 思想受文化背景和科技水平制约,生物学新知识的产生需要首先从思想方法上有所突破。“物种演变”思想是对“物种不变”思想的突破。思想影响认识。反过来,通过对事物的科学探究,获得对事物的正确认识,又会改变人的思想,认识上产生一次飞跃。 2、展示了生命科学各个分支学科形成的历史 它能够从整体上告诉我们各个学科是在解决什么问题的过程中发展起来的,还能告诉我们各个学科之间的联系。这有助于研究者发现尚未解决的问题和需要进一步解决的问题,有助于学习者建立知识点之间的联系,建构完整的知识结构。 3、揭示了自然科学的本质 自然科学的本质特征:定量化;观察、实验;在自我更正中完善和积累。 4、展示了人们的合作过程 生命科学史展示了在探究知识的过程中,相同研究方向的人们之间和不同研究方向的人们之间的合作。 5、展示了各种观点的碰撞和论争过程 生命科学史展示了在探究知识的过程中科学家所持观点之间的碰撞和论争,在碰撞与论争中,知识得到不断的澄清。 6、展示了成功的实验与选择合适的实验对象是分不开的 7、呈现着科学家的科学态度、科学精神和科学世界观 科学态度: 实事求是; 科学精神: 敢于怀疑、敢于求真、敢于创新; 科学世界观: 世界是可知的,关注科技发展对社会的影响,养成负责任的态度。 三、亚里士多德思想的缺陷 1、在没有了解事物本质之前,急于解决“为什么”的问题,往往容易导致错误的结论。 如:亚里士多德解释呼吸的目的:使空气与血液接触,以冷却血液,这一结论明显是错误的。 2、关于世界的起源和性质的设想 (1)持续时间短的静止世界(犹太-基督教创造世界); (2)持续时间无限的静止世界(亚里士多德的世界观); (3)循环变化的世界,鼎盛期与衰败期交相更替; (4)逐渐进化的世界(拉马克,达尔文的观点)。 亚里士多德坚信世界基本完美无缺从而排除了进化的观点。 3、他认为人是最完善的动物,而其它动物都是低劣的、有缺陷的,因此在描述动物的特征时总要与人作比较。 如:海豹缺乏外耳,他认为这是一种畸形。 他认为女人也是男人缺少某些器官的产物。在新个体产生过程中,男人提供“形”的要素(产生和发育的动力)即精液,而女人则贡献以经血为主的质料。 四、论述盖仑的“三精气学说”,该学说有何主要缺陷? 他从生命最终取决于空气(气)概念出发,提出了“三精气说”。即人体内有三种“精气”:自然精气、生命精气、动物精气。

现代生物技术发展史

现代生物技术的发展 姓名:王利新 学号: 学院:

摘要:现代生物技术是通过生物化学与分子生物学的基础研究而快速发展起来的。医药生物技术起步最早、发展最快,目前世界已有2000多家生物技术公司,其中70%从事医药产品的开发。生物技术工业总体日趋成熟,正在由风险产业变成以商业为动力,以市场为中心的产业。 应用生物技术已有可能产生几乎所有的多肽和蛋白质,基因工程技术的应用已使新药研究方法和制药工业的生产方式发生重大变革。该文对现代生物技术在医药和基因工程现代化的应用进行了全面、深入的论述。 【关键词】生物技术;医药;基因工程技术; 率高近十几年来,在利用生物技术制取新药方面取得了惊人的成就,已有不少药物应用于临床。例如人胰岛素、人生长激素、干扰素、乙肝疫苗、人促红细胞生成素(Epo)、GM-集落刺激因子(GM-CSF)、组织溶纤酶原激活素、白细胞介素-2及白介素-11等。正在研究的有降钙素基因相关因子、肿瘤坏死因子、表皮生长因子等140多种。随着生物技术药物的发展,多肽与蛋白质类药物的研究与开发,已成为医药工业中一个重要的领域,同时给生物制剂带来了新的挑战。在实际应用中,基因工程药物受到一定限制,如口服应用时生物利用度低,会受到消化酶的破坏,在胃酸作用下不稳定,在体内半衰期较短等,因此只能注射给药或局部用药。为了克服这些缺陷,已开始改为合成这些天然蛋白质的较小活性片段,即所谓“多肽模拟”或“多肽结构域”合成,又叫“小分子结构药物设计”。这类药物可口服,有利于由皮肤、粘膜给药,用于治疗免疫缺陷症、HIV 感染、变态反应性疾病、风湿性关节炎等,其制造成本也更低。这种设计思想也已应用于多糖类药物、核酸类药物和模拟酶的有关研究。小分子药物设计属于第二代结构相关性药物设计,所设计的分子能替代原先天然活性蛋白与特异靶相互作用。 在给药方式的研究方面,对注射用溶液和注射用无菌粉末(目前上市的多肽蛋白质类药物多为此种剂型),除了继续改进其稳定性外,还通过一些其他技术手段,研制出了化学修饰型、控释微球型和脉冲式给药系统。在非注射途径的给药系统,即包括鼻腔、口服、直肠、口腔、肺部给药方面也已取得重大进展。国内市场上主要有基因工程乙肝疫苗、干扰素、重组人白介素-2、G-CSF(增白细胞)、重组人红细胞生成素(EPO)等15种自己生产的基因工程药品。已经批准

(完整版)生物工程的发展简史

生物工程的发展简史 1 第一章绪论第一节生物工程的发展简史按照生物工程的定义.人类对生物工程的实践可迫溯到远古原始人类生活期间.为此,可把生物工程的发展分成三个时期:①传统生物技术时期;②近代生物工程的形成和发展时期;③现代生物工程时期。一、传统生物技术时期生物工程不是一门新学科,它是从传统生物技术发展来的。传统生物技术应该说从史前时代起就一直为人们所开发和利用并造福于人类.在西方,苏美尔人和巴比伦人在公元前6000 年就已开始啤酒发酵。古埃及人则在公元前4000 年就开始用经发酵的面团制作面包,在公元前20 世纪时已掌握了用裸麦制作“啤酒”的技巧。公元前25 世纪古巴尔于人开始制作酸奶;公元前20 世纪古亚述人已会用葡萄酿酒(葡萄实际上沾有酵母)。公元前17 世纪古西班牙人曾用类似目前细菌浸取铜矿的方法获取铜。在石器时代后期,我国人民就会利用谷物造酒,这是最早的发酵技术。荷兰人詹生(Z. Janssen)于1590 年制作了世界上最早的显微镜,其后1665 年英国的胡克(R. Hooke)也制作了显微镜,但都因放大倍数有限而无法观察到细菌和酵母。但胡克却观察到了霉菌,还观察到了植物切片中存在胞粒状物质,因而把它称为细胞(cell),此名称一直沿用至今。1676 年,荷兰人列文虎克(Leeuwen Hoe 幻用自磨的镜片制作显微镜,其放大倍数可近300 倍,并观察和描绘了杆菌、球菌、螺旋菌等微生物的图像,为人类进一步了解和研究微生物创造了条件.并为近代生物技术时期的降临做出了重大贡献。1838 年德国的施莱登(M一J. Schlwiden)和施旺(T. Schwan)共同ON 明了细胞是动植物的基本单位,因而成为细胞学的奠基人;1855 年微耳和R. Virchow 发现了新细胞是从原有细胞分离而形成的,即新细胞来自老细胞的事实;1858 年托劳贝(Trauhe)提出了发醉是靠酶的作用进行的概念;1859 年英国的达尔文《C. R. delvan)撰写了《物种起惊》一书,提出了以自然选择为基础的进化学说,并指出生命的基础是物质。自胡克从显微镜中观察到微生物到微生物学的诞生约经历了近200 年.受到人们思想观念、习惯势力、经济实力、生产方式等因素的制约。产业革命的浪潮当时还没卷入到食品、化工领域来。对发酵还习惯于作坊式生产。1866 年微生物学的莫基人,被称为微生物学之父的法国人巴斯德(L. Pasteur)以实验结果有力地摧毁了微生物的“自行发生论”。他首先证实了发酵是由微生物引起的,并建立了微生物的纯种培养技术,从而为发酵技术的发展提供了理论基础,使发酵技术纳人了科学的轨道。他提出了一种防止葡萄酒变酸的消毒法〔被称为巴斯德消毒法(Pasteurization),一般在60℃时维持一段时间以杀死食品、牛奶和饮料中的病原菌」;1857 年他明确地指出酒精是酵母细胞生命活动的产物,并在1863 年进一步指出所有的发酥都是微生物作用的结果,不同的微生物引起不同的发酵。1874 年丹麦人汉森(Hansan)在牛胃中提取了凝乳酶,1879 年发现了醋酸杆菌;1876 年德国的库尼(W. Kuhne)首创了"enzyme"一字,意即“在酵母中”;1881 年采用微生物生产乳酸; 1885 年开始用人工方法生产蘑菇;1897 年德国的毕希纳(E 一Buchner )发现被磨碎后的酵母细胞仍可进行酒精的发醉,并认为这是酶的作用,并于1907 年因此发现而获得诺贝尔化学奖,19 世纪末德国和法国一些城市开始用微生物处理污水. 细菌学的莫基人,德国的科赫(R. Koch)首先用染色法观察了细菌的形态;1881 年他与他的助手们发明了加人琼脂的固体培养基并利用它在平皿中以接种针醚上混合菌液在固体培养基表面上划线培养以获得单抱子菌落的方法,此方法一直被沿用至今,他的另一个杰出贡献是发现了结核菌,并因此获1905 年的诺贝尔生理学及医学奖.1914 年开始建立作为食品和饲料的酵母生产线;1915 年德国开发了面包酵母的生产线;1915 年

生物学核心概念的界定和基本划分

生物学核心概念的界定和基本划分 -------以现行人教版高中必修教材为例 朱晓林 北京市通州区潞河中学生物教研室北京101149 摘要作为学科知识教学核心的生物学核心概念目前尚未有明确的界定。本文通过对中外课科学和生物学程标准的分析提出,生物学核心概念是教师或学生对生物学核心问题的相对本质的认识或看法。在此基础上,作者根据人教版高中生物必修教材尝试提出了一系列高中生物学核心概念及部分教学建议。 关键词生物学; 核心概念;界定;划分; 高中教材 高中生物新课程对教师的教和学生的学都提出了更高的要求,无论是从培养适应未来人才的能力迁移角度,还是从提高课堂教学效率、整体把握学科思维的角度,甚至从引领关键性核心建构以减轻学生过繁的课业负担的角度,加强核心概念教学都具有十分重要的理论和现实意义。 1问题的提出 1.1问题提出的背景:知识爆炸的年代要求基础教育更加注重学科核心概念的教学。在实施新课程的背景下,它既是减轻学生课业负担的要求,又是提高教学效率的关键。《普通高中生物课程标准(实验)》(以下简称《标准》)指出“注重使学生在现实生活的背景中学习生物学,倡导学生在解决实际问题的过程中深入理解生物学的核心概念,并能运用生物学的原理和方法参与公众事务的讨论或作出相关的个人决策,……”。我国正在进行较大规模的高中生物学核心概念的教学研究,但究竟什么是生物学核心概念,大家尚未形成较为统一的认识,这就给核心概念的教学带来较大的困惑。 1.2目前对高中生物学核心概念的几种较为普遍的认识:通过查阅各种资料,特别是网络资源,我们发现,国内最常见的一种观点认为概念即名词或定义,核心概念就是重点概念或名词。因此蛋白质、核酸、光合作用、呼吸作用、中心法则、生态系统等等,都被视为核心概念,这种认识被许多一线教师认同。按照这一观点难免将核心概念和一般概念混淆。另外一种观点认为:核心概念即重点知识或核心知识,例如持这种观点的人认为,光合作用作为核心概念,不只是简单的名

最新生物学常见模式生物资料

模式生物 生物学家通过对选定的生物物种进行科学研究,用于揭示某种具有普遍规律的生命现象。此时,这种被选定的生物物种就是模式生物。比如:孟德尔在揭示生物界遗传规律时选用豌豆作为实验材料,而摩尔根选用果蝇作为实验材料,在他们的研究中,豌豆和果蝇就是研究生物体遗传规律的模式生物。由于进化的原因,许多生命活动的基本方式在地球上的各种生物物种中是保守的,这是模式生物研究策略能够成功的基本基础。选择什么样的生物作为模式生物首先依赖于研究者要解决什么科学问题,然后寻找能最有利于解决这个问题的物种。19世纪末20世纪初,人们就发现,如果把关注的焦点集中在相对简单的生物上则发育现象的难题可以得到部分解答。因为这些生物更容易被观察和实验操作,因此,除了在遗传学研究外,模式生物研究策略在发育生物学中获得了非常广泛的应用,一些物种被大家公认为优良的模式生物,如线虫、果蝇、非洲爪蟾、蝾螈、小鼠等。 随着人类基因组计划的完成和后基因组研究时代的到来,模式生物研究策略得到了更加的重视;基因的结构和功能可以在其它合适的生物中去研究,同样人类的生理和病理过程也可以选择合适的生物来模拟。 目前在人口与健康领域应用最广的模式生物包括,噬菌体、大肠杆菌、酿酒酵母、秀丽隐杆线虫、海胆、果蝇、斑马鱼、爪蟾和小鼠。在植物学研究中比较常用的有,拟南芥、水稻等。随着生命科学研究的发展,还会有新的物种被人们用来作为模式生物。但它们会有一些基本共同点: 1)有利于回答研究者关注的问题,能够代表生物界的某一大类群; 2)对人体和环境无害,容易获得并易于在实验室内饲养和繁殖; 3)世代短、子代多、遗传背景清楚; 4)容易进行实验操作,特别是具有遗传操作的手段和表型分析的方法。 背景 早在20世纪最初的20年中,甚至更早到19世纪,人们就发现,如果把关注的焦点集中在相对简单的生物上则发育的现象难题可以得到部分解答。因为这些生物的细胞数量更少,分布相对单一,变化也较好观察。由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共通规律是可能的。尤其是当在有不同发育特点的生物中发现共同形态形成和变化特征时,发育的普

地球与生物的进化详细史

生物进化史 一、冥古宙(地球形成——38亿年前) 1.古地理 地球从46亿年前形成,从一个炽热的岩浆球逐渐冷却固化(计算表明仅需1亿年),出现原始的海洋、大气与陆地,但仍然是地质活动剧烈、火山喷发遍布、熔岩四处流淌,在41亿年前到38亿年前地球持续遭到了大量小行星与彗星的轰击。冥古宙在38亿年前结束后,内太阳系不再有大规模撞击事件。 因为这个时期的岩石几乎没有保存到现在的(已知的地球最古老的岩石位于北美地台盖层的艾加斯塔片麻岩及西澳洲那瑞尔片麻岩层的杰克希尔斯部分),所以并没有正式的细分。但月岩从40多亿年前就比较好的保存下来,因此月球地质年代的某些主要划分可参照用于地球的冥古宙划代。冥古宙的最后一个代对应为月球地质年代中的早雨海世,以月球的东海撞击事件为结束时间(约为38.4亿年),这也是内太阳系的后期重轰击期的结束标志。 零散的锆石结晶沉积在西加拿大和西澳的杰克山中的沉积物里,对锆石的研究发现,液态水必然已存在了有四十四亿年之久,非常接近地球形成的时刻。 2.气候 在形成地球的物质当中,曾经存在过大量的水。在地球的形成时期,其质量比现在的小,水分子也就更容易挣脱重力。据推测,当时氢气和氦气在大气层中持续不断地逸散,然而,现时大气中高密度的稀有气体却相对缺乏,这表明,在早期大气层中可能发生过什么剧变。 有理论认为,在地球的年轻时期,它的一部分曾受过撞击而分裂,分裂出去的部分后来形成了月球。然而,在这种说法下,撞击应该会令一到两个大区域融化,现时的组成成份却与完全融化的假设并不相符,事实上也很难将巨大的岩石完全融化并混在一起。不过相当一部分的物质仍被此次撞击所蒸发,在这颗年轻的行星周围形成了一个由岩石蒸汽组成的大气层。 岩石蒸汽在两千年间逐渐凝固,留下了高温的易挥发物,之后有可能形成了一个混有氢气和水蒸气的高密度二氧化碳大气层。另外,尽管当时表面温度有230℃,但液态的海洋依然能够存在,这得益于CO2大气层带来的高气压。随着冷凝过程继续进行,海水通过溶解作用除去了大气中的大部分CO2,不过其含量水平在新地层和地幔循环出现时产生了激烈的震荡。 二、太古宙(38-25亿年前) 1.古地理 太古宙起始于内太阳系晚期重轰击期的结束,地球岩石开始稳定存在并可以保留到现在。太古宙结束于25亿年前的大氧化事件,以甲烷为主的还原性的太古宙原始大气转变为氧气丰富的氧化性的元古宙大气,并导致了持续3亿年的地球第一个冰期——休伦冰期。 太古宙形成的地壳厚度还不大,同时尚未进行充分的分异过程。由于地壳厚度较小,幔源物质容易沿裂隙上行,常有大规模的超基性、基性断裂喷溢活动。此外,也有频繁的中酸性岩浆活动和火山活动。多次的岩浆活动、构造运动使岩石变质很深,再加上缺少生物化石,给恢复古地理面貌和沉积环境造成很大困难。 在当今大陆壳的范围内,长期处于活动不稳定状态,陆表海占绝对优势。在太古代中晚期,

生物学史(高中教材)

高中生物学史 江苏省黄桥中学戴波 必修一:分子与细胞 ----具有生物活性的结晶牛(一) 1965 年,我国科学家完成世界上第一个人工合成的蛋白质 胰岛素。 1953年,英国桑格测得牛胰岛素全部氨基酸的排列顺序 (二)细胞学说的建立和发展过程: 1、1665 年罗伯特虎克:英国人,细胞的发现者和命名者。1665 年,他用显微镜观察植物 的木栓组织,发现由许多规则的小室组成,并把“小室”称为cell——细胞。(看到的是只剩下细胞壁的死细胞) 2、17 世纪列文虎克:荷兰人,他用自制的放大镜进行观察,对红细胞和动物精子进行了精 确的描述。(看到的是活细胞,命名的是微生物) 3、19 世纪 30 年代,德国植物学家施莱登和动物学家施旺提出了细胞学说,指出细胞是植 物结构的基本单位。恩格斯曾把细胞学说誉为19 世纪自然科学三大发现之一。(施莱登提出细胞是构成植物体的基本单位) 4、魏尔肖:德国人,他在前人研究成果的基础上,指出“细胞是先前细胞通过分裂产生, 细胞是一个相对独立的单位”。 (细胞通过分裂产生新细胞) 补充: 1543年,维萨里发表《人体结构》揭示人体在器官水平结构 比夏指出器官由低一层次的结构——组织构成 耐格里观察多种植物分生区新细胞形成,发现新细胞产生是细胞分裂的结果 (三)生物膜流动镶嵌模型的探索历程: 5、1895 年,欧文顿发现脂质更容易通过细胞膜。提出假说:膜是由脂质组成的。 6、20世 纪初,科学家的化学分析结果,指出膜主要由脂质和蛋白质组成。 7、1925 年,两位荷兰科学家用丙酮从细胞膜中提取脂质,铺成单层分子,发现面积是细胞 膜的 2 倍。得出结论:细胞膜中的磷脂是双层的 8、1959 年,罗伯特森在电镜下看到细胞膜由“暗—亮—暗”的三层结构构成。 提出假说:生物膜是由“蛋白质—脂质—蛋白质”的三层结构构成的静态统一结构 9、1970 年,科学家用荧光标记人和鼠的细胞膜并让两种细胞融合,放置一段时间后发现两 种荧光抗体均匀分布。 提出假说:细胞膜具有流动性 10、 1972 年,桑格和尼克森提出生物膜流动镶嵌模型,强调膜的流动性和膜蛋白分布的不 对称性,并为大多数人所接受。 补充: 1988 年,美国阿格雷将构成水通道的蛋白质分离出来 1998 年,玫瑰麦金农测出钾离子的通道立体结构 (四)酶的发现史: 11、斯巴兰扎尼:意大利人,生理学家。 1783 年他通过实验证实胃液具有化学性消化作用。 12、巴斯德:法国人,微生物学家,化学家,提出酿酒中的发酵是由于酵母菌的存在,没有 活细胞的参与,糖类是不可能变成酒精。 13、李比希:德国人,化学家。认为引起发酵时酵母细胞中的某些物质,但这些物质只有在 酵母细胞死亡并裂解后才能发挥作用。 14、毕希纳:德国人,化学家。他从酵母细胞中获得了含有酶的提取液,并用这种提取液成 功地进行了酒精发酵。他将这些物质成为酿酶。

生物学经典科普著作

书名 主题 作者 阅览室 索书号 备注 物种起源 达尔文学说 达尔文 中文自科图书 Q111.2/003/2011 进化与遗传的全面考察和经典阐述 达尔文进化论全集 达尔文学说 达尔文 叶笃庄 中文自科图书 Q111.2/007 本书叙述了达尔文的家谱、自传及其儿子对父亲的日常生活回忆,达尔文各个时期的书信等。自达尔文以来 达尔文学说 (美)斯蒂芬·杰·古尔德(Stephen Jay Gould) 中文自科图书 N49/266 这本科学家撰写的散文杰作,收集了古尔德在《自然史》杂志上发表的科学随想。作者在哈佛大学教生物学,是科学内行,又有历史家的眼光。 一个自然科学家在贝格尔舰上的环球旅行记 达尔文学说 (英)查理士·达尔文(Charles Darwin) 周邦立 教学参考书(保存本) Y-407/057 本书是达尔文搭乘贝格尔号环球旅行途中对地质学和生物学的一些所见所闻及思考和感悟。这次考察旅行奠定了达尔文进化论学说的基础。 生命科学史 生物学史 玛格纳 刘学礼 中文自科图书 Q-09/004 以广阔的文化史为背景,生动地描绘了生命科学起源和发展的过程。以极为丰富的材料论述

了许多生物科学家创造性的劳动,对生物学发展的逻辑和社会历史背景等重要问题进行了探讨。 花鸟虫鱼及其他 中国科普佳作精选 周建人 中文自科图书 Q-49/032 本书主要收录了周建人早年撰写的花鸟虫鱼等科学小品,也适当地选了一些晚年写的有关普及科学和思想革命的小品文,以窥周老科学思想之一斑。 生物史图说 生物学史 黎先耀 刘思孔 中文自科图书 Q-09/002 远古的悸动 生命起源与进化 周志炎 冯伟民 许汉奎 傅强 中文自科图书 Q10-49/005 本书按地质年代顺序讲述了近40亿年的地球生命故事,涉及地球的演变与生物的进化以及每个时代特征生物类群的描述;同时,对我国发现的重要化石群作了重点介绍。 生命是什么 薛定谔 图书馆没有 下载地址:https://www.360docs.net/doc/928529231.html,/f/22295637.html 诺贝尔奖获得者埃尔温·薛定谔的《生命是什么》是20世纪的伟大科学经典之一。 生命之科学 威尔士 郭沫若 教学参考书(保存本) Y-462.1/001 本书是一部关于生命科学的巨著,是对于生命发展历程的大检阅。作者用深入浅出的文艺笔法探讨了地球的生命起源、生物进化和其分类,以及人类的生理和心理现象,对于整个生命发展历程用一种溯本求源的方式娓娓道来,堪称经典。 地球生物之谜 生物学 何静夫

高中生物常见的生物分类

高中常见生物分类 一、生物的分类 1、无细胞结构的生物:--------病毒(主要由蛋白质和核酸组成) ①病毒 ②亚病毒:类病毒、拟病毒、朊病毒(特点:与病毒相比结构不完整,仅由核酸或者蛋白质构成生命体,如引起疯牛病的阮病毒就是蛋白质构成的机体) 按照宿主细胞将病毒分类: ①动物病毒: RNA类(SARS病毒、禽流感病毒、H1N1、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、脊髓灰质炎病毒、狂犬病毒、麻疹病毒、) DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒、天花病毒) ②植物病毒:RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等) ③细菌病毒:噬菌体(DNA) 2、有细胞结构的生物: <1>真核生物: ①动物:高等动物(人等);低等动物:疟原虫、变形虫、草履虫等 ②植物:高等植物(玉米等);低等植物:黑藻、团藻、小球藻、水绵等 ③真菌 a、酵母菌; b、霉菌(毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等) c、食用菌:(香菌、蘑菇、平菇、金针菇等 <2>原核生物:(具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器) ①细菌:名字中含有杆、酸、球、螺、线、弧等的细菌) ②蓝藻(包括蓝球藻、颤藻、念珠藻、鱼腥藻) ③支原体、衣原体、立细菌克次氏体、螺旋体。 4、微生物代谢类型: 微生物的分类范围:所有原核生物、真菌、原生生物(指由一个细胞构成一个生物体的动物和植物的总称)、病毒 同化类型: ①光能自养:光合细菌、蓝细菌(水作为氢供体)紫硫细菌、绿硫细菌(H 2 S作为氢供体,严格厌氧) 2H 2S+CO 2 →(CH 2 O)+H 2 O+2S (备注:紫硫细菌和绿硫细菌光合作用中不产生O2) ②光能异养:以光为能源,以有机物(甲酸、乙酸、丁酸、甲醇、异丙醇、丙酮酸、和乳酸)为碳源与氢供体营光合生长。阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。 ③化能自养:硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌(厌氧化能自养细菌)CO 2+4H 2 →CH 4 +2H 2 O ④化能异养:寄生、腐生细菌。

相关文档
最新文档