E.coli genetype 大肠杆菌基因型

E.coli genetype 大肠杆菌基因型
E.coli genetype 大肠杆菌基因型

Cloning & Expression

Genotypes of Selected E. coli Strains

Genotypes of Selected E. coli Strains

BL21 E. coli B F–ompT gal [E. coli B is naturally dcm and lon] hsdS B

BL21(DE3) E. coli B F–ompT gal [E. coli B is naturally dcm and lon] hsdS B with DE3, a λ prophage carrying the T7 RNA polymerase gene and lacI Q

C600 F– [e14– (McrF–) or e14+ (McrF+)] thr-1 leuB6 thi-1 lacY1 glnV44 rfbD1 fhuA21

CJ236 F Δ(HindIII)::cat (Tra+ Pil+ CamR )/ ung-1 relA1 dut-1 thi-1 spoT1 mcrA

GC5 F′endA1 hsdR17 (r K–m K+) glnV44 thi-1 recA1 gyrA (Nal r) relA1 Δ(lacIZYA-argF)U169

(φ80dlacΔ(lacZ)M15 fhuA

GM48 F–thr leu thi lacY galK galT ara fhuA tsx dam dcm glnV44

HB101 F–Δ(gpt-proA)62 leuB6 glnV44 ara-14 galK2 lacY1 Δ(mcrC-mrr) rpsL20 (Str r) xyl-5 mtl-1 recA13

JM83 F–araΔ(lac-proAB) rpsL (Str r)[φ80 d lacΔ(lacZ)M15] thi

JM101 F′traD36 proA+B+ lacI qΔ(lacZ)M15/Δ(lac-proAB) glnV thi

JM103 F′traD36 lacIqΔ(lacZ)M15 proA+B+/endA1 glnV sbcBC thi-1 rpsL (Str r) Δ(lac-pro) (P1)

(r K–m K+ rP1+ mP1+)

JM105 F′traD36 lacIqΔ(lacZ)M15 proA+B+/thi rpsL (Str r) endA sbcB15 sbcC hsdR4 (r K–m K+)

Δ(lac-proAB)

JM107 F′traD36 lacI qΔ(lacZ)M15 proA+B+/e14–(McrA–) Δ(lac-proAB) thi gyrA96 (Nal r) endA1 hsdR17 (r K– m K+) relA1 glnV44

JM109 F′traD36 proA+B+ lacIq Δ(lacZ)M15/Δ(lac-proAB) glnV44 e14- gyrA96 recA1 relA1 endA1 thi hsdR17

JM110 F′traD36 lacI qΔ(lacZ)M15 proA+B+IrpsL (Str r) thr leu thi lacY galK galT ara fhuA dam dcm glnV44 Δ(lac-proAB)

K802 F– e14- (McrA-) lacY1 or Δ(lac)6 glnV44 galK2 galT22 rfbD1 metB1 mcrB1 hsdR2 (r K–m K+)

LE392 F– e14– (McrA–) hsdR514 (r K–m K+) glnV44 supF58 lacY1or Δ(lacIZY)6 galK2 galT22 metB1 trpR55

MC1061 F–araD139Δ(ara-leu)7696 galE15 galK16Δ(lac)X74 rpsL (Str r) hsdR2 (r K–m K+) mcrA mcrB1

MM294 F–endA1 hsdR17 (r K–m K+) glnV44 thi-1 relA1 rfbD1 spoT1

NM477 C600 Δ(hsdMS-mcrB)5 (r K–m K+ McrBC–)

NM522 F′proA+B+ lacI qΔ(lacZ)M15/Δ(lac-proAB) glnV thi-1Δ(hsdS-mcrB)5

NM554 MC1061 recA13

NM621 F–hsdR (r K–m K+) mcrA mcrB glnV44 recD1009

RR1 HB101 RecA+

χ1776 F–fhuA53 dapD8 minA1 glnV44 Δ(gal-uvrB)40 minB2 rfb-2 gyrA25 (Nal r) thyA142 oms-2 metC65 oms-1 (tte-1) Δ(bioH-asd)29 cycB2 cycA1 hsdR2 (r K– m K+) mcrB1

References

1. New England Biolabs. E. coli Strain Genotypes.

https://www.360docs.net/doc/9317638340.html,/nebecomm/tech_reference/restriction_enzymes/ecoli_genotypes.asp (Oct. 31, 2005)

2. Wertman, K.F. et al. (1986) Gene 49, 253–262.

3. Yanisch–Perron, C., Viera, J. and Messing, J. (1985) Gene 33, 103–119.

4. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory

Manual, (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

5. Huynh,T.V. et al. (1985). In D.M. Glover (Ed.), DNA Cloning Vol. 1, (pp. 56–110). Oxford,

England: IRL Press Limited.

6. Raleigh, E.A. et al. (1988) Nucl. Acids Res. 16, 1563–1575.

7. Woodcock, D.M. et al. (1989) Nucl. Acids Res. 17, 3469–3478.

8. Raleigh, E.A., Lech, K. and Brent, R. (1989). In F.M. Ausebel et al. (Eds.), Current Protocols

in Molecular Biology (p. 1.4). New York: Publishing Associates and Wiley Interscience.

9. Berlyn, M.K.B. (1996). In F.C. Niedhardt et al. (Ed.), Escherichia coli and Salmonella:

cellular and molecular biology, (2nd ed.), Vol. 2, (pp. 1715–1902). ASM Press.

10. Miller, J.H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor: Cold Spring

Harbor Laboratory Press.

11. Whittaker, P.A. et al. (1989) Nucl. Acids Res. 16, 6725–6736.

12. Murray, N.E. et al. (1977) Mol. Gen. Genet. 150, 53–61.

13. Palmer, B.R. and Marinus, M.G. (1994) Gene 143, 1–12.

14. Boyer, H.W, and Roulland–Dussoix, D. (1969) J. Mol. Biol. 41, 459.

15. Silhavy, T.J. et al. (1984) Experiments with Gene Fusions (pp. xi–xii) Cold Spring Harbor:

Cold Spring Harbor Laboratory.

16. Bullock, W.O. et al. (1987) BioTechniques 5, 376–378.

17. Maurizi, M.R. et al. (1985) J. Bacteriol. 164, 1124–1135.

18. Studier, F.W. et al. (1990). In D.V. Goeddel (Ed.), Methods in Enzymology Vol. 185, (pp.

60–89). San Diego: Academic Press.

19. Kelleher, J. and Raleigh, E.A. (1991) J. Bacteriol. 173, 5220–5223.

20. Woodcock, D.M. et al. (1989) Nucl. Acids Res. 17, 3469–3478.

21. Palmer, B.R. and Marinus, M.G. (1994) Gene 143, 1–12.

22. Yanisch-Perron, C., Viera, J. and Messing, J. (1985) Gene 33, 103–119.

23. Messing, J. (1979) Recombinant DNA Technical Bulletin (NIH) 2, 43–48.

24. Gough, J. and Murray, N. (1983) J. Mol. Biol. 166, 1–19.

25. Baker, T.A. et al. (1984) Proc. Nat. Acad. Sci. USA 81, 6779–6783.

26. Grossman, A.D. et al. (1983) Cell 32, 151–159

27. Chung, C.H. and Goldberg, A.L. (1981) Proc. Nat. Acad. Sci. USA 78, 4931–4935.

28. Straus et al. (1988) Genes Dev. 2, 1851–1858.

29. Kowit, J.D. and Goldberg, A.L. (1977) J. Biol. Chem. 252, 8350–8357.

30. Silber, K.R. and Sauer R.T. (1994) Mol. Gen. Genet. 242, 237–240.

31. Elish et al. (1988) J. Gen. Microbiol. 134, 1355–1364.

32. Kunkel, T.A. et al. (1987). In R. Wu and L. Grossman (Eds.), Methods in Enzymology Vol.

154, (pp. 367–382). San Diego: Academic Press.

TB1 (E.Coli) Any Info Helpful

Michael Benedik bchs1b at https://www.360docs.net/doc/9317638340.html,

Fri Dec 4 02:29:53 EST 1992

Previous message: TB1 (E.Coli) Any Info Helpful

?Next message: TB1 (E.Coli) Any Info Helpful

?Messages sorted by:[ date ][ thread ][ subject ][ author ]

In article <1992Dec3.182959.10559 at https://www.360docs.net/doc/9317638340.html,>, dnicker at https://www.360docs.net/doc/9317638340.html, writes:

>

>Am looking for genotype and important characteristics of E.Coli Strain

>TB1, ref.

>Sliger(sp?), S.G. et.al.

>https://www.360docs.net/doc/9317638340.html,m.,169,1016-1020 (1990)

>

>TB1 is mentioned in this paper, but no reference given, and all >attempts at identifying this strain have failed. Anyone heard of it? >

>Thanks in advance for any help you may provide. . .

>

>Darren Nickerson > D. Phil. Student >Univ. of Oxford >

>E-mail: DNICKER at https://www.360docs.net/doc/9317638340.html,

There is a standard strain TB1 used in a lot of molecular biology labs. I don't know whether that is what you have or not becuase other people may have called their strain TB1 also. But the standard strain is an hsdR- derivative (restriction minus) of JM83.

genotype should be: F- ara del(lac-pro) rpsL phi80dlacZM15

in other words the relevent genotype for you is

blue white screen for cloning in pUC and derivatives, F- so no M13, Pro- so needs proline on minimal plates, restriction minus, strep resistant,

Some version of TB1 floating out there also have a Tn5 which was used to transduce in the hsdR allele, but the real strain is not supposed to have it. The precursor to TB1 accidentally got released for awhile.

---------------------------------------------------------------------- Michael Benedik INTERNET: Benedik at https://www.360docs.net/doc/9317638340.html,

Dept. of Biochemical & Biophysical Sciences

University of Houston BITNET: Benedik at uhou

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

基因在大肠杆菌、酵母中的高效的表达技巧

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

植物基因在大肠杆菌中的原核表达

植物基因在大肠杆菌中的原核表达 通过大肠杆菌表达目的基因大量获得重组蛋白是一个方便快捷的方法。植物中克隆的目的基因被克隆到特异设计的质粒载体上,受噬菌体T7强启动子控制;表达由宿主细胞提供的T7 RNA聚合酶诱导。 当需要表达蛋白时,在细菌培养基中加入IPTG来启动表达。不同载体在邻近克隆位点处具有编码不同的多肽“标签”的序列,在定位、检测或纯化目的蛋白时提供方便。 以pET-32a(+)为例,介绍将目的基因克隆进载体并进行表达获得重组蛋白的过程,从而熟悉根据自己的要求采用不同的载体进行原核表达的全过程。 1.准备工作(试剂配置和器材准备) 1)操作流程示意图 主要步骤操作 ①制备pET-32a(+)载体用限制性酶消化,去磷酸化后胶纯化回收 ②制备插入DNA PCR装入质粒后进行限制性消化,再回收 ③插入片段克隆到pET-32a(+)载体插入片段与pET连接,转化 ④转化表达宿主菌BL21 转化带有T7RNA聚合酶基因的菌株 ⑤诱导表达目的蛋白 SDS-PAGE,Western 印迹、定量分析确定目的蛋白 ⑥放大试验纯化目的蛋白放大试验,制备粗提物,亲和纯化,切除融合标签 2)配制生长培养基如LB,和100mM IPTG,50μg/ml 卡那霉素存储液。 3)宿主菌的保存。长期存放菌株和pET重组子应保存于甘油中。 4)感受态细胞的制备,参照其它试验手册。 2.操作步骤 [1] 制备载体 1)载体消化和胶纯化 3μg pET载体 3μl 10×限制性内切酶buffer 10-20U 两种酶(是否共用buffer; 酶体积不要超过反应体系的10%) 3μl 1mg/ml乙酰BSA(根据需要 补足水到30μl

油脂高压连续水解工艺

油脂高压连续水解工艺 摘要:油脂,化学名称为甘油三酸脂,主要是指天然植物油、动物油和混合油。天然植物油主要有:棕榈油、椰子油、棉籽油等;动物油主要指:牛羊油等动物油;混合油指动物油与植物油的混合体。油脂的水解,是指油脂与水反应,反应 生成脂肪酸和甘油,其甘油的低浓度水溶液又称为甜水。本文首先介绍了油脂高 温高野连续水解机理,其次探讨了油脂高压连续水解工艺流程,最后主要水解反 应控制、水解率和甜水浓度提高和安全环保控制等方面进行开展研究和讨论。共 相关人员参考。 关键词:油脂;水解;脂肪酸; 1、油脂高温高压连续水解机理 油脂的水解是油与水两相接触的反应。增大油水的互溶性,即使油脂获得更多的反应所 需的H+和OH-,就成油脂水解的关键。从现有的催化水解的研究发现,水在油中的溶解度大 于油在水中的溶解度。催化水解是通过加人适当的催化剂,借催化剂的表面活性,使油水生 成一种油包水的微乳,增加水在油中的溶解度,而高温高压连续水解是从提高体系温度的方式,来提高水在油中的溶解度,并以适当的高温来促进水电离,为油脂水解提供所需的H+和OH-。 油脂高温高压连续水解装置的核心是一个逆流反应的反应塔。结构如图1所示。塔大致 可划分为中部的裂解区和上、下两个分离区。油在中部裂解区,在高压蒸汽的作用下,温度 升到240摄氏度以上,在蒸汽搅动下,油、水充分混后,形成油包水的均相,增大了油和水 的接触面积,使水解反应得到以快速进行。裂解后生成的脂肪酸和甘油水溶液(甜水)。由 于其比重的差异分别向上和向下运动,脱离反应体系,进一步使得反应平衡向产物方向移动。顶部的脂肪酸与进人的水混合,一方面与水混合换热,热量得以回收;另一方面水也作为一 种萃取剂,将混合在脂肪酸中未完全水解的一甘醋、二甘醋以及其产物甘油冲洗下来,带回 裂解区水解。脂肪酸在压力的作用下被排出来。甜水溶液由于其比重较大,向塔底沉降。在 此过程中甜水溶液与塔底进人的油换热,油将甜水溶液中未水解完全的油溶性物质带走,回 到裂解区继续水解。甜水则在重力作用下在塔底沉降富集,最终在压力作用下从塔底排出。 图1高温高压连续逆流水解塔结构示意图 2、油脂高压连续水解工艺流程 油脂水解方法有很多种,包括酸化法、酶分解法和催化剂法等等。随着技术的开发和先 进工艺的引进,现在已实现高温、高压、无催化且能连续操作的工业模式,其产量也随之增大。 德国鲁奇公司就是采用连续高压水解工艺技术。其采用单塔逆流原理,使油脂在水解塔 内上升过程中,逐渐分解成脂肪酸和甘油。甘油水从水解塔底部分离区排出,同时脂肪酸从 水解塔的上部分离区排出,避免了油脂进入甘油水发生乳化现象。其优点是操作管理简单、 油脂水解率高、产品比较干净、工艺生产稳定及物料消耗较低等优点。

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

最新人教版高中化学《油脂》知识梳理

第一节油脂 答案:(1)油(液态) (2)脂肪(固态) (3)单甘油酯(4)混甘油酯(5)碳、氢、氧(6)多种高级脂肪酸(硬脂酸、软脂酸或油酸等) (7)甘油(丙三醇) (8)无色、无味(9)小(10)大(11)难(12)汽油、氯仿、乙醚等有机溶剂 (13) 硬脂酸甘油酯 1.油脂的组成和结构 (1)营养素 食物中能够被人体消化吸收和利用的各种成分叫做营养素。人体需要的营养素主要有:蛋白质、脂类、糖类、无机盐、维生素和水等六类,统称为六大营养素。 油脂是油和脂肪的统称。从化学成分上来说油脂是由多种高级脂肪酸(硬脂酸、软脂酸或油酸等)与甘油(丙三醇)反应而生成的酯,属于酯类化合物。

(3)油脂的结构 自然界中的油脂是多种物质的混合物,其结构可以表示为,结构简 式中R1、R2、R3分别代表高级脂肪酸中的烃基,可以相同,也可以不同。 组成油脂的高级脂肪酸种类较多,但多数是含偶数碳原子的直链高级脂肪酸,其中以含16和18个碳原子的高级脂肪酸最为常见,油脂中含有的常见高级脂肪酸有:饱和脂肪酸:软脂酸(十六酸,棕榈酸)C15H31COOH 硬脂酸(十八酸)C17H35COOH 不饱和脂肪酸:油酸(9–十八碳烯酸)C17H33COOH 亚油酸(9,12–十八碳二烯酸)C17H31COOH (4)油脂的分类 【例1】下列属于油脂的是( ) 解析: 答案:C 2.油脂的性质

由于油脂是多种高级脂肪酸的甘油酯,具有酯的化学性质,能够发生水解反应。而高级脂肪酸中有饱和的,又有不饱和的。因此,许多油脂兼有烯烃的化学性质,可以发生加成反应。 ①水解反应 在酸、碱或酶等催化作用下,油脂均可发生水解反应。1 mol 油脂水解,可以得到3 mol 高级脂肪酸和1 mol 甘油。 a .油脂在人体内的变化 高级脂肪酸甘油酯――→水解酶高级脂肪酸+甘油――→小肠吸收 ――→氧化二氧化碳+水+能量 b .油脂在酸性条件下的水解 如: 这个反应在工业上用于高级脂肪酸和甘油的制取。 c .油脂在碱性条件下的水解——皂化反应 如: 油脂在碱性溶液中的水解反应又称为皂化反应。工业上常用这个反应制取肥皂。肥皂的主要成分是高级脂肪酸盐。 ②油脂的氢化 不饱和程度较高、熔点较低的液态油,通过催化加氢,可以提高饱和度,转变成半固态的脂肪。由液态的油转变为半固态的脂肪的过程,称油脂的氢化,也称油脂的硬化。 这样制得的油脂叫人造脂肪,通常又称为硬化油。硬化油不易被空气氧化变质,便于储存和运输,可以作为肥皂、人造黄油的原料。

常用大肠杆菌及其基因型

Commonly used strains https://www.360docs.net/doc/9317638340.html,/wiki/E._coli_genotypes 1.AG1 endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K - m K +) 2.AB1157 thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1?Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219. See CGSC#1157 3.BL21 E. coli B F- dcm ompT hsdS(r B - m B -) gal [malB+] K-12 (λS) ?The "malB region" was transduced in from the K-12 strain W3110 to make the strain Mal+λS. See Studier et al. (2009) J. Mol. Biol. 394(4), 653 for a discussion of the extent of the transfer. ?Stratagene E. coli Genotype Strains 4.BL21(AI) F– ompT gal dcm lon hsdS B (r B - m B -) araB::T7RNAP-tetA ?an E. coli B strain carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q. ?Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

外源基因在大肠杆菌中表达简略实验步骤

目的基因在大肠杆菌中的诱导表达 一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测。 [主要试剂] 1、LB培养基。 2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O 中,0.22μm滤膜抽滤,-20℃保存。 [操作步骤] 1、通过PCR方法获得目的基因:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点,本实验中为BamHⅠ和HiindⅢ),PCR循环获得所需基因片段。 PCR反应体系为: 模板(含R基因的重组质粒)1μl 上游引物PR11μl 下游引物1μl dNTP(2.5mmol/L)5μl 10×PCR buffer(含Mg2+)10μl Taq酶1μl ddH2O补至100μl PCR反应条件为:94℃变性3min;94℃变性3min、52℃复性40sec、72℃延伸1min,30个循环;最后72℃延伸8min。 2、构建重组表达载体 (1)载体酶切:将表达质粒pRSETA用限制性内切酶(同引物的酶切位点)

进行双酶切,酶切产物行琼脂糖电泳后,用凝胶回收Kit或冻融法回收载体大片段。 (2)R基因PCR产物双酶切后回收,在T4 DNA连接酶作用下连接入载体。连接反应体系为: pRSETA1μl R基因片段3μl T4 DNA连接酶(5U/μl)1μl 5×buffer2μl ddH2O补至10μl 3、获得含重组表达质粒的表达菌种 (1)将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 (2)测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 (3)以此重组质粒DNA转化表达宿主菌BL21(DE3)的感受态细胞。 4、诱导表达 1、挑取含重组质粒的菌体单斑至2ml LB(含Amp50μg/ml)中37℃过夜培养。 2、按1∶100比例稀释过夜菌,一般将1ml菌加入到含100mlLB培养基的300ml 培养瓶中, 37℃震荡培养至OD600≌0.5-0.8(最好0.6,大约需3hr)。 3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度1mM 作为实验组,两组继续于37℃、200rpm震荡培养3hr。 4、分别取菌体1ml,,离心12000g×30s收获沉淀,用100μl 1%SDS重悬,混匀,70℃10min。 5、离心12000g×1min,取上清作为样品,可做SDS-PAGE等分析。 6 5500rpm 15min 收集细胞

E.coli genotypes 大肠杆菌基因型手册

From OpenWetWare 1 Nomenclature & Abbreviations 2 Methylation Issues in E. coli 3 Commonly used strains 3.1 AG1 3.2 AB1157 3.3 BL21(AI) 3.4 BL21(DE3) 3.5 BL21 (DE3) pLysS 3.6 BNN93 3.7 BW26434, CGSC Strain # 7658 3.8 C600 3.9 C600 hflA150 (Y1073, BNN102) 3.10 CSH50 3.11 D1210 3.12 DB3.1 3.13 DH1 3.14 DH5α 3.15 DH10B (Invitrogen) 3.16 DH12S (Invitrogen) 3.17 DM1 (Invitrogen) 3.18 ER2566 (NEB) 3.19 ER2267 (NEB) 3.20 HB101 3.21 HMS174(DE3) 3.22 IJ1126 3.23 IJ1127 3.24 JM83 3.25 JM101 3.26 JM103 3.27 JM105 3.28 JM106 3.29 JM107 3.30 JM108 3.31 JM109 3.32 JM109(DE3) 3.33 JM110 3.34 JM2.300 3.35 LE392 3.36 Mach1 3.37 MC1061 3.38 MC4100 3.39 MG1655 3.40 OmniMAX2

3.41 Rosetta(DE3)pLysS 3.42 Rosetta-gami(DE3)pLysS 3.43 RR13.44 STBL2 (Invitrogen)3.45 STBL43.46 SURE (Stratagene)3.47 SURE2 (Stratagene)3.48 TOP10 (Invitrogen)3.49 Top10F' (Invitrogen)3.50 W31103.51 XL1-Blue (Stratagene)3.52 XL2-Blue (Stratagene)3.53 XL2-Blue MRF' (Stratagene)3.54 XL1-Red (Stratagene)3.55 XL10-Gold (Stratagene)3.56 XL10-Gold KanR (Stratagene)4 Other genotype information sources 5 References A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if absent. E. coli B strains are naturally lon- and dcm-. F - = Does not carry the F plasmid F + = Carries the F plasmid. The cell is able to mate with F - through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F - through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. r B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. m B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine +methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!)dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished 通常dam/dcm都是默认的,无需标注,只有dam -、dcm -才有必要标出来,那是被迫使用某些酶切位点时才用来扩增质粒的特殊菌株。

相关文档
最新文档