小波分析在脑电信号处理中的应用

小波分析在脑电信号处理中的应用
小波分析在脑电信号处理中的应用

基于Matlab的脑电波信号处理

做脑电波信号处理滴嘿嘿。。Matlab addicted Codes %FEATURE EXTRACTER function [features] = EEGfeaturetrainmod(filename,m) a = 4; b = 7; d = 12; e = 30; signals = 0; for index = 1:9; % read in the first ten EEG data because the files are numbered as ha11test01 rather than ha11test1. s = [filename '0' num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end for index = 10:1:m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0;

signals = signal; else signals = [signals signal]; end end %%%%% modification just for varying the training testing ratio ------ for index = 25:1:25+m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end %%%%%end of modification just for varying the training testing ratio----- for l = 1:m % exrating features (power of each kind of EEG wave forms) [Pxx,f]=pwelch(signals(:,l)-mean(signals(:,l)), [], [], [], 200); % relative power fdelta(l) = sum(Pxx(find(fa))); falpha(l) = sum(Pxx(find(fb))); fbeta(l) = sum(Pxx(find(fd))); fgama(l)= sum(Pxx(find(f>e))); % gama wave included for additional work

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析及其在通信中的应用 张天雷

小波分析及其在通信中的应用 专业:电子信息工程 姓名:张天雷 学号:123408148 河南城建学院 2011年05月29日

小波分析及其在通信中的应用 摘要:小波分析是傅里叶分析的重大突破,是当今许多领域研究的热点。从小波分析的发展历程出发,介绍了小波在现代通信中的一些应用,并指出了未来的一些研究方向。 关键词:小波变换;傅里叶变换;小波应用;通信 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。小波分波是自1986年以来由于Meyer、Mallat和Daubechies等的奠基工作而迅速发展起来的一门新兴学科,它是傅立叶分析划时代的发展结果。与Fourier 变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier 变换的困难问题, 小波分析的目的是“既要看到森林(信号的概貌) ,又要看到树木(信号的细节) |”。因此,它被誉为“学显微镜”。 小波分析已经在图像处理、语音识别,声学,信号处理,神经生理学,磁性谐振成像,地震测量,机械故障诊断,生物医学,医疗卫生,以及一些纯数学应用如解决一些微分方程式等领域取得一系列重要应用。小波变换理论在通信中的应用研究在国际上日益受到重视。小波函数提供的一系列正交基非常适合通信系统中的信号波形设计,扩频特征波形设计,多载波传输系统的正交子信道划分等。 小波变换技术在通信系统中的信源编码、信道编码、调制、均衡、干扰抑制和多址等方面具有广阔的应用前景。 一、小波分析在通信系统中的研究动态 如何在各种信道环境下实现有效可靠的信息传输一直是通信领域关注的课

基于Mu_Beta节律想象运动脑电信号特征的提取

中国组织工程研究与临床康复
第 14 卷 第 43 期 2010–10–22 出版
October 22, 2010 Vol.14, No.43
Journal of Clinical Rehabilitative Tissue Engineering Research
基于Mu/Beta节律想象运动脑电信号特征的提取*★
黄思娟,吴效明
Feature extraction of electroencephalogram for imagery movement based on Mu/Beta rhythm
Huang Si-juan, Wu Xiao-ming
Abstract
BACKGROUND: Different sports produce different electroencephalogram (EEG) signals. Brain-computer interface (BCI) utilized characteristics of EEG to communicate brain and external device by modern signal processing technique and external connections. The speed of EEG signals processing is important for BCI online research. OBJECTIVE: To investigate a rapid and accurate method for extracting and classifying EEG for imagery movement. METHODS: Using the attribute of event-related synchronization and event-related desynchronization during imagery movement, the BCI dataset of 2003 was processed. Mu/Beta rhythm was obtained from bandpass filtering and wavelet package analysis. Then feature was formed by the average energy of lead C3, C4, and was sorted out by the function classify of matlab. RESULTS AND CONCLUSION: Appropriate parameters were obtained by detection of training data and used for identification of training data and testing data, with a correct rate of classification of 87.857% and 88.571%. Huang SJ, Wu XM. Feature extraction of electroencephalogram for imagery movement based on Mu/Beta rhythm.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2010;14(43): 8061-8064. [https://www.360docs.net/doc/936763167.html, https://www.360docs.net/doc/936763167.html,]
School of Bioscience and Bioengineer, South China University of Technology, Guangzhou 510006, Guangdong Province, China Huang Si-juan★, Studying for master’s degree, School of Bioscience and Bioengineer, South China University of Technology, Guangzhou 510006, Guangdong Province, China huangsijuan123@ https://www.360docs.net/doc/936763167.html, Correspondence to: Wu Xiao-ming, Doctoral supervisor, School of Bioscience and Bioengineer, South China University of Technology, Guangzhou 510006, Guangdong Province, China bmxmwus@scut. https://www.360docs.net/doc/936763167.html, Supported by: the Science and Technology Development Program of Guangdong Province, No. 2009B030801004* Received: 2010-05-17 Accepted: 2010-07-13
摘要
背景:不同的运动会产生不同的脑电信号,脑机接口技术就是利用脑电信号的特异性,通过现代信号处理技术和外部的连 接实现人脑与外部设备的通信。以实现脑机接口在线研究的目标,首先要解决的是脑电信号处理的速度问题。 目的:研究快速、准确地提取脑电信号特征及分类的方法。 方法:充分利用想象运动过程中,脑电信号中 Mu/Beta 节律的事件相关同步化和去同步化特性,以 2003 年 BCI 竞赛数据 为处理对象,采用带通滤波和小波包分析的方法提取 Mu、Beta 节律,提取 C3、C4 两通道上的能量平均值形成二维特征 向量,利用 matlab 自带的 classify 函数进行分类。 结果与结论:通过对训练数据进行测试得到较为合适的参数,利用该参数对同等条件下的训练数据和测试数据分别进行判 别,分类正确率分别达到 87.857%和 88.571%。 关键词:特征提取与分类;脑电信号;事件相关同步化/去同步化;想象运动;小波包分析 doi:10.3969/j.issn.1673-8225.2010.43.021 黄 思 娟 , 吴 效 明 . 基 于 Mu/Beta 节 律 想 象 运 动 脑 电 信 号 特 征 的 提 取 [J]. 中 国 组 织 工 程 研 究 与 临 床 康 复 , 2010 , 14(43):8061-8064. [https://www.360docs.net/doc/936763167.html, https://www.360docs.net/doc/936763167.html,]
(slow cortical potential, SCP)、Mu或Beta节律 0 引言 脑-机接口(brain-computer interface, BCI) 是指在不依赖于外周神经和肌肉组织等常规大 脑信息输出通路,运用工程技术在人脑和计算 机或其他电子设备之间建立能直接“让思想变 成行动”的对外信息交流和控制新途径[1-2]。该 技术不仅可以为思维正常但运动功能残缺的人 (如肌萎缩性(脊髓)侧索硬化患者、严重脊髓损 伤或完全瘫痪患者)提供一种新型的辅助运动 和对外信息交流手段,还可为人们提供无需体 力操作的新的人机交互通讯方式,尤其适用于 特殊环境下。同时,脑-机接口为人们提供一种 新的娱乐方法—思维游戏。 目前,脑-机接口系统主要采用以下4类信 号:P300、稳态视觉诱发电位(steady-state visual evoked potential, SSVEP)、慢皮质电位 等。Mu节律是在感觉运动区记录到的8~12 Hz 脑电波,与alpha节律区别在于Mu节律不受视 觉影响,但会因动作、动作准备或运动想象发 生变化[1]。Mu节律与18~26 Hz的Beta节律存在 紧密的联系,Beta节律中部分频率是Mu节律的 谐波, 同样与运动或运动想象存在联系[3]。 研究 显示, Mu/Beta节律与运动或运动想象的联系表 现为:想象某侧肢体的运动可导致同/对侧感觉 运动皮层的Mu/Beta节律幅度的升高/降低,称 之 为 事 件 相 关 同 步 化 (event-related synchronization , ERS)/ 事 件 相 关 去 同 步 化 (event-related desynchronization,ERD)[4]。本 文利用Mu/Beta节律的ERS/ERD特性进行脑机接口的研究,以 2003年脑-机接口竞赛的想 象左右手运动数据为处理对象。离线分析结果 表明,该方法非常简单,且在分类准确率上有 一定的提高。
ISSN 1673-8225
CN 21-1539/R
CODEN: ZLKHAH
8061

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

脑电信号功率谱

数字信号处理作业 1.两个导联C3,C4位置的脑电信号(已预处理),实验采样频率为 250Hz,每次实验采集8秒数据,总共做了36次实验。依次求出C3,C4位置第1秒~第8秒数据的功率谱。 clc clear load('C:\Users\刘冰\Desktop\数字信号处理\matlab\C3C4.mat') a(1:8,1:512)=zeros(); for j=1:8 for k=0:35; z=fft(Left_C3(((j-1)*250+1+2000*k):(2000*k+j*250)),512); %截取特定的一段数据进行傅里叶变换 a(j,:)=p(j,:)+z.*conj(z)/512; %求其功率谱end a(j,:)=p(j,:)./36;%求平均值 end p(1:8,1:512)=zeros(); for j=1:8 for k=0:35; z=fft(Left_C4((j-1)*250+1+2000*k:2000*k+j*250),512); 、%截取特定的一段数据进行傅里叶变换 p(j,:)=q(j,:)+z.*conj(z)/512; end p(j,:)=q(j,:)./36; end for i=1:8 w=0:2*pi/255:2*pi; figure plot(w/pi,p(i,1:256),'b',w/pi,q(i,1:256),'r')%在一幅图里面显示C3C4功率谱,因为其结果是对称的,所以只取前一半结果 legend('C3','C4');%线段标题

title(['第',num2str(i), '秒 C3、C4脑电功率谱对照']) end 0.20.40.60.81 1.2 1.4 1.6 1.82 0100 200 300 400 500 600 700 第1秒 C3、C4脑电功率谱对照

基于小波分析的一维信号处理方法研究

基于小波分析的一维信号处理方法研究 [摘要]小波分析是在傅立叶变换的基础上发展起来的一种时频分析方法。作为一种新的变换域信号处理方法,小波变换尤其擅长处理在非平稳信号的分析。 目前,这种分析方法已经广泛应用于信号处理、图像处理、量子场论、分形理论等领域 。 【关键词 】小波分析 ;时域 ;频域 1 前言 小波分析是近年来发展起来的一门新技术,是建立在Fourier 分析、泛函分析、调和分析 及样条分析基础上的分析处理工具。是傅里叶分析发展史上里程碑式的进展,它被看成是调和分析这一数学领域半个世纪以来工作的结晶。在信号处理方面Fourier 变换是不可缺少的分析工具,但由于Fourier 只适用于平稳信号的分析,不能做局部分析,加窗Fourier 变换无法满足正交性。且窗口大小固定,它不能敏感反映信号的突变,而小波分析优于Fourier 分析之处在于它的时间域和频率域同时具有良好的局部化性质,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。这种特性正符合低频信号变化缓慢而高频信号变化迅速的特点,使小波变换县有对信号的自适应能力。有一个灵活可变的时间-频率窗,它被称为多分辨分析,并且常被誉为信号分析的“数学显微镜”。 2 小波分析的发展历史 小波分析方法的提出,可以追溯到1910年Haar 提出的小“波”规范正交基及1938年Littlewood-Paley 对Fourier 级数建立的L-P 理论,即按二进制频率成分分组。Fourier 变换的相位变化本质上不影响函数的形状及大小。其后,Calderon 于1975年用其早年发现的再生公式给出抛物型空间上H 1的原子分解,它的离散形式已接近小波展开,只是还无法得到组成一个正交系的结论。1981年,Stromberg 对Haar 系统进行了改进,证明了小波函数的存在性。1984年,法国地球物理学家Morlet 在分析地震波的局部性质时,发现传统的Fourier 变换难以达到要求,引入“小波”概念对信号进行分解。随后,理论物理学家Grossman 对Morlet 的这种信号按一个确定函数的伸缩,平移系展开的可行性进行了研究,这无疑为小波分析的形成开了先河。 真正的小波热开始于1986年,Meyer 创造性的构造出了具有一定衰减性的光滑函数ψ,其二进制伸缩与平移/2,{()2(2):,}j j k j t t k j k z ψψ--=-∈构成L 2(R)的规范正交 基。继Meyer 提出了小波变换之后,Lemarie 和Battle 又分别独立地给出了具有指数衰减的小波函数。1987年,Mallat 巧妙地将计算机视觉领域内的多尺度分析的思

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

实验一 低通滤波平滑脑电信号

实验一低通滤波平滑脑电信号 生物医学工程系罗融编一、实验目的: 1.掌握平滑滤波器的原理及设计方法。 2.学习用MATLAB语言编写平滑滤波器程序。 3.观察用平滑滤波器处理脑电信号的效果。 二、实验原理: 最常遇见的信号处理任务之一是平滑数据以抑制高频噪声。如数据采集时开关动作产生的毛刺。求几个数据点的平均值的方法是减弱高频噪声的一种简单方法。这种滤波器被称为移动平均滤波器。 汉宁移动平均滤波器是最简单的平滑滤波器之一。可以使用matlab的函数hanning(N)求出滤波器的脉冲响应h(n),其中N为脉冲响应的长度。为了使频率响应H(e jω)在ω=0时为1,对h(n)归一化即除以hanning(N)的和。可以使用sum()函数。 三、实验内容: 1.分别求N=3,5,9时汉宁滤波器的归一化脉冲响应h1(n)、h2(n)、h3(n)并在一个图片框中做图(用stem及subplot函数)。 2.求N=3,5,9时汉宁滤波器的频率响应H(e jω)(可使用freqz函数,fs=250Hz)。 并在一个图片框中绘出幅频特性曲线图(可使用plot与figure及subplot函数)。3.分别用N=3,5,9时的汉宁滤波器处理脑电信号(filter或conv函数),要求显示处理前脑电信号与处理后脑电信号的时域波形(可使用plot与figure及subplot函数)。脑电信号由数据文件shiyanyieeg.mat提供,用load shiyanyieeg 命令后,shiyanyieeg数据文件中的变量eeg即在matlab工作空间中,可用plot (eeg)语句观察该脑电信号。 四、报告要求: 要求报告格式如下 西安交通大学实验报告 成绩 课 程_医学信号处理_ 第 页 共 页 系 别__生物医学工程____________实 验 日 期 年 月 日 专业班级___医电 班___组别________交 报 告 日 期 年 月 日 姓 名__ __学号__ ______ 报 告 退 发 ( 订正 、 重做 ) 同 组 人_ 教师审批签字 报告内容应包含实验名称,实验目的,实验内容及结果,实验结果分析与讨论等。附录: 1.conv函数:

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

基于MATLAB的脑电信号处理

南京航空航天大学基于Matlab的脑电信号处理 姓名陆想想 专业领域生物医学工程 课程名称数字信号处理 二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为“α波阻断”。一般

小波分析及其在信号处理中的应用

小波分析及其在信号处理中的应用 发表时间:2016-07-27T16:15:12.383Z 来源:《基层建设》2016年9期作者:王亚东杨浩雷娜 [导读] 小波分析,是当前迅速发展的新领域。 西安电子工程研究所陕西西安 710100 摘要:小波分析,是当前迅速发展的新领域。在应用数学和工程学科中,在经过近30年的研究和探索中,已经建立起非常重要的数学形式化体系,在理论基础中也更加的扎实。那么与Fourier的变换相比,小波的变换是空间,和频率的局部性变换,所以能高效率地从信号中提取有用的信息。通过平移和伸缩等一些运算功能,对信号或函数进行微观的细化分析。它解决了Fourier变换所不能解决的很多困难。小波变换联系了多个学科,包括:应用数学、物理学、科学、信号与信息处理、计算机、图像处理、地震勘探等。有数学家认为,小波分析就是一个新的数学分支,它是泛函分析、Fourier分析、样条分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 关键词:小波分析;信号处理;主要应用 引言: 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。小波分析是近年来发展起来的一种新的信号处理工具,这种方法是因为傅立叶分析,小波(wavelet),就是在小范围的波,只在有限的区间内有非零值,比起正弦波和余弦波那样无始无终完全不同。小波是可以通过时间轴上下平移的,同时也可以按比例伸展和压缩,用来获取低频和高频的小波,一些构造好的小波函数,就可以用于滤波或者压缩信号,从而可以提取出信号中的有用信号。 1.小波分析的概念 小波(Wavelet)这一词语,顾名思义,“小波”通俗说就是小的波形。“小”的意思就是具有减退性;而“波”的意思就是指它的震动性,它的振幅有上下相间的震荡。与Fourier变换相比,小波变换也就是时间(空间)频率的部分化解析,它通过伸缩平移运算对信号(函数)逐步细致的对比,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。还有人把小波变换称为“数学显微镜”。 2.小波分析基本理论 小波变换的时频窗是可以由伸缩因子 a 和平移因子 b 来调节的,平移因子 b,可以改变窗口在相平面时间轴上的位置,而伸缩因子 b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。对在不同的频率在时域上小波变换的取样步长是可调节的。在频率较低时,小波变换的时间分辨率也比较低,但是频率分辨率较高;在频率较高时,小波变换的时间分辨率较高,但是频率分辨率却较低。处理信号时如要使用小波变换,首先应当选取适当的小波函数,对其信号进行分解,其次,要进行阈值处理对分解出的参数,再选取适当的阈值进行简要分析,最后要进行逆小波变换利用处理后的参数对信号进行重构。它可以用于边界的处理与滤波、信噪时频、时频分析,分析分离提取信号、求分形指数、信号的识别以及诊断以及多尺度边缘检测。 3.小波分析在信号处理中的应用 事实上,小波分析在应用上,领域十分宽泛,它包括:数学领域的许多学科,以及信号分析和图像处理甚至大型机械的故障诊断的方面。小波分析应用的一个重要方面是小波分析用于信号与图像压缩。它的主要特点是压缩比例高,压缩的速度也快,在压缩后不仅能保持信号与图像的特征不变,而且在传递中可以抵抗干扰。小波分析的压缩方法有很多。小波包最好基形式,小波域的纹理模型形式,都是科学的例子。 3.1在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等;在信号的分析方面它能用于边界的处理与滤波也可以用于时频分析、求分形指数、信噪分离与提取弱信号、信号的识别和与诊断以及多尺度边缘检测等;在图像压缩方面,它具有压缩比高,压缩的速度快的特征。在医学成像方面的减少B超、CT、核磁共振成像的时间,以提高分辨率等。 3.2信号的小波和小波包分解:小波变换可以等效为一组镜像滤波的过程,即信号通过一个分解快速的滤波器和一个分解慢速的滤波器。细节信号就是快速滤波器输出对应信号的高频分量组成。慢速滤波器所输出对应信号的相对较低的频率分量组成,称为近似分量。并同时对信号进行一次二抽一采样,以一个多层分解来说明的。 3.3小波在去噪方面的应用:从信号学的角度看,小波去噪是一个信号滤波的问题。小波去噪在很大程度上可以看成是低通滤波,但是因为在去噪后,也还能成功地保留信号特征,所以在这一点上,又比传统的低通滤波器更加优良。所以可以分析出,小波去噪的实质就是特征提取和低通滤波的相互综合。小波分析的重要应用之一就是用于信号消噪,一个含噪的一维信号模型可表示为如下形式:S f k e k (k)()()k=0.1…….n-1其中,f(k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。假设 e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号。 3.4在工程技术等方面:包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。 4.小波提升方案具有的优点 20世纪90年代中期,Sweldens提出了小波提升方案(lifting scheme)以及第二代小波概念,它不依赖于Fourier变换,在时域和空域中直接实现小波变换,并切确定了经典小波中,双正交小波的提升方案(又称提升格式)。同年,Daubechies和Sweldens合作,将小波分化成有限步的过程利用提升方法,并同时证明,凡是用Mallat算法完成的小波变动,都可以转用提升格式来完成。从理论上说,提升方案大大拓展了小波分析的研究领域小波提升格式可以实现整数到整数变换的优点,给图像处理带来了极大的方便。它具有良好的特性:结构方便简单、原位计算、运算量较低、节省空间、逆变换可直接反转实现,以及可逆的整数到整数的变换,非常便于实现。在移动的手持设备、高速处理、低功耗设备应用中也具有很大的吸引力。在静态图像处理中,提升小波已被选JPEG2000的变换核心。它提供了多精度的功能,同基于JPEG2000的标准相比,在很低的比特率时具有良好的压缩DCT的JPEG性能,并且提供了在同一个编码结构内有效的失真和

相关文档
最新文档