11基于车辆稳态动力学特性的汽车动态轨迹规划

11基于车辆稳态动力学特性的汽车动态轨迹规划
11基于车辆稳态动力学特性的汽车动态轨迹规划

车辆动力学

车辆动力学 Vehicle dynamics 课程简介 本课程主要讲述轮式车辆动力学的基本理论,内容包括车轮的纵向特性和横向特性,车轮与地面相互作用时的阻力和牵引力;车辆直线行驶时的驱动力和行驶阻力,车辆的加速性和制动性;轮式车辆的转向机理,轮式车辆的转向过渡过程;路面不平度的统计特性,描述车辆行驶振动的传递函数和状态空间方法,车辆被动悬架、半主动悬架和主动悬架的数学模型和计算机仿真;多自由度汽车行驶的动力学问题。 本课程是车辆工程硕士研究生必修课程。 教学大纲 第一部分大纲说明 1.课程名称:车辆动力学 2.课程代码:010******* 3.课程类型:学位课 4.开课时间:春(或秋) 5.总学时数及学分:32学时,2学分 6.开课部门:机械与汽车工程学院 7.授课对象:硕士研究生 8.面向学科:机械工程 9.预修课程:机械振动 10.考核方式:考试考查,闭卷考试70%,平时成绩30% 11.主讲教师:蔡仁华 13. 教材及教学参考资料: 教材: 米奇克、瓦伦托维兹著,陈萌三等译汽车动力学(第四版)清华大学出版社2009年王良曦、王红岩车辆动力学国防工业出版社 2008年版

参考资料: 张克健.车辆地面动力学.国防出版社.2002年版 RANDOM VIBRA TION,S.H.Carandall,Editor,The M.I.T.Press,1963 第二部分教学内容和教学要求 第一章车辆-地面相互作用力学 主要讲述车轮与地面间相互作用力学。 1.1 车轮-地面力学 1.1.1 轮胎的垂直特性 1.1.2 车轮的纵向特性 1.1.3 车轮的横向特性 1.2 车轮阻力 1.2.1 滚动阻力 1.2.2 穿水阻力 1.2.3 轴承摩擦,残余制动力矩 1.2.4车轮其他阻力 1.2.5总的车轮阻力 第二章车辆直线行驶力学 主要讲述车辆直线行驶力学,还叙述了牵引特性计算步骤,以及机械传动、液力传动车辆的加速性能计算方法。轮式车辆制动性相关的内容在本章的最后进行了介绍。 2.1 车辆的驱动力和行驶阻力 2.1.1 车辆的驱动力 2.1.2 车辆空气动力学 2.1.3 车辆的行驶阻力 2.1.4 车辆行驶条件 2.2 车辆直线行驶牵引计算 2.2.1 动力装置特性 2.2.2 车辆的牵引特性 2.2.3 牵引计算步骤 2.3 机械传动车辆的加速性能 2.3.1 发动机稳态运行时车辆的加速性 2.3.2 发动机非稳态运行时车辆的加速性 2.4 安装液力传动车辆的直线行驶牵引计算 2.4.1 液力传动车辆特点 2.4.2 液力变矩器的原始特性 2.4.3 液力变矩器与发动机共同工作特性 2.4.4 综合式液力传动车辆牵引计算 2.4.5 综合式液力传动车辆的加速性能 2.5 车辆的制动性能

车辆动力学概述

车辆动力学概述 回顾车辆动力学的发展历史,揭示车辆动力学研究内容及未来发展趋势,对车辆特性和设计方法也作了简要介绍。 1.历史发展 车辆动力学是近代发展起来的一门新兴学科。其发展历史可追溯到100多年前[1],直到20世纪30年代初人们才开始注意车轮摆振问题等;而后一直到1952年间,人们通过不断研究,定义了不足转向和过度转向,建立了简单的两自由度操纵动力学方程,开始进行有关行驶平顺性研究并建立了K2试验台,提出了“平稳行驶”概念,引入前独立悬架等;1952年以后,人们扩展了操纵动力学分析,开始采用随机振动理论对行驶平顺性进行性能预测,理论和试验两方面对动力学的发展也起了很大作用。然而,在新车型的设计开发中,汽车制造商仍然需要依赖于具有丰富测试经验与高超主观评价技能的工程师队伍,实际测试和主观评价在车辆开发中还有不可替代的作用。 2.研究内容 严格地说,车辆动力学是研究所有与车辆系统运动有关的学科。它涉及范围很广,除了影响车辆纵向运动及其子系统的动力学响应(纵向动力学)外,还有行驶动力学和操纵动力学。人们长期以来习惯按纵向、垂向和横向分别独立研究车辆动力学问题,而实际情况是车辆同时受到三个方向的输入激励且各个方向运动响应特性相互作用、相互耦合。随着功能强大的计算机技术和动力学分析软件的发展,我们已经有能力将三个方向的动力学问题结合起来进行研究。 纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按工况不同分为驱动动力学和制动动力学两大部分。与行驶动力学有关的主要性能及参数包括悬架工作行程、乘坐舒适性、车体的姿态控制及轮胎动载荷的控制等;而行驶动力学研究的首要问题是建立考虑悬架特性在内的车辆动力学模型。操纵动力学内容相当丰富,轮胎在其中起着相当重要的作用;通常操纵动力学研究范围分为三个区域,即线性域、非线性域和非线性联合工况。 3.车辆特性和设计方法

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

动力学题库-机理推导题

1.求具有下列机理的某气相反应的速率方程: 1 1k k A B - 2k B C D +??→ B 为活泼物质,可用稳态近似法。证明此反应在高压下为一级。 [参考答案] 稳态近似法的关键是认为活泼中间产物在反应过程中,其浓度不变,即其净速率为零。 设以产物D 的生成速率表示上述复合反应的速率,即 2D B C dc k c c dt = (1) 因B 的活泼物质,其净速率为 112B A B B C dc k c k c k c c dt -=-- 采用稳态近似法,则0B dc dt =,亦即 112A B B C k c k c k c c -=+ 112A B C k c c k k c -=+ (2) 将式(2)代入(1)中,整理得 2112A C D C k k c c dc dt k k c -=+ 所谓高压下,亦即C c ,A c 浓度很大,致使21C k c k -,于是 122C C k k c k c -+≈ 所以 1D A dc k c dt = (一级反应) 2.反应HCl Cl H 222→+的机理为: M Cl M Cl k +?→?+212 H HCl H Cl k +?→?+22 Cl HCl Cl H k +?→?+32 M Cl M Cl k +?→?+242 其中14,k k 分别为Cl 2的速率常数 试证明:112 122224[]2[][]k d HCl k H Cl dt k ??= ??? [参考答案] []]][[]][[2322Cl H k Cl H k dt HCl d += 对H 和Cl 用稳态近似法

有: 0]][[]][[][2322=-=Cl H k Cl H k dt H d 及:21222324[]2[][][][][][]2[][]0d Cl k Cl M k H Cl k H Cl k Cl M dt =-+-= 由此二式可以得出: ]][[]][[2322Cl H k Cl H k = ][][2]][[22421M Cl k M Cl k = 于是:2122 141][][Cl k k Cl ??? ? ??= 所以 2232[][][][][]d HCl k H Cl k H Cl dt =+ ]][[222Cl H k = 21222 1412]][[2Cl H k k k ??? ? ??= 3.若反应22332HNO H O NO H NO +-→+++ 的机理如下,求以-3NO υ????表示的速率方程。 1K 2 222HNO NO+NO H O + (快速平衡) 2K 2242NO N O (快速平衡) 3k 24223N O H O HNO H NO +-+??→++ (慢) [参考答案] []-33242NO k N O H O υ????=???? (1) 因为前两个反应处于快速平衡,所以 [][][][] 22122NO NO H O K HNO = [][][][]21222K HNO NO NO H O = (2) [][] 24222N O K NO = [][]22422N O K NO = (3) 将(2)代入(3)得 [][][][]2 21224222K HNO N O K NO H O ????=?????? (4)

铁道车辆系统静动力学课程教学大纲

《铁道车辆系统静/动力学》课程教学大纲 课程代码: 0803715026 课程名称:铁道车辆系统静/动力学 英文名称:Rolling Stock Systerm Static & Dynamics 总学时:32 讲课学时:32 学分:2 适用对象: 车辆工程专业 先修课程:计算机语言、工程力学、城市轨道车辆工程 一、课程性质、目的和任务 铁道车辆系统静/动力学是城市轨道车辆专业方向的一门专业理论课。其目的是使学生掌握铁道车辆静力学以及铁道车辆动力学的基本理论和计算方法。通过本课程的学习,学生可以掌握铁道车辆静力学、动力学分析和计算方法,为从事铁路客车和城市轨道交通车辆的制造、维护、测试等工作打下良好的基础。 二、教学基本要求 本课程内容包括两部分。车辆静力学内容包括有限单元法的基本原理和方法,作用在车辆及其零部件上的载荷,车辆主要零部件的有限单元法计算。车辆动力学内容包括引起车辆振动原因,铁道车辆安全、平稳运行的条件和评定标准,铁道车辆系统的垂直振动和横向振动的原理和分析,铁道车辆蛇行运动稳定性。学完本课程应达到以下基本要求:1.掌握有限单元法的基本原理和方法。 2.掌握作用在铁道车辆及其零部件上的载荷。 3.掌握车辆主要零部件的有限单元法计算方法。 4.掌握铁路车辆安全、平稳运行的条件和评定标准。 5.掌握引起车辆振动原因和车辆振动的基本形式。 6.熟练分析铁道车辆蛇行运动稳定性。 7.熟练掌握铁道车辆系统的垂直振动和横向振动的原理和分析。 三、教学内容及要求 1.有限单元法基本原理部分 掌握有限单元法的解题思路,掌握单元刚度矩阵、坐标变换、结构刚度矩阵的建立,掌握载荷处理和约束处理的方法,掌握解题的具体步骤。 2.作用在铁道车辆及其零部件上的载荷部分 掌握作用在铁道车辆上、作用在车体上及作用在转向架上的载荷。 3.车辆主要零部件的有限单元法计算部分 了解客车车体钢结构的计算,了解转向架构架的计算,并且会进行计算结果整理。 4.车辆振动引论部分 了解本课程的性质和任务;掌握车辆振动基本概念与振动形式,掌握引起车辆振动的原因等基本知识。 5. 车辆的垂向振动部分

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

机械系统动力学第1章 绪论

第一章绪论 1.1机械系统动力学的研究内容 机械系统动力学是研究机械结构在动态载荷作用下的动力学行为的科学,是20世纪中叶才发展起来的一门学科。机械动力学与机械振动学是紧密相关的学科,它是进行机械结构动力优化设计的基础。 动态载荷作用于动态系统,就构成一个动态问题。所谓动态载荷即迅速变化的载荷,它包括交变载荷与突变载荷。当载荷的频率成分之一接近或超过系统的某一固有频率时,就必须作为一个动态问题,而不是静态问题来处理。事实上,工程中的许多问题都必须看作动态问题。 与静态问题比较起来,动态问题具有以下特点: 1.复杂性 造成动态问题的复杂性的主要原因是其载荷作用的“后效性”与其响应对应于过去经历载荷的“记忆性”。前者是指某时刻作用在系统上的载荷不仅只影响系统在该时刻的响应,而影响系统在此后各时刻的响应;后者则是指系统在任一时刻的响应不只由该时刻的载荷来决定,而是由在该时刻之前系统所经受的载荷的全部历程来决定,好像系统能记住它过去的经历一样。动载荷对系统的作用是首先改变系统在各个时刻的初态,这些受扰的初态就按系统内在的模式,向前运动和发展,然后才能决定系统在其后各个时刻的总的响应。由此可见,一个动态系统在受到外加扰动时,其响应并不是亦步亦趋地跟踪载荷的变化,而是力图表现出它的个性;对一个动态系统施加控制,只有顺应该系统的内在模式,才能收到预期的效果。由于上述特性,使得对一个动态系统的辨识、响应预测或控制,都要比对静态问题复杂得多。 2.危险性 动态系统可能十分危险,其危险性主要是由两种因素引起的:其一为共振现象,当扰动频率接近系统的固有频率时,微小的载荷可以引起“轩然大波”,在结构中激起比静态响应大很多倍的动态位移响应与应力响应,产生巨大的破坏力;其二为自激振动,在一定的条件下,一个动态系统(例如金属切削机床、轧钢机或飞机等等),可以在没有外加交变激励的情况下,突然振动起来,振幅猛烈上升而产生巨大的破坏性。例如机床上如果发生这种振动,便难于正常地进行切削加工,而飞机如果产生这种振动,往往会产生机毁人亡的后果。这种振动即自激振动。它似乎是“无缘无故”地发生的,对其机理的剖析及防治都比较困难。 3.超常性 动态问题的现象、规律及其防治方法往往超越人们的生活常识之外,无法以直观的方法来说明和理解,而必须通过严谨的理论分析,才能得以解释和加以预测。动态问题的许多解答当然是在乎道理之中,却往往又出人意料之外。这里举一个很简单的例子。例如,一个工作机械,受到一定频率的扰动,而扰动频率又正好等于机械结构的固有频率,于是产生强烈的共振,无法正常工作。如果不是基于理论分析,而凭“想当然”,恐

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

第四章 动力学

第四章 动力学 一、名词解释 基元反应,化学反应过程的限制性环节,化学反应的级数,化学反应的速率常数,化学反应的活化能,反应过程的准稳态,准稳态过程,对流传质,过程的限制性环节,局部平衡,扩散传质,非稳态扩散 二、填空 1.冶金热力学研究冶金过程进行的______和______;冶金动力学是研究___________________________。化学反应速率常数与温度的关系式是____________,其关系式中______参数由反应的机理来决定。 2、基元反应是指__________________。而反应的活化能是指______________________。 3、温度对化学反应速率的影响可用_______________公式来衡量。 4、某一气相反应 A (g) 1 2 k k B (g)+C (g) ,若用A c 、B c 、C c 表示反应过程中A (g) 、B (g)、C (g)的浓度,则 A dc dt -等于________,该反应的平衡常数用速率常数来表示为________。 5.某一气相(可逆)反应A(g) ?1 2k k B(g)+C(g) ,若用A c 、B c 、C c 表示 A(g) 、B(g)、C(g)在反应过程中的浓度,则 dt dc B 等于________,该反应的平衡常数与该反应的速率常数的关系为________。 6.已知某一气相反应 A (g) 12 k k B (g)+C (g) 在300K 时,标准状态下k 1=0.21s -1,k 2=5×10-9s -1,则该反应的平衡常数为_____,反应的标准吉布斯自由能的变化值为 _____(J),反应进行的方向为_____。 7.已知某复合反应的反应历程为A 1 2k k ? B ,B+D J k 2 →,反应过程中A 、B 、D 、J 物质的浓度分别用A C 、B C 、D C 、J C 表示,则A 物质的浓度随时间的变化率

非线性动力学复习参考

非线性动力学复习参考 1、简述绘制相轨线的原理及其作用。 解:单自由度机械系统的自由振动,其动力学方程的一般形式为 x f (x, x) = 0 (1) 引入新的变量y表示速度x v 二丁(2) 则系统的运动状态由位置x及速度y所体现,x和y构成系统的状态变量, 方程(1)可写为状态变量的一阶微分方程组: x 二y,厂-f (x, y) (3) 设状态变量的初始条件为 r - 0:」(())-= y讣(4) 方程⑶ 的满足初始条件⑷ 的解x(t)和y(t)完全确定系统的运动过程。以x和y为直角坐标建立(x,y)平面,称为系统的相平面。 与系统的运动状态---- 对应的相平面上的点称为系统的相点。系统的 运动过程可以用相点在相平面上的移动过程来描述。相点移动的轨迹 称为相轨迹。不同初始条件的相轨迹组成相轨迹族。 现在我们来推导,如何利用该微分方程组得到相轨迹族。 将方程组(1.2.3>中两式相除「消去时间微分dr后即得到确定相轨迹族的一阶微分方程 (E2.5) d-r y 给定系统的作用力,即函数f(x.y)指定以后「方程U.2.5)确定相平面

(x t y)内各点的向量场.构成相轨迹族.如图1.7所示 a在上半平面内$'0即j >0. 随着时间的推移,相点 从左到右移动a下半平面内y

动车组动力学性能暂规

动力学性能 试验鉴定方法及评定标准

目次 1围 (4) 2术语和定义 (4) 3车辆坐标系 (4) 4总则 (5) 5试验条件 (5) 6测量参数 (8) 7评定指标 (10) 8评定指标限度值 (12)

前言 为2004年采购200km/h电动车组,特制定本《200km/h电动车组动力学性能试验鉴定方法及评定标准》。 本规定制定中曾参考了以下文献: ——《GB5599 铁道车辆动力学性能评定和试验鉴定规》 ——《TB/T2360 铁道机车动力学性能试验鉴定方法及评定标准》 ——《UIC518 铁道车辆试验与鉴定》 ——《UIC513 铁道车辆旅客振动舒适性评定指南》 ——《prEN 14363 铁路应用—铁路机车车辆运行特性验收试验—运行特性试验和静态试验》 本文件由铁道部科学研究院车辆研究所负责起草。

动力学性能试验鉴定方法及评定标准 1围 1.1本标准规定了采购200km/h电动车组在中国铁路线路上进行动力学性能试验鉴定的方法和评定标准。 2术语和定义 2.1铁道车辆(Railway Vehicles) 在轨道线路上运行的车辆统称,包括机车、客车、动车组中的动车、拖车等。 2.2运行参数 最高运营速度V lim 铁道车辆运营的最高速度;单位:km/h。V lim=200km/h 允许欠超高h0 铁道车辆通过曲线时允许最大未被平衡的超高;单位:mm。 3车辆坐标系 3.1车辆动力学试验的坐标系 车辆动力学试验的坐标系为右手坐标系,如图1所示。列车前进方向为x轴,车辆向上为z轴。 在试验中,被试车辆试验运行方向应唯一规定,进而可以分为正向运行和反向运行。 图1车辆动力学试验的坐标系

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

药物动力学

第十六章 药物动力学 第一节 概述 一、药物动力学研究的内容 药物动力学是研究药物体内药量随时间变化规律的科学。它采用动力学的基本原理和数学的处理方法,结合机体的具体情况,推测体内药量(或浓度)与时间的关系,并求算相应的药物动力学参数,定量地描述药物在体内的变化规律。 二、血药浓度与药理作用 在药物动力学的研究中,常在给药后按不同时间间隔采血作药物浓度测定,以了解体内药物动力学规律性。也可测定尿液或唾液中的药物浓度来研究药物动力学规律的(当然也可以在给药后测定尿液或唾液中的药物浓度来研究药物动力学规律)。因为大多数药物的血药浓度与药理效应间呈平行关系。相同的血药浓度在不同的科属动物中得出的药理反应极为相似。所以研究血药浓度的变化规律对了解药理作用强度的变化极为重要,这是药物动力学研究的中心问题。 三、基本概念 (一)隔室模型 药物的体内过程一般包括吸收、分布、代谢(生物转化)和排泄过程。为了定量地研究药物通过上述过程的变化,首先要建立起研究的模型。用数学模拟药物在体内吸收、分布、代谢和排泄的速度过程而建立起来的数学模型,称为药物动力学模型。 隔室模型是最常用的药物动力学模型。由于药物的体内过程十分复杂,要定量地研究其体内过程是十分困难的。故为了方便起见,常把机体划分成由一个,两个或两个以上的小单元构成的体系,然后研究一个单元内,两个或三个单元之间的药物转运过程。在药物动力学中把这些小单元称为隔室(亦称房室),药物在体内的转运可看成是隔室间转运,这种理论称为隔室模型理论。 在药物动力学研究中,为了简化处理过程,常将那些分布转运速度相近的组织和器官划归为一个室。当然,这种划分也是相对的,还要取决于药物本身的性质,如其油/水分配系数,与各组织的亲的力等。例如对于一个易透过血脑屏障的脂溶性药物,脑属于中央室,而对于一个极性较大的药物,脑则是周边室。 1.单隔室模型 单隔室模型是把机体视为由一个单元组成,即药物进入体循环后,迅速地分布于可分布到的组织,器官和体液中,并立即

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

化学反应过渡态的结构和动力学

中国科学B辑:化学 2009年 第39卷 第10期: 1089~1101 https://www.360docs.net/doc/9411680086.html, https://www.360docs.net/doc/9411680086.html, 《中国科学》杂志社SCIENCE IN CHINA PRESS 化学反应过渡态的结构和动力学 戴东旭, 杨学明* 分子反应动力学国家重点实验室, 中国科学院大连化学物理研究所, 大连116023 * 通讯作者, E-mail: xmyang@https://www.360docs.net/doc/9411680086.html, 收稿日期:2009-07-17; 接受日期:2009-08-02 摘要化学反应过渡态决定了包括反应速率和微观反应动力学在内的化学反应的基本特性, 而无论是从理论还是实验上研究和观测化学反应过渡态都是极具挑战性的课题. 近年来, 我国科学家们利用交叉分子束-里德堡氢原子飞行时间谱仪, 结合高精度的量子动力学计算, 对H + H2和F + H2这两个教科书式的典型反应体系进行了全量子态分辨的反应动力学研究, 从中得出了关于这两个反应体系的过渡态的结构和动力学性质的结论性的研究成果. 关键词 反应过渡态 化学反应动力学微分反应截面动力学共振态交叉分子束 1引言 化学反应过渡态是化学反应体系在反应过渡区域的量子态. 化学反应过渡态决定了包括反应速率和微观反应动力学在内的化学反应的基本特性. 现代重要的化学反应理论, 如双分子反应过渡态理论以及单分子分解的RRKM理论等, 都是建构在反应过渡区域的量子化过渡态的理论基础上. 了解量子化过渡态的结构以及它们对反应动力学行为的影响机制, 对于更深入地理解化学反应的本质至关重要. 诺贝尔化学奖获得者John C. Polanyi和Ahemed H. Zeweil于1995年在Accounts of Chemical Research的Pauling纪念专辑中指出, “直接观测化学反应过渡态”是化学学科的“圣杯”之一[1]. 化学反应过渡态一般位于反应坐标中能量较高的区域. 对于势垒型的化学反应, 过渡态沿反应坐标方向有能量极大值, 因而不可能存在分立的量子化的过渡态结构(图1(a))[2]. 但是在垂直于反应坐标方向, 就会以最低能量路径为谷地, 形成分立的势垒型量子化过渡态, 或形象地称为量子化瓶颈态(quantized bottleneck state). 另一方面, 很多化学体系在反应过渡区域沿着反应坐标方向会存在能够容纳一定数量分立量子态的势阱, 因而可以存在非完全束缚的量子态结构, 这样的量子态结构被称为动力学共振态(dynamic resonance)或费希巴赫共振态(Feshbach resonance)(图1(c))[2]. 化学反应过渡态的寿命很短, 无论从理论上还是实验上研究和观测化学反应过渡态都是极具挑战性的课题. 人们通常观测化学反应是在远长于过渡态寿命的条件下进行, 统计平均的效果往往掩盖了其中所包含的许多重要的关于过渡态的细节. 探测过渡态结构和性质的实验技术主要有两种途径, 一是超快探测技术, 使得时间分辨达到飞秒量级; 另外一种是分子束单次碰撞条件下的实验研究技术, 使分子只经历唯一的反应碰撞, 产物分子保持了单次碰撞后的状态, 因而可以通过动力学理论反推碰撞过程的细节. 1980年代中期, 李远哲等人发展了交叉分子束实验技术, 对分子碰撞反应的研究取得了一系列成就, 使人们能了解化学反应过程和细节, 他也因此获得了1986年度诺贝尔化学奖. 九十年代美国加州理工学院Zewail教授发展了飞秒激光技术, 并 1089

相关文档
最新文档