Ti对20CrMnTiH齿轮钢接触疲劳性能影响研究

Ti对20CrMnTiH齿轮钢接触疲劳性能影响研究
Ti对20CrMnTiH齿轮钢接触疲劳性能影响研究

Metallurgical Engineering 冶金工程, 2017, 4(1), 56-60

Published Online March 2017 in Hans. https://www.360docs.net/doc/9414940237.html,/journal/meng https://https://www.360docs.net/doc/9414940237.html,/10.12677/meng.2017.41008

文章引用: 范黎明, 裴建华. Ti 对20CrMnTiH 齿轮钢接触疲劳性能影响研究[J]. 冶金工程, 2017, 4(1): 56-60.

Effect Study of Ti on Contact Fatigue Properties of 20CrMnTiH Gear Steel

Liming Fan, Jianhua Pei

Shandong Iron and Steel Group Co., Ltd, Laiwu Shandong

Received: Mar. 19th , 2017; accepted: Mar. 28th , 2017; published: Mar. 31st

, 2017

Abstract

In order to avoid the harm of the large particle deformation and brittle TiN inclusions to the fati-gue life of gear steel, according to the principle of the microalloying and toughening of steel mate-rials, the titanium content in 20CrMnTi was optimized and designed. The results show that reduc-

ing the titanium content of carburizing steel can effectively reduce or eliminate liquation TiN of

carburizing steel containing Ti, so to improve the fatigue life of steel.

Keywords

Gear Steel, Fatigue Life, TiN, Composition Optimization

Ti 对20CrMnTiH 齿轮钢接触疲劳性能影响研究

范黎明,裴建华

山东钢铁集团有限公司,山东 莱芜

收稿日期:2017年3月19日;录用日期:2017年3月28日;发布日期:2017年3月31日

摘 要

为避免大颗粒不变形脆性TiN 夹杂物对齿轮钢的疲劳寿命的危害,根据钢铁材料的微合金化原理和强韧化原理,对20CrMnTi 钢中的钛含量进行优化设计,结果表明,适当降低渗碳钢中的钛含量,可有效减轻或消除含钛渗碳钢中的液析氮化钛从而提高钢材的疲劳寿命。

关键词

齿轮钢,疲劳寿命,TiN ,成分优化

范黎明,裴建华Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/9414940237.html,/licenses/by/4.0/

1. 引言

20CrMnTi钢中的Ti主要起到渗碳过程中防止晶粒长大的作用,由于Ti元素较为活泼,冶炼时其收得率的波动较大,为保证其能够发挥高温时阻止晶粒长大的作用,早期的20CrMnTi钢中Ti的添加量一般控制在0.06%~0.12%的范围,但过高的钛含量必然导致液析TiN的出现,而液析TiN由于尺寸粗大且形状为具有尖锐棱角的立方体故对表面接触疲劳性能不利。随着钢铁冶炼技术的发展,Ti的收得率可较为稳定地控制,国家标准规定钢中Ti含量降低到0.04~0.10%。但即便如此,还会在一定程度上出现少量液析TiN [1]。

为此,如何进一步降低20CrMnTi钢中Ti的添加量,以保证有足够体积分数的Ti(C,N)颗粒明显阻止渗碳时晶粒的粗化的前提下完全消除液析TiN成为我们研究的主要内容。

2. 试验钢冶炼

采用25 kg真空熔炼电炉进行Ti含量优化设计的20CrMnTi齿轮钢的冶炼。选取1号钢(低氮低钛,钛氮乘积最低,为0.0001066)、2号钢(高氮低钛,钛氮乘积中等,0.0004320)、3号钢(低氮高钛,钛氮乘积较低,为0.0001352)、4号钢(高氮高钛,钛氮乘积最高,达到0.0008280)作为试验钢进行研究,具体成分见表1。试验钢碳、硅、锰、铬的含量均在GB/T5216-2004标准要求范围内。为避免硫、磷形成的其他夹杂物对试验结果的影响,对钢中硫、磷含量进行非常严格的控制。

进行接触疲劳试验时又分别随机选取电炉生产和转炉生产的两炉20CrMnTi钢进行试验,其钛、氮含量见表,钛氮乘积分别为0.0004640和0.0003500,均相当接近本项目试验钢设计的化学成分范围。3. 锻造与预处理

试验用钢经改锻得到直径55 mm的圆棒,用于加工相关试样。

锻造工艺规范为:1200℃加热,1150℃开锻,900℃以上终锻,锻后空冷至室温。

为规范钢材组织,进行预先热处理。预处理工艺规范为:930℃加热,到温后保温30 min,空冷(室温温度15℃)。

4. 试样加工

接触疲劳试样为Φ52 × 10 mm,且内孔直径为Φ30 mm的圆片试样。

Table 1. Chemical composition of experimental smelting steel (wt%)

表1. 试验冶炼钢的化学成分(wt%)

炉号 C Si Mn S P Cr O Ti N Ti × N

1 0.17 0.27 0.97 0.0035 0.0059 1.1

2 0.0018 0.026 0.0041 0.0001066

2 0.20 0.25 0.95 0.0041 0.0064 1.16 0.0022 0.027 0.0160 0.0004320

3 0.19 0.27 0.99 0.0042 0.0063 1.12 0.0019 0.052 0.0026 0.0001352

4 0.18 0.27 0.97 0.0042 0.0063 1.14 0.0021 0.046 0.0180 0.0008280

对比转炉0.050 0.0070 0.0003500 对比电炉0.042 0.011 0.0004640

范黎明,裴建华

试样加工过程中,试验钢与电炉、转炉钢相比无异常。

5. 接触疲劳寿命试验

试样进行930℃渗碳后直接淬火低温回火处理后进行表面接触疲劳试验,由于降钛后可明显减少钢中液析氮化钛的含量及尺寸,因而对其接触疲劳性能应该有明显的好处,而接触疲劳是齿轮在实际应用中最重要的失效方式,如果能提高钢的接触疲劳寿命,必将明显提高齿轮的使用性能[2]。

5.1. 试验条件

1) 试验负荷为2881 N,对应接触应力为4255 MPa;

2) 试验机转速为2800 r/min;

3) 试验时采用N32机油循环润滑;

4) 试验在五台试验机上交替进行,每组试验采用10片推力片试样进行试验。

5.2. 接触疲劳试验结果

由于接触疲劳试验数据具有一定的波动性,通常对同一钢种相同热处理工艺条件都必须进行10~20个试样的成组试验[3],因此接触疲劳试验较为复杂费时,为此,在其他试验揭示的研究结果的基础上,挑选钛氮乘积适当偏高(高氮低钛2号钢)、钛氮乘积适当偏低(低氮高钛的3号钢)的两组试样及工业化生产的常规20CrMnTi钢(转炉冶炼和电炉冶炼)进行对比试验。

5.2.1. 接触疲劳试验数据

本试验采取2 × 108次定数截尾试验,相关钢号的接触疲劳对比试验数据结果见表2。

5.2.2. 数据处理结果

经数据处理,得到对比材料的额定疲劳寿命L10、中值寿命L50及P-N曲线,具体结果见表3及图1和图2。

5.2.3. 试验结果分析讨论

由接触疲劳试验结果可以看出,常规工业化生产的20CrMnTi钢,无论是转炉冶炼还是电炉冶炼,

Table 2. Contact fatigue test data

表2. 接触疲劳试验数据

试样序号

1 2 3 4

2号钢3号钢对比钢转炉对比钢电炉

01 4,177,800 7,781,400 3,341,400 3,547,200

02 15,953,400 128,489,400 7,088,400 4,942,800

03 16,084,800 145,631,400 7,127,400 12,930,600

04 106,603,200 200,000,000 7,771,200 13,534,800

05 200,000,000 200,000,000 8,278,800 21,052,800

06 200,000,000 200,000,000 9,301,800 22,557,000

07 200,000,000 200,000,000 18,835,800 25,715,400

08 200,000,000 200,000,000 20,435,400 41,566,200

09 200,000,000 200,000,000 38,130,600 84,466,800

10 200,000,000 200,000,000 86,065,800 200,000,000

范黎明,裴建华Table 3. Contact fatigue life results

表3. 接触疲劳寿命结果

编号

额定寿命L10 中值寿命L50

斜率参数b ×107 对比×108 对比

1 2号钢 1.10 4.55 2.10 13.73 0.64

2 3号钢 5.59 23.10 3.52 23.01 1.02

3 对比转炉0.242 1 0.153 1 1.02

4 对比电炉0.401 1.66 0.262 1.71 1.00

Figure 1. P-N curves of contact fatigue life of test steel

图1. 试验钢的接触疲劳寿命P-N曲线

Figure 2. P-N curves of contact fatigue life of contrast steel

图2. 对比钢的接触疲劳寿命P-N曲线

其接触疲劳额定寿命L10在106的数量级,中值寿命L50在107的数量级;而降低钛含量的试验钢的接触疲劳额定寿命L10在107的数量级,中值寿命L50在108的数量级。钢中钛含量降低后,接触疲劳寿命可得到显著的提高,大致可提高一个时间数量级[4]。

我国目前绝大多数机械零件的疲劳寿命设计均按106设计,故莱钢目前工业化生产的20CrMnTi钢是满足设计要求的。而我国正在实施的先进钢铁材料973计划Ⅱ期研究工作则要求将主要机械零件的疲劳寿命提高1个数量级以上,达到107~108的水平[5]。显然,我们研制的降低钛含量的20CrMnTi试验钢已

范黎明,裴建华

基本达到这一未来发展的要求。

此外,由试验结果还可以看出,钛氮乘积适当偏低(0.0001352)的低氮高钛的3号钢比之钛氮乘积适当偏高(0.0004320)的高氮低钛2号钢的接触疲劳寿命还有成倍的提高,这也表明钛氮乘积的降低对渗碳齿轮钢的接触疲劳寿命的提高是明显有利的。

试验结果还表明,钛氮乘积在0.0004320的高氮低钛2号试验钢的接触疲劳寿命是工业生产的钛氮乘积在0.0004640的电炉钢的2.74倍,接触疲劳寿命增大一倍以上。这可能是由于试验钢的冶金质量比工业生产时的冶金质量控制更为严格所致,这一方面表明冶金质量的严格控制可以明显提高钢的疲劳寿命,而另一方面,即使扣除这一因素的影响,钛氮乘积为0.0001352的3号钢的接触疲劳寿命也比工业生产钢有显著的提高,这充分表明降低钛氮乘积对提高渗碳齿轮钢接触疲劳寿命的有利作用。当然,这也许是由于二者的钛氮比不同所致,因为2号试验钢的钛氮比为1.69,工业生产电炉钢的钛氮比为3.82,前者小于理想化学配比因而氮过剩,后者大于理想化学配比因而钛过剩,钛氮乘积相同时钢中氮化钛的有效沉淀析出温度大致相同,而钛过剩的钢中氮化钛的高温粗化速率将明显增大,因此,在钛氮乘积相同的情况下适当减小钛氮比(意味着降低钛含量)对接触疲劳寿命是有利的。

6. 结论

1) 降低钛含量的试验钢的接触疲劳额定寿命L10在107的数量级,中值寿命L50在108的数量级。钢

中钛含量降低后,接触疲劳寿命可得到显著的提高,大致可提高一个时间数量级;

2) 钛氮乘积适当偏低(0.0001352)的低氮高钛的3号钢比之钛氮乘积适当偏高(0.0004320)的高氮低钛

2号钢的接触疲劳寿命还有成倍的提高,表明钛氮乘积的降低对渗碳齿轮钢的接触疲劳寿命的提高是明显有利的;

3) 降低钛氮乘积对提高渗碳齿轮钢接触疲劳寿命具有有利作用,但在钛氮乘积相同的情况下适当减

小钛氮比(意味着降低钛含量)对接触疲劳寿命是有利的。

参考文献(References)

[1]夏政海, 吴清明. 微合金元素Ti对20CrMnTi齿轮钢质量的影响[J]. 特殊钢, 2008, 29(4): 45-46.

[2]李贞于, 何才, 张国政. 20CrMoH齿轮接触疲劳强度研究[J]. 汽车工艺与材料, 2010(2): 55-58.

[3]陈逸华, 陈继直, 孙广锡. 深层渗碳齿轮材料接触疲劳试验方法的研究[J]. 西安理工大学学报, 1986(2): 21-31.

[4]亓海全. 20CrMnTi钢成分优化对组织及接触疲劳寿命的影响研究[D]: [博士学位论文]. 昆明: 昆明理工大学,

2010.

[5]干勇, 董瀚. 先进钢铁材料技术的进展[J]. 中国冶金, 2004, 81(8): 1-6.

.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/9414940237.html,/Submission.aspx 期刊邮箱:meng@https://www.360docs.net/doc/9414940237.html,

齿轮接触应力计算不同有限元模型的比较分析

齿轮接触应力计算不同有限元模型的比较分析 李杰张磊赵旗 (吉林大学汽车动态模拟国家重点实验室,长春130025 )Comparing and analysis on gear contact stress calculation to different finite element modals LI Jie ,ZHANG Lei ,ZHAO Qi (Jilin University State Key Laboratory of Automobile Dynamic Simulation ,Changchun 130025,China ) 文章编号:1001-3997(2009)07-0001-03【摘要】为精确计算齿轮齿面接触应力,选择与齿轮实际运转情况最为接近的有限元模型,从赫兹 有限元模型的分析入手,研究齿轮接触问题的赫兹有限元解法,然后再将问题扩展到齿轮模型,最后通过对比不同有限元模型之间的差异发现,三维多齿有限元接触模型同齿轮实际运转情况最为接近,且利用该模型不但能使计算更加精确,而且更容易实现变速器齿轮乃至整车的轻量化设计。 关键词:接触应力;赫兹;齿轮;有限元 【Abstract 】In order to compute the gear contact stress accurately ,chose the finite element modal that was near to the gear actual operation.It commenced from the analysis of the Hertz model firstly ,and stud -ied the solution for the gear contact problem used the Hertz finite element modal ,then expanded the prob -lem to the gear model ,finally found the difference through comparing with the different element modals ,the 3D multi-gear contact model was near to the actual gear operation mostly ,and made use of this model not only could make the computation more accurately ,but also carried out the transmission gear and the whole car reduced in weight design more easily. Key words :Contact stress ;Hertz ;Gear ;Finite element *来稿日期:2008-09-06 中图分类号:TH16,U463.212文献标识码:A 1不同齿轮接触有有限元模型的建立 1.1赫兹有限元模型的建立 根据赫兹原理建立接触有限元模型[2],如图1所示。两个圆柱体的半径分别为ρ2和ρ2, 无摩擦接触,在法向力F b 的作用下,齿面产生接触应力。对于赫兹有限元模型,虽然不用像传统模型那样计算各项齿轮应力修正系数,但对法向力F b 与啮合曲率半径ρ2、ρ2的计算却还是必要的。 图1赫兹1/4圆柱体模型 Fig.1Hz 1/4cylinder model 1.1.1法向力的计算 轮齿在节点处啮合时对应法向力F b 直齿轮:F bt =F t /cos αt (1)斜齿轮:F bn =F t /(cos αt cos βb )(2)式中:F t —主动齿轮分度圆名义切向力。F t =2000T d (3) 式中:T —齿轮输入转矩;d —齿轮分度圆直径;αt —端面分度圆压 力角;βb —基圆螺旋角。 1.1.2曲率半径的确定 直齿圆柱齿轮在节点C 啮合时,其曲率半径为: ρ1=d ′1sin α′t ,ρ2=d ′2sin α′t (4) 式中:d ′1—齿轮节圆直径;α′2—端面啮合角。对应斜齿轮在节点C 啮合时,其曲率半径为: ρn 1=ρ1cos βb ,ρn 2=ρ2 cos βb (5) 式中: ρn 1、ρn 2—大、小齿轮对应法面节点的曲率半径。根据上述确定的法向力与曲率半径关系,对应生成1/4圆柱 体的二维与三维赫兹接触有限元模型,如图2所示。 (a )二维赫兹模型(b )三维赫兹模型 图21/4圆柱体赫兹接触有限元模型 Fig.21/4cylindrical finite element model of Hertz contact 1.2齿轮接触有限元模型的建立 齿轮接触有限元模型相对于赫兹模型最大的区别在于,它不 GEARr HERTZ CONTACT BETWEEN TWO CYLINDERS X Z Y GEARr HERTZ CONTACT BETWEEN TWO CYLINDERS X Z Y 设计与计算 ** ******* ** *******E 1v 1 ρ1 Y D F E d C b B A X ρ2 E 2 v 2 11 1514 1 13 5 12 4,12 23 4 3 Machinery Design &Manufacture 机械设计与制造 第7期 2009年7月 1

齿轮疲劳点蚀的特征及案例分析

齿轮疲劳点蚀的特征及相应案例分析 1 疲劳点蚀的定义及特征 点蚀又称接触疲劳磨损,是润滑良好的闭式传动的常见失效形式之一。齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废[1]。 2 疲劳点蚀的实例 某重型车辆侧减速器主动齿轮发生了早期失效,失效齿轮与行星转向机相连,将全车动力传递到行动部分,是全车受载最大的齿轮,始终在大载荷、高转速、多冲击的复杂苛刻环境下工作。齿设计上采用整编为齿轮,传动比为5.9,润滑方式为油池飞溅润滑。实效齿轮材料为18Cr2Ni4W A钢。采用渗碳+淬火+低温回火热处理工艺。 失效齿轮发生严重的接触疲劳失效,使用寿命未达到规定时间。采用断口分析、金相分析、硬度测试及有限元接触应力分析等方法对齿轮进行失效分析,查找该齿轮实效的原因(由于篇幅有限以及结合自身知识面,仅列举出端口分析和金相分析两项结果)。 2.1 断口分析 通过对失效齿轮宏观观察发现.在啮合受力齿面的节线附近靠近齿根一侧,沿齿宽方向分布许多

()齿轮传动效率及齿轮疲劳实验(文档)

齿轮传动效率及齿轮疲劳实验 (附加机械功率、效率测试实验) 一.实验目的 1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。 2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。 3.在封闭齿轮实验机上测定齿轮的传动效率。 4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。 二.实验设备及工作原理 1.封闭(闭式)传动系统 封闭齿轮实验机具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱4),每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与V,齿轮5与5'),两个实验齿轮箱之间山两根轴(一根是用于储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个封闭的齿轮传动系统。当山电动机1驱动该传动系统运转起来后,电动机传递给系统的功率被封闭在齿轮传动系统内,既两对齿轮相互自相传动,此时若在动态下脱开电动机,如果不存在各种摩擦力(这是不可能的),且不考虑搅油及其它能量损失,该齿轮传动系统将成为永动系统; 山于存在摩擦力及其它能量损耗,在系统运转起来后,为使系统连续运转下去, 山电动机继续提供系统能耗损失的能量,此时电动机输出的功率仅为系统传动功率的20%左右。对于实验时间较长的情况,封闭式实验机是有利于节能的。 1?悬挂电动机2.转矩传感器3.转速传感器4?定轴齿轮箱5?泄轴齿轮副6.弹性扭力 轴7.悬挂齿轮箱&加载狂码9.悬挂齿轮副10.万向节轴11.转速脉冲发生器2.电动机的输出功率

电动机1为直流调速电机,电动机转子与定轴齿轮箱输入轴相联,电动机 采用外壳悬挂支承结构(既电机外壳可绕支承轴线转动);电动机的输出转矩等于电 动机转子与定子之间相互作用的电磁力矩,与电动机外壳(定子)相联的转矩传感器2提供的外力矩与作用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩To;电动机转速为n,电动机输出功率为P u =n? To/9550 (KW)。3.封闭系统的加载 当实验台空载时,悬挂齿轮箱的杠杆通常处于水平位置,当加上载荷W 后,对悬挂齿轮箱作用一外加力矩WL,使悬挂齿轮箱产生一定角度的翻转,使两个齿轮箱内的两对齿轮的啮合齿面鼎紧,这时在弹性扭力轴内存在一扭矩T9 (方向与外加负载力矩WL相反),在万向节轴内同样存在一扭矩TJ (方向同样与外加力矩WL相反);若断开扭力轴和万向节轴,取悬挂齿轮箱为隔离体, 可以看出两根轴内的扭矩之和(Tg+TJ)与外加负载力矩WL平衡(即T9+T9'=WL);乂因两轴内的两个扭矩(T9和T9')为同一个封闭环形传动链内的扭矩,故这两个扭矩相等(T9=T9*),即2T9=WL, T9=WL/2 (Nm);由此可以算出该封闭系统内传递的功率为: P9=T9 n / 9550=WLn/19100 (KW) 其中:n--电动机及封闭系统的转速(rpm); W-所加祛码的重力(N); L—加载杠杆(力臂)的长度,L= 0.3 mo 4.单对齿轮传动效率 设封闭齿轮传动系统的总传动效率为Q ; 封闭齿轮传动系统内传递的有用功率为P9; 封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率Po,即: Po=( P9 / n)-P9 n=p9 / (Po+PJ 二T9/ (T0+T9) 若忽略轴承的效率,系统总效包也含两级齿轮的传动效率,故单级齿轮的传 动效率为:7=向={〒务 5.封闭功率流方向""

焊接对钢结构疲劳的影响及预防措施

焊接对钢结构疲劳的影响及预防措施 自从20世纪初涂药焊条发明至今100年来,焊接已经成为应用最广泛的工艺方法,很难找出另一种发展如此之快,并在应用规模和多样化方面能与焊接相比的工艺,以至于当代许多最重要的技术问题必须采用焊接才能解决,例如造船、铁路、汽车、航空、航天、桥梁、锅炉、大型厂房和高层建筑等都离不开焊接技术的支持。目前在工程生产上,焊接是最主要的连接方法,焊接结构的重量已占钢铁总产量的50%以上,工业发达国家的这一比例已经接近70%。然而焊接结构经常发生断裂事故,其中80%为疲劳失效。在我国,焊接结构因疲劳问题而失效的工程事例也不断出现。例如,90年代末,高速客车转向架中焊接接头的疲劳断裂,以及水轮机叶片根部的疲劳断裂等,都给国家和企业造成了巨大的经济损失。 所谓疲劳是指在循环应力和应变作用下,在一处和几处产生局部永久性积累损伤,经一定的循环次数后产生的裂纹或突然发生断裂的过程。疲劳断裂是金属结构断裂的主要形式之一。大量的统计资料表明,工程结构失效约80%以上是由疲劳引起的。钢结构的疲劳破损是裂纹在重复或交变荷载作用下的不断开展以及最后达到临界尺寸而出现的断裂。疲劳破坏的主要影响因素是应力幅、循环次数和应力集中。一般地说,疲劳破坏经历三个阶段:裂纹的形成,裂纹的缓慢扩展和最后迅速断裂。对于钢结构.实际上只有后两个阶段,因为结构总会有内在的微小缺陷,这些缺陷本身就起着裂纹的作用疲劳破坏的起始点多数在构件的表面。对非焊接构件,表面上的刻痕、轧钢皮

的凹凸、轧钢缺陷和分层以及焰割边不平整,冲孔壁上的裂纹,都是裂源可能出现的地方。对焊接构件,最经常的裂源出现在焊缝趾处,那里常有焊渣侵入。有些焊接构件疲劳破坏起源于焊缝内部缺陷,如气孔、欠焊、夹渣等。 一、影响焊接疲劳强度的主要因素 1.应力集中对疲劳强度的影响 影响焊接结构几何不连续性的因素,都将影响应力集中和疲劳强度。 (1)焊接结构的几何形状结构上几何不连续的部位都会产生不同程度的应力集中。结构的截而变化幅度越大,产生的应力集中越大,结构的疲芳强度越低。 (2)焊接接头形式在接头部位由于传力线受到干扰,因而发生应力集中现象。对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。十字接头或T形接头在焊接结构中得到了广泛的应用。这种承力接头中由于在焊缝向基本金属过渡处具有明显的截而变化,其应力集中系数要比对接接头的应力集中系数高,因此十字或丁形接头的疲劳强度要低于对接接头。提高丁形或十字接头疲劳强度的根本措施是开坡口焊接,并加工焊缝使之圆滑过渡,通过这种改进措施.疲劳强度可有较大幅度的提高。 (3)焊缝局部几何形状的影响焊缝局部几何形状的变化,对焊接结构的疲劳强度将产生十分明显的影响。在一定范围内,余高越大,应力集中系数越大,缺口效应越大,疲劳强度降低。很多人错误的认

Newcatle圆柱齿轮接触疲劳试验器

秘密 TECHNICAL SPECIFICATION OF CYLINDRICAL GEAR CONTACT FATIGUE TEST RIG (160mm CENTER DISTANCE) 圆柱齿轮接触疲劳试验器(160mm中心距) 技术规格书 中机生产力促进中心 制造工程研究所 2012-11

FOREWORD 前言 Since the complexity of the gear shape, the raw material property tested by bars can’t represent the material property of gears. The way of manufacturing of gear such as cutting, heat treatment and final process which affect gear surface, the lubrication oil used for the gears etc. make a great difference to the gear material properties. As result, it has become common practice that the gear fatigue life are tested through specifically designed and manufactured gears together with the actual oil on specific test rigs following specific procedures. It is used to evaluate gear manufacturing process by testing gears manufactured by different way. 由于齿轮形状的复杂性,原材料试棒的试验性能并不能代表齿轮的材料特性。齿轮加工工艺不同和使用条件的不同,对齿轮的强度和寿命的影响很大。不同的机加工工艺、不同的热处理条件、使用不同的润滑油,都会使得齿轮的材料特性产生很大的差异。因此,对专门设计和制造的齿轮,使用实际的润滑油,在专用的试验台架上按规定的流程进行齿轮强度和寿命测试,得到普遍的应用。通过对不同加工工艺制造完成的齿轮进行疲劳强度测试,可以评价齿轮加工工艺的优劣和工艺参数的合理性。 1 TECHNICAL DESCRIPTION技术描述 1.1 Background 背景 Test rigs designed by Design Unit of The University of Newcastle upon Tyne have been developed in the past twenty years in order to carry out research into contact fatigue and bending fatigue strength of gears. The rigs were designed to remedy the shortcomings of the test rigs which were at that time commercially available. Over the years the test rigs have been improved based on practical experience of their use. 英国纽卡斯尔大学齿轮技术中心设计的试验器是在过去的20年间开发出来的,用以研究齿轮接触疲劳和弯曲疲劳强度。此试验器可以弥补商业化试验器的不足。经过这么多年,在长期使用经验基础上,试验器不断完善。 1.2 General Description of Gear Contact Fatigue S-N Curve Test Rig (160mm center distance) The cylindrical gear contact fatigue test rigs (160mm center distance) operated with back to back (power re-circulating) are high performance gear test rigs capable of operating at high speed and torque with high test power (‘re-circulating’power). They are used for contact fatigue testing (pitting and micropitting), for bending fatigue and scuffing tests. They have been designed for good reliability and long life and continuous, 24 hour per day unattended operation.

齿轮疲劳试验多变的原因分析

齿轮疲劳试验数据多变的原因分析 Causes of Variability in Gear Fatigue Testing Gregory A.Fett and Michael A .Follis Dana Corporation ,Torque Traction Technologies Group 【摘要】 零件的疲劳试验数据变化很大,高强度表面渗碳硬化零件齿轮更是如此。长期的大量齿轮疲劳试验数据表明,在相同试验条件下,齿轮的高疲劳寿命与低疲劳寿命比较,比值可达9:1。本文介绍了一种系统分析方法,以确定引起齿轮疲劳试验数据多变的原因。本文主要通过准双曲面锥齿轮组的动态疲劳试验研究不同原因对疲劳试验影响的大小,每次试验间隔为6个月。研究结果表明动态试验设备、热处理、切齿以及齿轮用钢都会对疲劳试验寿命产生一定的影响。为了研究金相组织与疲劳试验寿命的联系,试验也对几种金相组织因素进行检查。 简介 齿轮疲劳试验数据会产生相当大的散差和变化。在过去30多年驱动桥和变速器工业生产中,测试时间跨度较长的大量试验结果表明,试件的高疲劳寿命VS低疲劳寿命的比值达到9:1是普遍的。这些试验数据都是在相同试验条件下,测试相同数量的试件得到的。如果试验测试涉及到多种材料因素,那么在任何给定的应力应变条件下,试验室样品的测试数据比值会有10:1或更大的差别。基于此种原因,人们很难甚至几乎不可能对两组不同的数据是否真的存在差别作出判断。 试验 设计本试验的目的是为了确定齿轮疲劳试验数据变化的潜在原因,并定量分析各种原因对试验数据变化的影响。试验采用的从动齿轮毛坯均取自同一钢锭,并经过相同的热处理,然后分为三类。部分毛坯在相同时间内完成切齿加工、渗碳热处理及后续加工,编号为A,动态试验时间间隔为6个月,目的是确定不同时间和试验设备会对试验数据产生多大的变化。部分齿轮编号为B,与A组试件在同一时间完成切齿加工,但不立即进行渗碳热处理,而是时间间隔6个月进行渗碳热处理及后续加工,然后与A组试件一同进行动态试验,除热处理外,其余工艺与A组试件的相同,目的是确定渗碳热处理对试验数据变化的影响。C 组齿轮试件分别完成毛坯准备和切齿加工、渗碳热处理以及后续加工等工序,时间间隔为6个月,与A组和B组试件一起进行动态试验,除切齿外,其余工艺基本与B组试件相同,目的是确定切齿对试验数据变化有多大的影响。最后,D 组试件是随机选择的现生产试件,时间间隔6个月,并与A、B、C组试件一起进行动态试验,选择的每批试件采用相同牌号的材料和热处理工艺,目的是研究包括渗碳用钢在内的多种原因的影响。为了确定其它因素是否会对试验结果产生影响,试验也对几组试验后的齿轮进行金相组织分析。 数据 表1中列出了试验的原始数据,每组试验有5个样品,其中有一组为原始基准试验,与A组一起进行,间隔6个月后,则进行一轮A、B、C、D组齿轮试验。每组齿轮的试验随机安排,间隔为6个月,以保证试验数据的客观性。表1中前两组数据是在同一试验机上进行,三、四组数据分别在两个不同试验机上进

计算斜齿圆柱齿轮传动的接触应力

计算斜齿圆柱齿轮传动的接触应力时,推导计算公式的出发点和直齿圆柱齿轮相似,但要考虑其以下特点:啮合的接触线是倾斜的,有利于提高接触强度 ;重合度大,传动平稳。 齿轮的计算载荷 为了便于分析计算,通常取沿齿面接触线单位长度上所受的载荷进行计算。沿齿面接触线单位长度上的平均载荷P (单位为N/mm )为 P= L F n Fn ——作用在齿面接触线上的法向载荷 L ——沿齿面的接触线长,单位mm 法向载荷Fn 为公称载荷,在实际传动中,由于齿轮的制造误差,特别是基节误差和齿形误差的影响,会使法面载荷增大。此外,在同时啮合的齿对间,载荷的分配不是均匀的,即使在一对齿上, 载荷也不可能沿接触线均匀分布。因此在计算载荷的强度时,应按接触线单位长度上的最大载荷,即计算P ca 位N/mm )进行计算。即 Pca = KP =K L F n K ——载荷系数 载荷系数K 包括 :使用系数AK ,动载系数VK ,齿间载荷分配系数αK 及齿向载荷分布数βK ,即 K =K A K V K αK β 使用系数K A 是考虑齿轮啮合时外部领接装置引起的附加动载荷影响的系数。 查表的K A =1.35 动载系数K V 齿轮传动制造和装配误差是不可避免的,齿轮受载后还要发生弹性变形,因此引入了动载系数 取K V =1.05 齿间载荷系数K α 齿轮的制造精度8精度 K α= 1.1 齿向荷分配系数K β 载荷系数 1.7152A V K K K K K αβ==齿轮: 齿轮: d 1=m n z/cos β=15.2 齿轮齿顶高:h a1= (h *a1+X n )*m n =2.5

直齿圆柱齿轮强度计算

4.5 直齿圆柱齿轮强度计算 一、轮齿的失效 齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。由于上述条件的不同,齿轮传动也就出现了不同的失效形式。一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。 轮齿折断

轮齿折断有多种形式,在正常情况下,主要是齿根弯曲疲劳折断,因为在轮齿受载时,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断(见图1 图2 图3)。此外,在轮齿受到突然过载时,也可能出现过载折断或剪断;在轮齿受到严重磨损后齿厚过分减薄时,也会在正常载荷作用下发生折断。在斜齿圆柱齿轮(简称斜齿轮)传动中,轮齿工作面上的接触线为一斜线(参看),轮齿受载后,如有载荷集中时,就会发生局部折断。 若制造或安装不良或轴的弯曲变形过大,轮齿局部受载过大时,即使是直齿圆柱齿轮(简称直齿轮),也会发生局部折断。 为了提高齿轮的抗折断能力,可采取下列措施:1)用增加齿根过渡圆角半径及消除加工刀痕的方法来减小齿根应力集中;2)增大轴及支承的刚性,使轮齿接触线上受载较为均匀;3)采用合适的热处理方法使齿芯材料具有足够的韧性;4)采用喷丸、滚压等工艺措施对齿根表层进行强化处理。 齿面磨损 在齿轮传动中,齿面随着工作条件的不同会出现不同的磨损形式。例如当啮合齿面间落入磨料性物质(如砂粒、铁屑等)时,齿面即被逐渐磨损而至报废。这种磨损称为磨粒磨损(见图4、图5、图6)。它

齿轮接触疲劳强度试验方法

齿轮接触疲劳强度试验方法(GB/T14229-93) 1主题内容与适用范围 本标准规定了测定渐开线圆柱齿轮接触疲劳强度的试验方法,以确定齿轮接触承载能力所需的基础数据。 本标准适用于钢、铸铁制造的渐开线圆柱齿轮由齿面点蚀损伤而失效的试验。其它金属齿轮的接触疲劳强度试验可参照使用。 4试验方法 确定齿轮接触疲劳强度应在齿轮试验机上进行试验齿轮的负荷运转试验。当齿面出现接触疲劳失效或齿面应力循环次数达到规定的循环基数N。而未失效时(以下简称“越出”),试验终止并获得齿面在试验应力下的一个寿命数据。当试验齿轮及试验过程均无异常时,通常将该数据称为“试验点”。根据不同的试验目的,选择小列不同的试验点的组合,经试验数据的统计处理,确定试验齿轮的接触疲劳特性曲线及接触疲劳极限应力。 4.1常规成组法 常规成组法用于测定试验齿轮的可靠度-应力-寿命曲线(即R-S-N曲线),求出试验齿轮的接触疲劳极限应力。 试验时取4~5个应力级,每个应力级不少于5个试验点(不包括越出点)。最高应力有中的各试验点的齿面应力循环次数不少于1×106。最高应力级与次高应力级的应力间隔为总试验应力范围的40%~50%,随着应力的降低,应力间隔逐渐减少。最低应力级至少有一个试验点越出。 4.2少试验点组合法 少试验点组合法通常用于测定S-N曲线或仅测定极限应力。 试验时试验点总数为7~16个。测定S-N曲线时,应力级为4~10个,每个应力级取1~4个试验点。 测定极限应力时可采用升降法。 采用正交法进行对比试验时,每个对比因素至少有3个试验点。 5试验条件及试验齿轮 5.1齿轮接触疲劳强度试验按下述规定的试验条件和试验齿轮进行(对比试验的研究对象除外),上此可确定试验齿轮的接触疲劳极限应力σHlim。

高等钢结构--疲劳与断裂

《高等钢结构原理》断裂与疲劳部分 学生作业 系(所):建筑工程系 学号:1432055 姓名:焦联洪 培养层次:专业硕士 2014年11月6日

1、防止焊接钢结构脆性断裂的基本措施 影响钢材脆断的直接因素有裂纹尺寸、作用应力和材料韧性。提高钢材脆性断裂的基本措施有: ①保证施工质量、加强质量检验和施焊工艺管理,避免施焊过程中产生的咬边、裂纹、夹杂和气泡等。 ②焊缝不宜过分集中,施焊时不宜过强约束,避免产生过大残余应力,同时应注意焊缝过于集中和避免截面突然变化。特别是低温下作用的静力荷载发生的脆断,常与残余应力有关。 ③进行合理细部构件设计,避免应力集中。应力集中处会产生同号应力场,使钢材变脆。尽量避免采用厚钢板,厚钢板比薄钢板较易脆断,对钢材的韧性也有降低。 ④选择合理的钢材,钢材化学成分与钢材抗脆断能力有关,含碳量高的钢材,抗脆断能力有所下降,同时控制钢材中硫和磷的含量,硫使钢材热断,磷使钢材冷断,对于在低温下作用的钢结构,应选择抗低温冲击韧性好的材料。 ⑤加载速率越高,钢材的脆断转变温度提高,对于同一韧性的材料,设计动力荷载时允许最低的使用温度比静力荷载高的多,所以根据钢材不同的工作加载速率应选择不同韧性的钢材。 ⑥设计结构时选择优良的结构形式,有助于减少断裂的不良后果。 2、解释应力幅是评价焊接钢结构疲劳强度的一个指标 对于非焊接结构,通常用应力循环特征(应力比)min max /σσρ=来评价钢结构的疲劳强度。但是对于焊接钢结构疲劳强度起控制作用的是应力幅σ?,而几乎与最大应力max σ、最小应力min σ及应力比这些参量无关。这是因为:焊接及 其随后的冷却,构成不均匀热循环过程,使焊接结构内部产生自相平衡的残余应力,在焊接附近出现局部的残余拉应力高峰,横截面其余部分则形成残余压应力与之平衡。焊接残余拉应力最高峰值往往可达到钢材的屈服强度,名义上的应力循环特征(应力比)min max /σσρ=并不代表疲劳裂缝出现的应力状态。并且焊接连接部位因为截面的改变原状,总会产生不同程度的应力集中现象。残余应力和应力集中两个因素的同时存在,使疲劳裂纹发生于焊接熔合线的表面缺陷处或焊

齿轮传动的强度设计计算

1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。 分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。 两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:

最大接触应力: ?F——接触面所受到的载荷

?ρ——综合曲率半径,(正号用于外接触,负号用于内接触) ?E1、E2——两接触体材料的弹性模量 ?μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。 参数直齿圆柱齿轮斜齿圆柱齿轮 节点处的载荷为

机械设计手册-销轴-接触应力计算全面讨论汇总

传递动力的高副机构,如摩擦轮、凸轮齿轮、链轮传动、滚动轴承、滚动螺旋等,都有接触强度问题,自然也涉及到接触应力。在此对接触应力计算作较为全面的讨论。 两曲面的弹性体在压力作用下,相互接触时,都会产生接触应力,传递动力的高副机构在工作中往往出现的是交变应力,受交变接触应力的机器零件在一定的条件下会出现疲劳点蚀的现象,点蚀扩散到一定程度,零件就不能再用了,也就是说失效了,这样失效的形式称之为疲劳点蚀破坏,在ISO标准中是以赫兹应力公式为基础的。本文较为集中地讨论了几种常见曲面的赫兹应力公式及常用机械零件的接触应力计算方法,便于此类零件的设计及强度验算。 1 任意两曲面体的接触应力 1.1 坐标系 图1所示为一曲面体的一部分,它在E点与另外一曲面体相接触,E点称为初始接触点。取曲面在E点的法线为z轴,包括z轴可以有无限多个剖切平面,每个剖切平面与曲面相交,其交线为一条平面曲线,每条平面曲线在E点有一个曲率半径。不同的剖切平面上的平面曲线在E 点的曲率半径一般是不相等的。这些曲率半径中,有一个最大和最小的曲率半径,称之为主曲率半径,分别用R′和R表示,这两个曲率半径所在的方向,数学上可以证明是相互垂直的。平面曲线AEB所在的平面为yz平面,由此得出坐标轴x和y的位置。任何相接触的曲面都可以用这种方法来确定坐标系。由于z轴是法线方向,所以两曲面在E点接触时,z轴是相互重合的,而x1和x2之间、y1和y2之间的夹角用Φ表示(图2所示)。

图1 曲面体的坐标 图2 坐标关系及接触椭圆 1.2 接触应力 两曲面接触并压紧,压力P沿z轴作用,在初始接触点的附近,材料发生局部的变形,靠接触点形成一个小的椭圆形平面,椭圆的长半轴a在x轴上,短半轴b在y轴上。椭圆形接触面上各点的单位压力大小与材料的变形量有关,z轴上的变形量大,沿z轴将产生最大单位压力P0。其余各点的单位压力P是按椭圆球规律分布的。 其方程为 单位压力 总压力P总=∫PdF ∫dF从几何意义上讲等于半椭球的体积,故 接触面上的最大单位压力P0称为接触应力σH (1) a、b的大小与二接触面的材料和几何形状有关。 2 两球体的接触应力

不同钢结构疲劳强度分析

不同钢结构疲劳强度分析 发表时间:2017-08-31T10:20:36.993Z 来源:《电力设备》2017年第12期作者:孙晓丽赵娜马连凤李晓莉刘谆 [导读] 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能 (中车永济电机有限公司) 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能、加工工艺、初始缺陷影响等方面的差别,高强度结构钢材构件的整体稳定性能与普通强度钢材有明显不同。 关键词:疲劳强度;屈服极限;疲劳寿命 1 、概述 钢材的生产工艺与构件的加工工艺是推动钢结构发展的重要因素,钢材力学性能的提高,能够提升钢结构构件的受力性能、安全性能以及钢结构整体的使用功能;同时,实际应用的不断创新也会促进钢结构的发展,这就对钢材的力学性能提出了新的要求,特别是要求结构材料应具有更高的强度。在这一背景之下,采用新的生产冶金工艺开发出了新型高强度结构钢材,先进的加工工艺特别是焊接技术以及与高强度钢材相匹配的焊接材料也陆续出现,高强度结构钢材具备了应用于实际电器柜的基本条件。本文的研究对象主要针对强度等级在420MPa 及以上的新型高强度结构钢材中厚板材(即板厚<40mm)构件。 2、疲劳的定义及特征 疲劳破坏是指材料或结构在循环交变应力或者循环交变应变的作用下,由于某点或某些点所在的部位发生局部永久性结构变化,在经历一定的循环次数后形成裂纹并最后发生断裂的现象,即在交变载荷重复作用下材料或者结构的结构破坏现象。经过人们长期的经验积累和对疲劳破坏事故的认真考察,疲劳破坏的显著特征己初步为人们所掌握,这些特征使疲劳破坏与传统的静力破坏、腐蚀破坏以及其他破坏形式相区别,给人们对事故的分析带来方便。具体的特征包括:长期性、非屈服性、难以预测性、局部性、影响因素多样性、端口形貌特殊性。 疲劳破坏的过程大致就可以描述为以下的“恶性循环阶段”: 应力集中一一争疲劳裂纹出现一一争裂纹尖端新的应力集中一一卜裂纹扩展一一卜构件发生 断裂。 3、影响结构疲劳强度的因素 构件在某一循环载荷下工作时,构件应力值的大小为一般用S来表示。当构件的应力水平S低于某一个应力限度值的时候,如果构件可以在该应力水平作用下承受无限次循环而不发生疲劳破坏,则该应力限度值为材料或者构件的“疲劳极限”。疲劳失效之前机械零部件所经历的应力或者应变循环次数称为“疲劳寿命”,一般用N表示,前面所提到的“韦勒曲线”或者“疲劳曲线”是表示应力幅Sa或者最大应力Sma、与疲劳寿命N之间关系的一种表达方式。一般我们从标准或者书上所查到的一些材料的疲劳极限和S一N曲线,只能代表标准光滑试样的疲劳性能,称之为“中值S一曲线”。但实际零部件的尺寸、形状和表面情况等是多样的,与标准试件存在一定程度上的差别,所以实际构件的疲劳强度、疲劳寿命与标准试样之间也存在一定的差距。 影响结构疲劳强度的因素主要有:形状,尺寸,表面状况,平均应力,腐蚀介质和温度等等,本节主要介绍与本论文相关的因素即形状、尺寸、表面加工方法对材料疲劳强度的影响。 4、理论计算 在钢结构梁的设计中要让力有很好的传导闭合性,就要充分的发挥每个梁的支撑作用。对4mm和6mm钢板的截面模量计算如下: 对安装梁截面模量计算如下: 4mm钢板 6mm钢板 4mm内部加6mm钢板 通过计算4mm钢板对于x-x抗弯截面模量Wx=4.0612cm3 6mm钢板对于x-x的抗弯截面模量Wx=5.8505cm3 4mm内部增加两块6mm钢板后对于x-x的抗弯截面模量Wx=4.0612+1.681*2=7.4232cm3 根据最大弯曲正应力的计算公式:σmax=M/WX 可见,最大弯曲正应力与弯矩成M正比,与抗弯截面模量Wx成反比,当M不变时,Wx越大,所受的最大弯曲正应力越小,根据以上3种情况可以看出,第3种的抗弯截面模量Wx为7.4232cm3,较第1种增加了将近1倍。 5、实验分析 运用计算机分析软件ANSYS分别对4mm钢板折弯,6mm钢板折弯,4mm钢板折弯内侧加焊6mm钢板, 5mmQ235A槽钢进行了最大

钢结构的脆性断裂和疲劳

第8章 钢结构的脆性断裂和疲劳 8.1 钢结构脆性断裂及其防止 8.1.1 脆性断裂破坏 脆性破坏: 结构的最终破坏是由于其构件的脆性断裂导致的。 特点:无塑性发展或很小,断裂时伸长量极其微小,没有破坏的预兆。 脆性破坏分类 ①过载断裂:由于过载,强度不足而导致的断裂。 特点:破坏速度快,主要是钢丝束、钢绞线和钢丝绳等。 ②非过载断裂:塑性很好的钢构件在缺陷、低温等因素影响下突然呈脆性断裂 ③应力腐蚀断裂:在腐蚀性环境中承受静力或准静力荷载作用的结构,在远低于屈服极限的应力状态下发生的断裂,强度越高则对应力腐蚀断裂越敏感。 ④疲劳断裂与腐蚀疲劳断裂:在交变荷载作用下,裂纹的失稳扩展导致的断裂,高周:循环周数在105以上者,低周:只有几百或几十次, 环境介质导致或加速疲劳裂纹的萌生和扩展称为腐蚀疲劳。 ⑤ 氢脆断裂: 氢使材料韧性降低而导致的断裂 钢结构的非过载脆性破坏P302 8.1.2脆性断裂的防止 构件不出现非过载脆性断裂的条件IC I K K ≤=σπα(含义见书) 为了防止脆性断裂,需要从三个方面着手: 1.钢材选择(保证足够韧性IC K ) 材料韧性指标:冲击韧性。 碳素钢:夏比V 形缺口冲击功不低于27J ; 低合金高强度结构钢:夏比V 形缺口冲击功不低于34J ; 公路钢桥和吊车梁在翼缘板厚度不超过4Omm ,按所处最低温度加40℃级别要求; 公路钢桥和吊车梁在翼缘板厚度超过 4Omm, 降低最低温度; 低温地区避免用厚度大的钢板,必须用厚板时,应提高对冲击韧性的要求或进行全厚度韧性试验。 2.初始裂纹:减小初始裂纹,避免形成裂缝间隙,保证焊缝质量,限制和避免焊接缺陷,焊缝表面不得有裂纹; 3.应力:缓和应力集中,减小应力值,避免受到约束而产生高额残余应力 4.结构形式与构造细节:超静定结构优于静定结构:由于地基不均匀沉陷会导致严重不利的内力重分布。静定结构采用多路径传递荷载优于单路径传递荷载。单个构件:多路径组织要优于单路径组织 焊接受弯构件的受拉翼缘,当弯矩很大,需要选取较厚的翼缘时,从抗断裂的

标准齿轮模数齿数计算公式

齿轮的直径计算方法: 齿顶圆直径=(齿数+2)*模数 分度圆直径=齿数*模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34*3.5 齿顶圆直径=(32+2)*4=136 分度圆直径=32*4=128 齿根圆直径=136-4.5*4=118 7M 12齿 中心距(分度圆直径1+分度圆直径2)/2 就是(12+2)*7=98 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30

上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法 ()周节 齿轮分度圆直径d的大小可以用模数(m)、径节()或周节()与齿数(z)表示 径节P()是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言

径节与模数有这样的关系: 25.4 1/8模=25.48=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米()。 除模数外,表示轮齿大小的还有CP(周节:)与DP(径节:)。【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 令狐采学 二. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E---弹性系数 2) Z H---节点区域系数 3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350 5) 许用应力:[H]=([H1]+[H2])/2 1.23[H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=Kt b) 计算dt c) 修正dt 三. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y Fa 、YSa---齿形系数和应力修正系数。Zv=Z/cos3YFa 、YFa 2) Y ---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=Kt e) 计算mnt [] H t H E H u u bd KF Z Z σεσα≤±=1 1[]32 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥[] 32 121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

f) 修正mn 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 2. 锥距 3. 齿数比: u=Z2/Z1=d2/d1=tan 2=cot 1 4. 齿宽中点分度圆直径 dm/d=(R-0.5b)/R=1-0.5b/R 记R=b/R---齿宽系数R=0.25~0.3 dm=(1-0.5R)d 5. 齿宽中点模数 mn=m(1-0.5R) 三. 受力分析 大小: Ft1=2T1/dm1(=Ft2) Fr1=Ft1tan cos Fa2) Fa1=Ft1tan sin 1(=Fr2) 方向: 四. 强度计算 1. 齿面接触疲劳强度计算 1)计算公式: 按齿宽中点当量直齿圆柱齿轮计算,并取齿宽为0.85b ,则: 以齿轮大端参数代替齿宽中点当量直齿圆柱齿轮参数,代入 n 1 n 2 相交轴 n 2 两轴夹角900 n 1 2 2 2122212 21Z Z m d d R +=+= d 1 d m b R d m2 d 2 δ1 δ2 O C 2 C 1 A 2 A 1 q Fr α δ Fa Fn Ft Fa1 Fr 2 2 1 n 1 Fa2 Fr 1 Ft 1 Ft 2 []H v v v v H E H u u bd KT Z Z σσ≤+=1 85.023 1 1

相关文档
最新文档