烟粉虱的危害生物型及有关生物化学的研究进展

烟粉虱的危害生物型及有关生物化学的研究进展
烟粉虱的危害生物型及有关生物化学的研究进展

北京农业科学 烟粉虱专辑

14烟粉虱的危害

北京市农林科学院植保环保所 北京 100089?-2úóúèè′?oí??èè′?μ?????3??a?àê3D?o|3??¨?üμè?-??×÷??ó???êò°×·?ê-Trialeurodes vaporariorum 相比涉及74科420余种植物具有更大的经济危害性

烟粉虱在我国部分地区正在取代温室白粉虱成为温室及其它经济作物的主要害虫本文对国外烟粉虱的部分研究成果综述如下

1889年Gennadius 记述了希腊的一种烟草害虫这是烟粉虱的首次报道在美国的甘薯上发现了第一个新北区白粉虱标本称之为甘薯粉虱[2]·?ààμ???ò2±?μ??ì?y2?????19个种名作为B. tabaci 的同物异名[3]?ì·?ê-?ú???×?D?1óD?T·?ê-oí?êêí·?ê-μè??????3?

???÷?2??êêó|?üá|ò??°′?2¥?2??2???μ??üá|é?óD?ù2?í?óúê?ò?D??§??òà?Y?ì·?ê-μ??aD?2?òì???ì·?ê-??·??aè??ééú??Dí

??óDè???B 生物型重新命名为银叶粉虱

文中描述了烟粉虱在温室花卉上前所未有的的危害据统计从1985~1998年间

A B 型比A 型产更多的卵因而分泌更大量的蜜露

而A 型不会它具有导致西葫芦叶片银叶化的特征从世界许多地方收集的烟粉虱标本证明了这样的假设B 生物型的存在可以用异构酶标记法和多态DNA 扩增法来证实

Bellows (1994)提出以烟粉虱B 生物型为基础建立粉虱新种Bemisia argentifolii

B 型蛹的几个形态特征成为鉴别银叶粉虱的依据

B 生物型argentifolii 前蜡缨细窄与之相反这些描述和用于区分A 和B 生物型异构酶标记以及在某些条件下生物型不能交配的证据已经被用做新的分类单元

北京农业科学

烟粉虱专辑

15大量的研究资料说明

人们使用生物型

B

生物型 分布热带以及温带边缘地区

温室大棚提供了烟粉虱在温带和寒温带躲避寒冷的理想场所过去仅生存于热带和亚热带的烟粉虱据报道在过去的十几年间地中海盆地亚洲

北美洲阿根廷哥伦比亚和委内瑞拉现在烟粉虱超过温室白粉虱Trialeurodes vaporariorum

我国关于温室白粉虱的资料丰富近年来烟粉虱在北京新疆现场采集的标本显示田间发生危害的粉虱中烟粉虱已经发展成为优势种群烟粉虱为多食性害虫

其中包括很多重要的经济作物

Azab

曾报道烟粉虱在埃及可寄生155种植物[5]

至1995年Brown 等人估计仅仅烟粉虱的一个

生物型—B 型的寄主植物已查明就达500种以上资料表明烟粉虱能够成功地寄生于全球的很多种植物 烟粉虱的经济重要性表现在寄主植物中有许多花卉除了与温室白粉虱危害相同的寄主番茄茄子温室白粉虱不嗜好的十字花科蔬菜也是烟粉虱的危害对象烟粉虱对寄主作物的危害表现为直接取食Perring 等

估计1991年烟粉虱在美国部分地区造成的经济损失达5亿美元以上[7]???ú??′?1y???÷?2????°?????é?è?èí?¤2?è?ê3?ì·?ê-????×÷??ò??-?ì3éé?òú?à?aμ??eê§?¢×′μ?±??ˉó????÷??àà?ò???à?·??óD1?ê1·???3éêì?è2??????èê1?úB 生物型发生密度低时多种花卉和蔬菜上的脉明症中美洲墨西哥和美国

而不和来自古北区的病毒杂交

1994μ??T????èoà′×?o?′|

在一些情况下

而不能传播所有的WFT 联体病毒例如而在实验室内通过病毒DNA biolistic 接种手段传到豆类植物上B生物型都能从豆类传到豆类上

北京农业科学

烟粉虱专辑

16

3 分子与生物化学 大量的研究文献资料对烟粉虱的生物型和生物学特征进行了论述

因为围绕着生物型地位和烟粉虱特性许多问题的解决可能要依赖于适当的生物化学和分子标记物技术的发展

同功酶并且利用DNA 标记探索多态性的初步研究已获成果这些分析还包括特殊基因和RAPD

1987之后有的学者研究了蛋白质多态

1989

EST -磷酸甘油脱氢酶

活性分析法评估了采自哥伦比亚和以色列的烟粉虱种群[10]GDPH 则不能将来自两个国家的个体分开1991和用聚丙

烯酰胺凝胶(PAGE)法区分为害本国南瓜和棉花的种群

Brown 等用普通酯酶标记法进一步检测采集到的具有明显生物学特性的生物型Burban 等用相同的PAGE 法

描述了四种酶[13]

à′×??÷·?的种群已经被分出两个生物型一个食性更广的种群没有在木薯上发现

Perring

等使用等电荷聚焦法分析了异构酶在构成14种酶的18个位点中的变异

性[14]?T??μè???ùòò′??úó?·?

??à′×??T?¨μ??ì·?ê-??èoμ?IET 图谱有所区别1993

计算了Nei’s 的遗传距离Bartlett 等评论了这个结果并指出报道的遗传差异可能由于来自试验室或发现者的误差另外也没有说明是群体还是种群

详细报道了EST 等位基

因频率表现出明显的异质性[16]??ó?à′×?é±3??á′|àí?°?T??ò?′|àíμ???èoóD1?并报导了A 和B 生物型的EST 在分子量同分异构关系和酶作用底物的亲缘关系的差异

最早的工作涉及到粉虱和蚜虫等昆虫内共生菌中编码16S rDNA 的核苷酸序列1992但由于不同生物型的内共生菌很难区分Campbell 做了进一步的工作

比较了A 和B 生物型之间的差异[19]

Perring

等也讨论了种的问题

试验用七个不同的引物检测了A ?á1???ê?í?ò?

éú??Dí??ì???óD80-100%的扩增产物是相同的

Gawel 等使用约20个引物进行PAPD 研究B生物型和山丁子粉虱Parabrmisia myricae 与束翅粉虱Trialaurodes abutilonea 之间的遗传相似系数[21]

???ò?ì·?ê-éú??Dí????μ?2?òì±èoó??á?????èo????μ?2?òì?ü′óμ??ú?a???é????2?êêóúó?à′2??÷·?ààμ?

北京农业科学 烟粉虱专辑

17位1995????ê1

ó?Simon 等所建议的引物进行扩增并测序测定了50个个体线粒体核糖体亚单位中550个碱基对的核酸序列[22]

?aD???ì?′ú±íD?DòáD2a?¨μ?3?μ??à???μ???ó±í±í?÷á??à???μ·??§?ú0.78~0.98之间

尽管这些研究是初步而非结论性的

尤其当结合交配研究和双联体病毒~烟粉虱~寄主三者间互作的生物学特性的研究资料考虑时

4 抗药性与粉虱的生物型

对生物型和关于B 生物型对杀虫剂的抗药性被广泛认识之前

Prabhaker 等证实美国南加州的三个种群对倍硫磷对硫磷有中等抗性Dittrich 等和Abdeldaffie 等描述了苏丹的种群对有机磷和菊酯类农药抗性的发展[24] [25]

óéóú1964年以后高频率使用乐果而成为主要害虫

尽管粉虱抗药性的发展一直为世界各地所认识开始趋向集中研究不同地区之间或在不同作物上种群的差异利用增效剂探索不同解毒作用

1987

结果与久效磷和甲胺磷等相比氯氰菊酯

在田间的毒性提高可达5-50倍1990

?á1???ê???1ü?aá?????èo??ê?B 生物型

Byrne 在苏丹描述了用于做抗性和敏感试验两个种群的类似的B 酯酶变异体

Costa 等报道A

μ?B 生物型对氯氰菊酯抗性要强的多[29]1993?μ?÷óDò???òò?£μ¨???¥??μ????Dì?oí?t??2????D±?òìì?[30]

Saxena 等(1987) 提出在其他植食性昆虫中抗药性和寄主植物的变化都引发生物型的形成或使生物型维持原状[31]?D????ó?ì?êaμè???ùòòPCR 手段对不同品系的烟粉虱进行了变异检测有意思的是而专食种群在非寄主作物上不产生变异可能寄主植物的选择和杀虫剂的应用对抗药性进化起到重要作用

北京农业科学烟粉虱专辑

Entomol. Soc. 52:122-23

4. Bellows TS Jr, Perring TM, Gill RJ, Headrick DH. 1994. Description of a species of Bemisia (Homoptera:

Aleyrodidae) infesting North American agriculture. Ann. Entomol. Soc. Am. 87:195-206

5. Azab A, Megahed MM, El-Mirsawi HD.1970. On the range of host-plants of Bemisia tabaci (Genn.) Bull.

Soc. Entomol. Egypt 54:319-26

6. Greathead AH. 1986. Host plants. See Ref. 36: 17-25

7. Perring TM, Cooper AD, Rodriguez RJ, Farrar CA,Bellows TSJ. 1993. Identification of a whitefly species

by genomic and behavioral studies. Science 259:74-77

8. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG.1994. Geminivirus transmission and

biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann.

Appl. Biol. 125: In press

9. Prabhaker N, Coudriet DL, Meyerdick DE.1987. Determination of three whitefly species by electrophoresis

of nonspecific esterases. J. Appl. Entomol. 103:447-51

10. Wool D, Gerling D, Nolt BL, Constantino LM, Bellotti AC, Morales FJ. 1989. The use of electrophoresis for

identification of adult whiteflies (Homoptera. Aleyrodidae) in Israel and Columbia J. Appl. Entomol.

107:344-50

11. Costa HS, Brown JK. 1991. Variation in biological characteristics and in esterase patterns among populations

of Bemisia tabaci Genn. and the association of one population with silverleaf symptom development.

Entomol. Exp. Appl. 61:211-19

12. Brown JK, Coats S, Bedford ID, Markham PG. 1994. General esterase polymorphisms as genetic markers of

Bemisia tabaci Genn. biotypes and evidence for the worldwide distribution of the ‘B’biotype. Biochem. Gen.

In press

13. Burban C, Fishpool LDC, Fauquet C, Fargette D, Thouvenel J-C.1992. Host-associated biotypes within West

African populations of the whitefly Bemisia tabaci (Genn.) (Hom., Aleyrodidae). J. Appl.Entomol.

113:416-23

14. Perring TM, Cooper A, Kazmer DJ. 1992. Indentification of the poinsettia strain of Bemisia tabaci

(Homoptera: Aleyrodidae) on broccoli by electrophoresis. J. Econ. Entomol. 85:1278-84

15. Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TSJ. 1993. Identification of a whitefly species

by genomic and behavioral studies. Science 259:74-77

16. Wool D, Gerling D, Bellotti AC, Morales FJ. 1993. Esterase electrophoretic variation in Bemisia tabaci

(Genn.) (Hom., Aleyrodidae) among host plants and localities in Israel. J. Appl. Entomol. 115:185-96

17. Coats SA, Brown JK, Hendrix DL.1994. Biochemical characterization of biotype-specific esterases in the

whitefly, Bemisia tabaci Genn. (Homoptera: Aleyrodidae). Insect Biochem. In press

18. Clark MA, Baumann L, Munson MA, Baumann P, Campbell BC, et al. 1992. The eubacterial endosymbionts

of whiteflies (Homoptera: Aleyrodidae) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 25:119-23

19. Campbell BC. 1993. Congruent evolution between whiteflies (Homoptera: Aleyrodidae) and their bacterial

endosymbionts based on respective 18S and 16S rDNAs. Curr.Microbiol. 26:129-32

20. Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TSJ. 1993. Identification of a whitefly species

by genomic and behavioral studies. Science 259:74-77

21. Gawel NJ, Bartlett AC. 1993 Characterization of differences between whiteflies using RAPD-PCR. Insect

Mol. Biol. 2:33-38

22. Sinom S, Franke A, Martin A. 1991. The polymerase chain reaction: DNA extraction and amplification. In

Molecular Techniques in Taxonomy. NATO ASI Ser., ed. GM Hewitt, AWB Johnston, JPW Young, pp. 329-55.

Berlin: Springer-Verlag

23. Prabhaker AW, Coudriet DL, Meyerdick DE.1985. Insecticide resistance in the sweetpotato whitefly,

18

北京农业科学烟粉虱专辑

Bemisia tabaci (Homoptera: Aleyrodidae). J.Econ. Entomol. 78:748-52

24. Dittrich V, Ernst GH, Ruesch O, Uk S. 1990. Resistance mechanisms in sweetpotato whitefly (Homoptera:

Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. J. Econ. Entomol. 83:1665-70

25. Abdeldaffie EYA, Elhag EA, Bashir NHH. 1987. Resistance in the cotton whitefly, Bemisia tabaci (Genn.),to

insecticide recently introduced into Sudan Gezira. Trop. Pest Manage. 33:283-86

26. Ishaaya I, Mendelson Z, Melamed-Mad-jar V. 1987. Effect of buprofezin on egg fertility and larval

development of Bemisia tabaci. Phytoparasitica 15:263-64

27. Wool D, Greenberg S. 1990. Esterase activity in whiteflies (Bemisia tabaci) in Israel in relation to insecticide

resistance. Entomol. Exp. Appl. 57:251-58

28. Byrne FJ, Devonshire AL,.1991. In vivo inhibition of esterase and acetylcholin-esterase activities by

profenefos treatments in the tobacco whitefly Bemisia tabace (Genn.): implications for routine biochemical monitoring of these enzymes. Pestic. Biochem. Physiol. 40:198-204

29. Costa HS, Brown JK, Sivasupramaniam S, Bird J.1993. Regional distribution, insecticide resistance, and

reciprocal crosses between the A and B biotypes of Bemisia tabace. Insect Sci. Appl. 14:255-66

30. Byrne FJ, Devonshire AL. 1993. Insensitive acetylcholinesterase and esterase polymorphism in susceptible

and resistant populations of the tobacco whitefly Bemisia tabaci (Genn.). Pestic. Biochem. Physiol. 45:34-42 31. Saxena RC, Barrion AA.1987. Biotypes of insect pests of agricultural crops. Insect Sci. Appl. 8:453-58

Study progress on damage, biotype and

biochemistry of Bemisia tabaci

Gong Yajun Lu Hong

(The Plant & Environment Protection Institute,

Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China)

19

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研 究进展 班级:09药剂4班 组长:11-何燕珊:分配工作、选题、摘要、关键词和整理全篇文章 找资料:09-何炳俊:细菌耐药性产生的机理 10-何根铭:耐药性产生的因素及预防措施 12-洪春庆:抗生素的抑菌机理

细菌对抗生素耐药性的研究进展 摘要:抗生素作为治疗细菌感染性疾病的主要药物,在全世界上是应用最广、发展最快、品种最多的一类药物。但随着抗生素的广泛使用,其耐药性亦不断增长,并已迅速发展至十分严重的程度。耐药性的大量出现与广泛传播会给人们的健康造成很大的危害,给临床治疗带来很大困难,甚至造成治疗失败,目前已是全球关注的公共卫生问题。本文通过对抗生素的抑菌机理、细菌的耐药机制、耐药性产生因素以及预防等方面内容作简要综述,以示预防抗生素耐药性产生的重要性。 关键词:抗生素、细菌、耐药性 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。近年来,由于人类对抗生素的滥用,导致感染性细菌对抗生素不敏感,产生了耐药性,并开始对人类展开致命的反击,严重地威胁着人类的健康。中国工程院院士许文思也感叹:“可以毫不夸张的说,细菌耐药性是21世纪全球关注的热点,它对人类生命健康所构成的威胁绝不亚于艾滋病、癌症和心血管疾病。”可见,预防抗生素耐药性的产生是十分重要的。 一、抗生素的抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素) ;第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素) ,或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷) ;第三类则是通过阻止细菌DNA (如喹诺酮类)、RNA (如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌。[1]因此,根据主要作用靶位的不同,抗生素的抑菌机理可分为以下几种。 1)抑制细菌细胞壁合成,细胞壁缺损细菌在低渗条件下常因细胞吸水过多破裂而死亡,而对人和动物无毒害作用,因人和动物不具有细胞壁,如青霉素、头孢菌素、杆菌肽等。 2)破坏细胞模的通透性。主要通过下面 3 种途径:①多肽类抗生素,如多粘菌素E,能降低细菌细胞膜表面张力,因而改变了细胞膜的通透性,甚至破坏膜的结构,结果使氨基酸、单糖、核苷酸、无机盐离子等外漏,影响细胞正常代谢,致使细菌死亡。②多烯类抗生素,如制霉菌素与固醇具有亲和力,因此能与微生物的膜(含固醇物质)结合后形成膜- 多烯化合物,引起细胞膜的通透性能改变,导致胞内代谢物的泄漏。这类抗生素对真菌细胞膜起作用,而对细菌不起作用,因细菌细胞膜不含固醇类物质。③离子载体类抗生素,这类抗生素是脂溶性的,能结合并运载特定阳离子通过双脂层膜。如缬氨霉素、短杆菌肽A 等能增加线粒体膜对H+、K+或 Na+的通透性,为维持线粒体内正常的K+浓度就必须使泵入K+的速度与流出速度平衡,这样使得线粒体消耗能量用于泵入K+,而不是用来形成ATP,因此抑制了氧化磷酸化作用,从而起杀菌作用。 3)抑制蛋白质的合成。能抑制蛋白质合成的抗生素很多,其作用机理也较复杂,主要有下面 4 个方面:①抑制氨酰-tRNA 的形成。如吲哚霉素的抑菌作用是在氨基酸活化反应中和色氨酸竞争与色氨酸激活酶结合,从而抑制氨酰-tRNA的形成。②抑制蛋白质合成的起始。如链霉素、庆大霉素等能抑制 70S 合成起始复合体的形成以及引起 N-甲酰-甲硫氨酰-tRNA从70S合成起始复合体上的解离,因此阻碍蛋白质合成的起始。③抑制肽链的延长。如四环素族抗生素

烟粉虱的生物防治

烟粉虱的生物防治 烟粉虱[Bemisia tabaci (Gennadius)],又称甘薯粉虱、棉粉虱,是热带和亚热带地区的重要害虫之一。20世纪80年代中期以来,由于新生物型(B型)的出现和广泛传布,以及抗药性的迅速发展,已成为许多国家棉花、蔬菜和园林花卉等植物的主要害虫,平均每年在世界各地造成的经济损失超过3亿美元,在美国10年内所造成的损失超过10亿美元。近年来,我国粉虱种群发生动态出现了明显变化,B型烟粉虱有逐年加重危害与蔓延的趋势。在烟粉虱的治理中,生物防治是十分重要的控制手段,且烟粉虱的天敌资源丰富,各国学者对其天敌的研究和应用做了较多工作并已在生产实践中取得一定成效。 1 捕食性天敌的研究和应用目前已报道的烟粉虱捕食性天敌约有114种(隶属9目31科),其中瓢虫94种、捕食蝽25种、草岭14种、捕食螨17种。虽然天敌种类较多,但实际应用的只有少数几种,且大部分属多食性捕食者。Dean等指出多食性捕食者具有行为可塑性,可通过取食多种猎物提高其捕食作用,使种群得以繁衍。 1.1瓢虫类小黑瓢虫(Delphastus catalinae)原产于美国,为粉虱的专食性捕食者,在加州和弗罗里达等地已成功地应用于控制棉花和圣诞红上的烟粉虱,并已被引入欧洲和我国福建。在室内,小黑瓢虫以取食粉虱卵的生殖力最强,而在田间取食粉虱若虫时生殖力较大。当粉虱密度较低时还可取食红蜘蛛等其它猎物,但不能维持种群繁衍。小黑瓢虫能够捕食已被寄生的粉虱若虫,但随着蚜小蜂的发育能被逐渐辨别而嗜食未被寄生的若虫。小黑瓢虫已由多家公司生产销售,其温室作物

推荐释放量为1头成虫/1.39-9.29m2。有报道说,小毛瓢虫(Nephaspis oculatus)捕食烟粉虱的潜能虽低,但其搜索力明显强于小黑瓢虫,因此当粉虱密度较低时,该种瓢虫的种群密度较高。 1.2 捕食蝽类盲蝽Macrolophus caliginosus为多食性捕食者,取食烟粉虱的卵、若虫和成虫,且更嗜食粉虱卵;当粉虱密度较低时,还可取食某些花卉植物以维持其种群的延续。在欧洲,盲蝽已被广泛用于防治烟粉虱和温室白粉虱(Trialeurodes vaporariorum)。由于该盲蝽历时1个多月方能建立种群,与丽蚜小蜂(Encarsia Formosa)同时释放是保持温室粉虱种群密度较低的关键措施。目前已在地中海地区一些国家得到应用。Rabou报道在茄子地以2头/株的释放量连续释放3次盲蝽,1个月后粉虱种群便可得到有效控制;以0.5-1头/m2的释放量每2周1次,结合每周释放1次丽蚜小蜂,亦能有效地控制温室番茄粉虱的危害。此外,斯氏盲走螨(Typhlodromus swirskii)和Euseius scutalis取食烟粉虱后,其内禀增长力比烟粉虱增大,且能在温室单一种植的作物上抑制烟粉虱种群的增长,有进一步利用的价值。 2 寄生性天敌的研究与应用烟粉虱的寄生性天敌资源丰富,包括恩蚜小蜂属(Encarsia)、桨角蚜小蜂属(Encarsia)、Amitus属和阔柄跳小蜂属(metaphycus)的许多种类。我国初步调查记录有19种(主要隶属恩蚜小蜂属和桨角蚜小蜂属)。 2.1恩蚜小蜂属该属种类多为单寄生。少数为重寄生或多寄生。成虫均将卵产在寄主体内。由于丽蚜小蜂能成功地防治温室白粉虱,因此,国内外学者已做了不少研究与报道。有关成蜂和幼虫的生物学特性、该蜂与粉虱相互作用的种群动态

基因组学探究的应用前景-生物化学研究进展

基因组学探究的应用前景-生物化学研究进展20世纪90年代初,以完成人类基因组全序列测定和注释为核心任务的人类基因组计划在美国的领导下兴起.自1999年中国加入人类基因组计划到现在的10年时间里,中国基因组学得到了快速的发展,建立了先进的基因组学技术平台,并出色完成了多项重大基因组科学研究项目,对我国生命科学各个领域的发展产生了重要影响下面是小编搜集整理的基因组学探究的应用前景-生物化学研究进展的论文范文,欢迎大家阅读参考。 摘要:当代所研讨的基因组学其实是一门研讨基因组的构造框架,功用及表达产物的一门学科,据研讨基因的构造不只是蛋白质颗粒,还有许多构造复杂功用的DNA,包括三个的亚范畴,还包括构造基因组学,功用基因组学和遗传基因组学分子基因组学。最近研讨,基因组学在分子微生物药物,真菌、细菌、病毒基因,养分基因方面都有所研讨,前景是非常黑暗的而且这也是一个非常具有生命生机的新兴学科。可以造福人类,促进人类文明开展。值得去讨论。 关键词:基因组使用基因构造前景 基因组学的使用前景与剖析 养分基因组学 养分基因组学是全新的一门学问。爲什麼这麼说呢。道理很复杂,缘由也很明白,那就是以前没有人研讨过。大家都晓得的,养分是很重要的一种物质关系到我们的身心安康,所以从基因组学来研讨养分的学科是很有必要的。从中不但可以很好地效劳于人类还能是人类生

活的更好,最初还有利于基因组学的开展。养分基因组学研讨次要是养分干涉模型。随着这些功用弱小开展,全体性生物检测技术并结合了先进计算机技术生物信息学的办法的不时改良和进步,不时推进养分基因组学的开展。 毒理基因组学研讨 大家都晓得生物生活在自然界中都需求一定的进攻手腕。有些植物爲了进攻本身退化出来毒理作用,可以经过此作用来杀害入侵者或许自卫。从基因组学的方向可以研讨毒理基因组学,不但可以研讨毒理基因本身还可以爲传统毒理学检测提供更多的实际根据,阐明有毒物质怎样制毒的缘由,从而使风险评价的不确定性大大降低,目前虽然毒理基因组学只能作爲风险评价的参考,但是作爲风险评价提供所需无力的实际根据和精确的预测将会依赖独立基因组学。 乳酸菌基因组学研讨 大家都晓得酵糖类时次要的代谢产物是乳酸。乳酸杆菌是一个十分重要的菌种,所以研讨它的生理习性是十分有利于人类的,基因组学不但可以从分子角度爲我们提供研讨办法,还可以从基因角度来诠释,从事研讨乳酸杆菌的迷信家表示这是一门很有意义的学科,目前各国都在研讨这门学科以及其所带来的影响。如今迷信家重要研讨的是细菌能表达产物来自基因组的表达,所以增强研讨乳酸菌的基因组可以更好的理解基因组的表达调控翻译转录,从而破解其奥妙。 微生物药物菌功用基因组学研讨 微生物是自然界中的一支奇特的生物,形体很小却作用和影响很

微生物常规鉴定技术

微生物常规鉴定技术 一、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同一种的细菌在一定条件下,培养特征却有一定稳定性。,以此可以对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的一项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性还是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。

革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)两大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这两类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法与简单染色涂片相同。 (2)晾干:与简单染色法相同。 (3)固定,与简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。 (8)脱色:将玻片倾斜,连续滴加95%乙醇脱色20—25s至流出液无色,立即水洗。 (9)复染:滴加蕃红复染5min。 (10)水洗:用水洗去涂片上的蕃红染色液。 (11)晾干:将染好的涂片放空气中晾干或者用吸水纸吸干。 (12)镜检:镜检时先用低倍,再用高倍,最后用油镜观察,并判断菌体的革兰氏染色反应性。 (13)实验完毕后的处理: ①将浸过油的镜头按下述方法擦拭干净,a.先用擦镜纸将油镜头上的油擦 去。b.用擦镜纸沾少许二甲苯将镜头擦2—3次。c.再用干净的擦镜纸将 镜头擦2—3次。注意擦镜头时向一个方向擦拭。 ②看后的染色玻片用废纸将香柏油擦干

生物化学研究进展论文蛋白质提纯

生物化学研究进展 作业 题目蛋白质的提取、纯化 姓名 学号 班级 专业

题目:蛋白质的提取、纯化 姓名: 专业: 摘要:本文综述了蛋白质的提取原理及方法,蛋白质纯化的意义、基本原则及方法,蛋白质纯化的前景展望。 关键词:提取原理提取方法水溶液有机溶剂双水相萃纯化意义基本原则方法溶解度带电性质电荷数配体特异性前景 正文: 1 蛋白质样品的提取 1.1蛋白质样品的提取原理 提取蛋白质的基本原理主要有两方面:一是利用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离目的,如电泳、超速离心、超滤等。 1.2 蛋白质样品的提取方法 1.2.1 水溶液提取法稀盐和缓冲系统的水溶液是提取蛋白质最常用的溶剂。通常用量是原材料体积的1—5倍,提取时需要均匀地搅拌,以利于蛋白质的溶解。提取的温度要视有效成分性质而定,一般在低温(5℃以下)下操作。另外,蛋白质和酶是两性电解质,提取液的pH值应选择在偏离等电点两侧的pH值范围内。一般来说,在避免极端pH值的前提下,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液提取。此外,稀浓度可促进蛋白质盐溶,并且盐离子与蛋白质部分结合,能够保护蛋白质不易变性。因此可在提取液中加少量NaC1等中性盐,一般以0.15 mol/L浓度为宜。 1.2.2 有机溶剂提取法一些和脂质结合牢固或分子中非极性侧链较多的蛋白质和酶都不溶于水、稀盐溶液、稀酸或碱,可溶于乙醇、丙酮和丁醇等有机溶剂,具有一定的亲水性和较强的亲脂性,并且不会残留在产品中,容易蒸发除去,密度低,与沉淀物质的密度差大,便于离心分离。但不足的是用有机溶剂来提取蛋白质比用盐析法更容易引起蛋白质变性。 1.2.3 双水相萃取法双水相萃取法是依据物质在两相间的选择性分配,当物质进入双水相体系后,由于表面性质、电荷作用、各种力(疏水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同,进而分离目的蛋白。此方法可在室温下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高。对于细胞内的蛋白质,需要先对细胞进行有效破碎。目的蛋白常分布在上相并得到浓缩,细胞碎片等固体物分布在下相中。采用双水相系统浓缩目的蛋白,会受聚

生物化学工程的研究进展

生物化学工程的研究进展 摘要:生物化学工程是一门由化学、工程学和生物学等学科相互渗透、密切结合而形成的新兴边缘学科,近十余年来,随着对生物反应器、生物传感器、分离纯化设备等的研究,生物反应和分离纯化的动力学模型的建立,以及计算机控制技术,过程的系统分析和技术经济评价等的运用,生物化学工程这门新兴学科也得到了突飞猛进的发展。 关键词:生物化学;生化工程;研究进展 生物化学工程一般称为生化工程,生物化学工程是生物化学反应的工程应用,主要包括代谢工程、发酵工程和生物化学传感器等,生物化学工程和生物医学工程是最初的生物工程学概念,基因重组、发酵工程、细胞工程、生化工程等在21世纪整合而形成了系统生物工程。 生物化学工程的研究内容有很多,主要包括:生化反应器,分离提纯技术与设备,生物传感器、测量与控制,生化过程分析评价与设计放大等内容。下面将主要介绍分离提纯技术与生物传感器的研究进展。 1.分离提纯技术 生物化学反应一般会在稀水中进行,所以浓度会很低,同时又有很多杂质,产出的物质有可能发生反应,甚至连温度也有可能对反应产生影响所以,如何提取和分离出我们所需要的产品就成了我们研究的重点,生物产品的分离技术,除了传统的沉淀法、吸附法、萃取法

和离子交换等方法以外,近年来,又发展了许多新的分离方法,如层析技术和膜分离技术(包括微孔过滤、超滤与反渗析技术),随着生物化学的发展,会有更加高效和具有针对性的方法出现。 2.生物传感器 生物体内的反应是十分复杂的,随着生物体内各种代谢反应的进行,生物体内的各项指标是一直在变化的,如何检测这些指标,使其达到最适于人体的程度,就需要各种生物传感器的帮助,生物传感器是根据酶和微生物细胞对其基质具有专一性而用于分析某一化学物质的工具。是由固定化的生物材料与适当的换能器件密切接触而构成。此换能器件可将生化信一号转换成定量的电或光的信号,其特点是检测速率快、灵敏度高、专一性强和使用简便。0年代,酶电极第一个实现了生物传感器的构型.对它的研究经70年代飞跃后现已进入实用阶段,可以用来测控多种有机物,目前利用复合酶膜制成的多功能酶电极检测鱼肉鲜度或酶的活性已实用化。 随着科技的迅猛发展,各种检测手段不断发展,生化工程会越来越实用,研究不断深入,领域不断拓宽,人类日益增长的需要也会得以满足。 参考文献: [1]朱龙华生物化学工程研究进展 [2]陈红征李菊梅杨洁生物化学工程研究进展及其发展趋势

微生物检验常规鉴定技术

第一章微生物检验常规鉴定技术 课堂教学计划(1学时) 第一章微生物检验基本知识 包括显微镜、染色技术、培养基制备技术、接种、分离纯化和培养技术等。 接种、分离纯化和培养技术

一、接种 将微生物接到适于它生长繁殖的人工培养基上或活的生物体内的过程叫做接种。 1、接种工具和方法 接种和分离工具 1.接种针 2.接种环 3.接种钩 4.5.玻璃涂棒 6.接种圈 7.接种锄 8.小解剖刀 常用的接种方法有以下几种: 1)划线接种这是最常用的接种方法。即在固体培养基表面作来回直线形的移动,就可达到接种的作用。常用的接种工具有接种环,接种针等。在斜面接种和平板划线中就常用此法。 2)三点接种在研究霉菌形态时常用此法。此法即把少量的微生物接种在平板表面上,成等边三角形的三点,让它各自独立形成菌落后,来观察、研究它们的形态。除三点外,也有一点或多点进行接种的。 3)穿刺接种在保藏厌氧菌种或研究微生物的动力时常采用此法。做穿刺接种时,用的接种工具是接种针。用的培养基一般是半固体培养基。它的做法是:用接种针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺,如某细菌具有鞭毛而能运动,则在穿刺线周围能够生长。 4)浇混接种该法是将待接的微生物先放入培养皿中,然后再倒入冷却至45°C 左右的固体培养基,迅速轻轻摇匀,这样菌液就达到稀释的目的。待平板凝固之后,置合适温度下培养,就可长出单个的微生物菌落。 5)涂布接种与浇混接种略有不同,就是先倒好平板,让其凝固,然后再将菌液倒入平板上面,迅速用涂布棒在表面作来回左右的涂布,让菌液均匀分布,就可长出单个的微生物的菌落。 6)液体接种从固体培养基中将菌洗下,倒入液体培养基中,或者从液体培养物中,用移液管将菌液接至液体培养基中,或从液体培养物中将菌液移至

烟粉虱测报技术规范20150428

NY/T ××××—2012 烟粉虱测报技术规范(试行稿) 1 范围 1.1 本规范规定了棉田烟粉虱发生程度分级指标、越冬虫源基数调查、成虫迁入监测、系统调查、大田普查、预测方法,以及数据汇总、汇报方法等方面的技术和方法。 1.2 本规范适用于长江流域、黄河流域和西北内陆棉区非自然露地越冬区棉田烟粉虱的测报调查和预报。 2 术语与定义 2.1 烟粉虱若虫分类:1龄和2龄若虫统称低龄若虫,3龄、4龄若虫和伪蛹统称为高龄若虫。 2.2 发生危害期的划分:全年的发生危害期划分为两个阶段,即蕾期烟粉虱和花铃期烟粉虱,简称蕾虱和花铃虱。 2.3 百株三叶成虫量(头/百株三叶):指选取一定株数棉花,在每株指定部位选3张叶片,用翻转叶片法调查叶片上成虫的数量,折算成百株三叶成虫量。 2.4 距蔬菜保护地距离:指棉田边缘与蔬菜保护地边缘最近点的直线距离。 3 发生程度分级指标 发生程度分级指标:分蕾期和花铃期,以百株三叶烟粉虱成虫虫量为指标定发生程度。发生程度分为5级,轻发生(1级)、偏轻发生(2级),中等发生(3级),偏重发生(4级),大发生(5级)。具体分级指标如下: 表1 烟粉虱发生程度分级指标 4 越冬虫量调查 4.1 调查时间 在蔬菜保护地揭膜前一周左右调查。正常年份各棉花揭膜时间,长江流域棉区在4 1

月上中旬;黄河流域棉区5月中旬,西北内陆棉区在6月上旬。 4.2 调查地点 棉田周边的保护地蔬菜上,重点调查葫芦科、十字花科、豆科、茄科和菊科等蔬菜。按距离棉田小于500m、500~1000m和大于1000m分别调查各类蔬菜保护地,每类保护地调查2个。 4.3 调查方法 保护地内蔬菜上随机取5点,每点随机选4株蔬菜,每株分别取上部、中部、下部叶片各1张,调查成虫和高龄若虫的数量。对叶片着生密集较难区分上、中、下部叶片的蔬菜,可取上、中部嫩叶2张和下部老叶1张,调查烟粉虱虫量。 成虫调查采用翻转叶片法,将叶片轻轻翻转,动作要既轻又快,集中精力迅速目测背面叶片上的大概成虫量,然后仔细查看叶片中的成虫数量,再加上估计已飞走的虫量,计为整个叶片上的成虫数量。高龄若虫的调查方法,取白纸一张,用刀刻出一个1cm×1cm的正方形小孔。将白纸上的正方形小孔随机放在叶片背面上,计数正方形小孔中高龄若虫的数量;还要估算叶片面积,算出单片叶片若虫量。结果记入烟粉虱越冬虫量调查记载表(见附录A表A.1)。 5 棉田系统调查 5.1 成虫迁入棉田时间调查 5.1.1 调查时间 棉花移栽或定苗后开始,至烟粉虱迁入棉田达始盛期结束,一般为15天左右。 5.1.2 调查地点 分别选择距保护地蔬菜田小于500m、500-1000m和大于1000m的棉田各1块,作为系统调查田。 5.1.3 调查方法 保护地,在系统调查田内,面向蔬菜保护地一侧、距田埂1m左右处悬挂黄板,每块田挂2块黄板,黄板尺寸为20cm×30cm。黄板悬挂高度为黄板下缘高出棉花冠层10cm。随着棉花的生长,黄板悬挂高度相应提高,以保持黄板与棉花冠层的相对高度。黄板5天更换1次,雨后及时更换。每5天调查1次,观察黄板上诱集的成虫数量。当成虫迁入数量显著增加,结合历年观测情况,确定成虫迁入棉田的始盛期。调查结果记入烟粉虱黄板诱集记载表(见附录A表A.2)。 5.2 棉田系统调查 5.2.1 调查时间 自黄板监测烟粉虱成虫迁入棉田始盛期开始,至9月底结束,每5天调查1次。晴天2

生物化学论文

糖尿病及其治疗 姓名:学号: 引言:随着人们生活水平的提高和物质生活的丰富,加之肥胖、体力活动减少、饮食结构不合理、病毒感染等原因,近年来,我国糖尿病的发病率已明显呈上升趋势。 关键词:糖尿病高血糖胰岛素治疗 一糖尿病的概念 糖尿病是一种代谢内分泌疾病,是由于人体内胰岛素缺乏或相对缺乏所致的一种慢性内分秘代谢性疾病,以糖代谢紊乱为突出表现,未治疗状态下高血糖为主要特征,并伴有蛋白质和脂肪代谢异常。我国早在2000多年前就有该病的记载,早在《黄帝内经》中对糖尿病已有详细的记载,对糖尿病病因病机、临床表现、治则和预后都作出了论述,到汉代在《金匮要略》中把糖尿病作为一个独立疾病来对待,唐代《外台秘要》中最先记载了糖尿病尿甜的表现。而西方国家直到1672年才有土耳其人Areteus较系统的描述了糖尿病的临床表现,他发现了糖尿病患者“尿甜如蜜”,并详细记载了糖尿病患者从开始发病到病情恶化,直至昏迷死亡的临床过程。 二糖尿病的种类 糖尿病(Diabetes)分1型糖尿病和2型糖尿病。在糖尿病患者中,2型糖尿病所占的比例约为95%。 1型糖尿病 其中1型糖尿病多发生于青少年,因胰岛素分泌缺乏,依赖外源性胰岛素补充以维持生命。 2型糖尿病 2型糖尿病多见于中、老年人,其胰岛素的分泌量并不低,甚至还偏高,临床表现为机体对胰岛素不够敏感,即胰岛素抵抗(Insulin Resistance,IR)。 三糖尿病的起因 糖尿病有明显的遗传倾向并存在显著遗传异质性。除少数患者是由于单基因突变所致外,大部分1型糖尿病(胰岛素依赖性糖尿病,insulin-dependent diabetes mellitus,IDDM)及2型糖尿病(非胰岛素依赖性,non-insulin-dependent diabetes mellitus,NIDDM)患者是多基因及环境因子共同参与及相互作用引起的多因子病(也称为复杂病)。 四糖尿病的危害 三多一少(多饮、多食、多尿及体重减轻)是初诊糖尿病者的经典症状。

病毒分子生物学鉴定常用技术

实验二十三病毒核酸检测常用技术 (Techniques of Detecting Nucleic Acid of Viruses in Common Use ) 近年来随着分子生物学的发展,基因检测技术在微生物学实验室诊断中也取得了长足的进展。由于部分病原微生物的基因组已成功地被克隆并进行了核苷酸序列测定,因此根据病原微生物的基因特点,应用分子生物学技术检测样品中有无相应病原微生物的核酸,从而可以特异、灵敏地判定标本中是否含有相应的病原微生物。在微生物学的研究及感染性疾病的诊断中,最常使用的微生物核酸检测技术有PCR、RT-PCR、核酸杂交等技术,现对病毒核酸(DNA、RNA)的分离、PCR、RT-PCR、核酸杂交等技术的基本原理、操作方法、应用及影响因素等进行概述。 实验 1 PCR 检测传染性喉气管炎病毒核酸 【目的要求】 通过本实验使学生初步了解和熟悉病毒核酸(DNA)的分离与PCR技术的基本原理、操作方法、影响因素和应用。 【基本原理】 鸡传染性喉气管炎(Infectious laryngotracheitis, ILT)是由疱疹病毒科、α-疱疹病毒亚科的喉气管炎病毒(Infectious laryngotracheitis Virus, ILTV)引起的一种急性上呼吸道传染病, 常表现呼吸困难、产蛋鸡产蛋下降和死亡, 是危害养鸡业发展的重要疫病之一。但在临诊上极易与其它一些呼吸道疾病相混淆, 如禽流感、新城疫、传染性支气管炎、支原体感染等。常规检测IL TV 的方法有病原分离鉴定和血清学试验, 这些方法虽经典,但费时且敏感性差, 不能检测亚临床感染, 而传染性喉气管炎潜伏感染是疾病的一种重要表现形式。聚合酶链式反应(Polymerase Chain Reaction,PCR)是目前比较快速、敏感、特异的检测手段,已被广泛应用在病毒核酸检测方面。本实验以PCR方法检测鸡传染性喉气管炎病毒核酸为例,对PCR方法进行介绍。 PCR是体外酶促合成特异DNA片段的一种方法,典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93~94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。如此反复进行,每一次循环所产生的DNA 均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍(图23-1)。

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 教郁,高维凡,胡彩光 (沈阳农业大学,辽宁省沈阳市,110000) 摘要:大肠杆菌是典型的革兰氏阴性杆菌,其引起的大肠杆菌病是一种常见疾病,在治疗过程中 容易产生耐药性,且耐药谱广,耐药机制复杂,给养鸡业预防和治疗该病带来很大困难。大肠杆茵对抗生素的耐药问题是当前国内外研究的热点。本文对大肠杆菌耐药的现状以及产生耐药性机制的研究进行了综述,以便正确理解大肠杆菌耐药性的特点及其规律,从而为防治大肠杆菌耐药性的产生及合理用药提供理论依据。 关键词:大肠杆菌;耐药性;作用机制 The research progress on mechanism of Drg-resistance of Escherichia coli Abstract: E.coli is gram-negative bacteria, colibacillosis is a kind of common disease. Escherichia coli strains showed high levels of resistance, resistance spectrum to expand, and multiple drug resistance. The drug resistant gene is complex and diverse. So the prevention and treatment of the disease bring a lot of difficulties. Antibiotic resistance is the current domestic and international research hot spot. The advances on mechanism of resistance and the present situation of E coli resistance are summarized.Thus the trend of the drug-resistance on the E coli resistance can be understood better and the basis for preventing the production of the resistant stains and using drugs reasonablely can be furtherly provided. Keywords: Eescherichia coli; resistance; resistance mechanism 致病性大肠杆菌为医学和兽医学临床感染中最常见的病原菌之一。从发病情况看,大肠杆菌病发病率在细菌病引发的疾病中居世界首位。兽医临床上大肠杆菌造成的危害十分严重,它一年四季均可致病,一直是困扰养殖业发展的常见病、多发病,给养禽业造成了严重的经济损失;大肠杆菌病的主要防治措施是应用疫苗及抗生素。国内外已研制出多种疫苗对大肠杆菌病进行预防,但因大肠杆菌具有多种血清型,仅国内报导就有80余种,应用疫苗对大肠杆菌病进行防治尚不能满足对该病的防治要求。抗生素在大肠杆菌病预防及治疗方面有着不可替代的作用,但是随着抗生素的广泛、持续及不当使用,大肠杆菌耐药谱不断扩大和耐药水平不断提高,大肠杆菌耐药及多重耐药现象已十分严重。虽然新型抗生素不断问世,但抗生素的研制速度远远低于耐药菌的产生速度。因此了解大肠杆菌耐药状况,掌握大肠杆菌耐药趋势,研究大肠杆菌耐药机理,对控制耐药菌株的蔓延具有十分重要的意义。 1.大肠杆菌耐药性现状 近年来,随着抗生素及各种化学合成药物在我国畜牧业生产中的广泛应用,大量的抗生素、消毒剂等不断进入水、土壤、河流、沉积物等各种环境中。使得大肠杆菌耐药谱不断扩大和耐药水平不断提高,给我国畜牧业的持续发展和人类健康带来潜在的危害。国内外各地均分离得到耐药家畜源性大肠杆菌,并对这些病原菌进行了耐药谱系的检测。梅姝等[1]报道分离得到的长春地区127株鹿源大肠杆菌对5种抗菌药物呈现不同

烟粉虱的危害生物型及有关生物化学的研究进展

北京农业科学 烟粉虱专辑 14烟粉虱的危害 北京市农林科学院植保环保所 北京 100089?-2úóúèè′?oí??èè′?μ?????3??a?àê3D?o|3??¨?üμè?-??×÷??ó???êò°×·?ê-Trialeurodes vaporariorum 相比涉及74科420余种植物具有更大的经济危害性 烟粉虱在我国部分地区正在取代温室白粉虱成为温室及其它经济作物的主要害虫本文对国外烟粉虱的部分研究成果综述如下 1889年Gennadius 记述了希腊的一种烟草害虫这是烟粉虱的首次报道在美国的甘薯上发现了第一个新北区白粉虱标本称之为甘薯粉虱[2]·?ààμ???ò2±?μ??ì?y2?????19个种名作为B. tabaci 的同物异名[3]?ì·?ê-?ú???×?D?1óD?T·?ê-oí?êêí·?ê-μè??????3? ???÷?2??êêó|?üá|ò??°′?2¥?2??2???μ??üá|é?óD?ù2?í?óúê?ò?D??§??òà?Y?ì·?ê-μ??aD?2?òì???ì·?ê-??·??aè??ééú??Dí ??óDè???B 生物型重新命名为银叶粉虱 文中描述了烟粉虱在温室花卉上前所未有的的危害据统计从1985~1998年间 A B 型比A 型产更多的卵因而分泌更大量的蜜露 而A 型不会它具有导致西葫芦叶片银叶化的特征从世界许多地方收集的烟粉虱标本证明了这样的假设B 生物型的存在可以用异构酶标记法和多态DNA 扩增法来证实 Bellows (1994)提出以烟粉虱B 生物型为基础建立粉虱新种Bemisia argentifolii B 型蛹的几个形态特征成为鉴别银叶粉虱的依据 B 生物型argentifolii 前蜡缨细窄与之相反这些描述和用于区分A 和B 生物型异构酶标记以及在某些条件下生物型不能交配的证据已经被用做新的分类单元

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研究进展 摘要:随着抗生素的广泛使用,细菌的耐药性问题正在变得日趋严重和突出。本文就细菌抗药性的认识进行了探讨,简要综述了抗生素的抑菌机理、细菌的耐药机制、耐药菌的检测、耐药性产生因素以及预防。 关键词:抗生素;细菌;耐药性。 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。抗生素的不合理使用,导致了耐药性细菌的出现和蔓延,成为全球关注的重要公共卫生问题[1]。根据耐药性产生的途径,细菌耐药性分为环境介导的耐药性和微生物本身介导的耐药性,后者又可分为内在性耐药性和获得性耐药性。一般来说,在正常的遗传背景和生理条件下产生的耐药性为内在耐药性;改变遗传背景并导致细胞生理条件的改变而产生的耐药性为获得性耐药性。 1、抗生素抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素);第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素),或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷);第三类则是通过阻止细菌DNA(如喹诺酮类)、RNA(如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌[2]。 2、耐药性产生机制 细菌耐药性的发生是细菌适应不利环境而得以生存的一种防御性策略。细菌产生耐药性的主要机制有特异性耐药(包括酶对抗生素的修饰和灭活以及药物作用靶点的突变和过度表达)和非特异性耐药机制(包括改变膜的通透性、增强膜对抗生素的外排功能以及形成生物被膜)。细菌在复制过程中会不断地经历基因突变,通过改变或者取代那些正常情况下与抗生素结合的细胞内分子,从而消除药物的靶点或形成代谢拮抗剂与药物争夺靶点,细菌便有机会因基因突变而衍生出不受抗生素作用的抗药性后代[3]。也有人认为抗生素的耐药基因和合成基因在

浅谈生物化学发展现状及措施

浅谈生物化学发展现状及措施 生物化学就是研究生物体的化学组成、物质结构和生命活动状态过程中发生的各种化学变化的基础生命学科,简单地来说就是研究生物体的化学变化。现如今,生物化工的应用已涉及到人民生活的方方面面。基于此,本文对生物化学发展和现状进行探析,同时总结了相应的建议措施建议,希望对生物化学的发展有益。 标签:生物化学;发展;建议 1 生物化学的发展历程 1.1 生物化学的研究现状 与其他学科相比,生物化学是一门出现时间较晚的基础学科,它出现在人们的视野里的时间非常短。虽然它的出现时间很短但是却创造出了很多价值对人们的生活非常有帮助。近些年来,经过生物化学科学家们的不懈努力,我国的生物化学已经取得了非常重要的研究成果,使人们能够更加清楚地知道生物大分子的分解代谢、生物的合成途径以及它们之间的相互关系。科学家们还合成了很多种具有生物化学活性蛋白质及基因。人们根据生物化学成功研制出来了克隆技术、人类基因组计划,这些都在不断地推动科技向前发展。 1.2 生物化学的发展历程 人类把生物化学史分为三个部分,从叙述生物化学到动态生物化学最后是机能生物化学,这三部分的生物化学代表生物化学史上的三个不同的阶段,生物化学是从18世纪开始被人们发现的。一开始,舍勒研究生物体的各种化学组成成分,然后发现了生物与化学之间的联系,这为人们之后研究生物化学奠定了基础。在接下来的时间里有各门类的科学家去研究生物化学,他们分别合成了尿素、多肽;发现了核酸;引进生物催化剂的概念;进而又发现了必需氨基酸、必需脂肪酸、各种维生素及生物生命活动不可缺少的微量元素;之后又確定了蛋白质和DNA在遗传中所起到的作用;到今天的基因工程和克隆。生物化学在最近的一百年里飞速发展,给我们的生活带来了翻天覆地的变化。 1.3 现阶段生物化学的研究热点 虽然生物化学出现的时间很短,但是已经取得了很大的进步,生物化学现阶段的研究虽然距离我们预计的目标很遥远,但是生物化学的发展空间是不可估计的。生物化学主要突出对生物大分子物质的合成、结构和功能,生物工程,生物膜结构,物质代谢调控的研究,并且已经取得了一些进步。通过研究生命大分子的物质组成我们知道生命的基本物质是核酸和蛋白质;通过研究生物膜结构,我们懂得了,膜结构是生物体的基本结构之一,细胞间进行物质交换和传递都需要膜结构;通过对生物工程的研究,人类揭开了生命的秘密。现阶段的研究已经取

2020年(生物科技行业)微生物常规鉴定技术

(生物科技行业)微生物常 规鉴定技术

微生物常规鉴定技术 壹、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同壹种的细菌在壹定条件下,培养特征却有壹定稳定性。,以此能够对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的壹项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性仍是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如

青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。 革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)俩大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这俩类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法和简单染色涂片相同。 (2)晾干:和简单染色法相同。 (3)固定,和简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 刘蔚雯 11动科类丁颖班 【摘要】大肠埃希氏菌(E.coli)俗称大肠杆菌,是一种常见致病菌。由于抗生素的广泛持续的不当使用,导致大肠杆菌耐药株的大量出现,使人医临床和兽医临床对大肠杆菌病的治疗变得十分困难,有时甚至找不到可治之药。近年来,大肠杆菌的耐药性问题已经引起了国内外医药界的广泛重视。本文对大肠杆菌耐药现状、产生耐药性机制的研究以及减少大肠杆菌耐药性的措施综述如下。 【关键字】大肠杆菌细菌耐药性抗生素 大肠杆菌寄生在人和动物的肠道内,大多是肠道的正常菌群。人和动物出生后数小时即可经口进入消化道后段,大量繁殖而定居,终身伴随,并经粪便不断散播于周围环境。但在特定条件下可致病。随着抗菌药物长期的大量的应用,特别是近年来抗菌药物的盲目滥用,大肠杆菌耐药株引起的感染在临床上不但有增多趋势,而且其耐药性还通过质粒在细菌间传递耐药基因而不断蔓延、变迁。大肠杆菌的多重交叉耐药株的出现使大肠杆菌的治疗变得十分困难,而且还造成了动物源性食品的安全问题。因此,大肠杆菌耐药性问题引起了师姐的广泛关注。各国学者对大肠杆菌耐药性的探索也从未停止,并从多方面阐述了细菌产生耐药性的机制以及提出了一些建设性的措施。 1.大肠杆菌耐药性现状 1.1家畜源大肠杆菌耐药性现状 自1929年弗来明发现青霉素以来,伴随着养殖业的发展,抗生素在动物疾病防控过程中发挥着重要的作用。但由于抗生素和抗菌药被广泛、长期使用,细菌的耐药情况也逐渐凸显出来。世界各地均有分离得到耐药家畜源性大肠杆菌的报道。目前病原细菌对青霉素的耐药率达70%以上,对大多数喹诺酮类药的耐药率也达50%以上。瑞普公司研发中心药敏实验发现,近几年在临床上常用抗菌药物有80%大肠杆菌已对其产生严重的耐药性,处于被淘汰的境地。在试验中同时发现,家禽大肠杆菌多重耐药菌株普遍,占所有耐药菌株的50%以上,且仍呈现上升趋势。二重、三重耐药菌株所占比例下降,而五重、六重、七重耐药菌株占主导优势。在实验中发现一株对12种抗菌药都产生耐药性的超级

相关文档
最新文档