接著,使用细胞内钙离子螯合剂(.

接著,使用细胞内钙离子螯合剂(.

接著,使用细胞内钙离子螯合剂(.

Ca2+在细胞内的生理作用

Ca2+在细胞内的生理作用摘要:本文主要介绍Ca2+的一些作用,钙是人体内最重要的元素之一,参与 一切生命活动过程,维系着细胞的生理功能。钙主要是以离子形式发挥作用,其作用方式类似于激素的第二信使,因此有人称之为“生物学信使”。血浆中的钙离子浓度虽比细胞内高千倍以上,但比起骨骼和其他组织来说,还是很少的。但它存在于身体各部分,是调节体内钙浓度的重要因素之一。就是这些钙离子,通过平衡细胞内钙离子水平,在细胞中发挥着重要的作用。它维持了神经、肌肉、凝血机制,并在神经介质和激素的释放等生理功能方面发挥着重要作用,与细胞的受精等作用也有着密切关系。 一Ca2+与突触前神经递质的释放和突触后整合作用 当神经冲动抵达神经末稍时,末梢产生动作电位和离子转移,钙离子由细胞膜外进入膜内,使一定数量的小泡与突触前膜贴紧、融合起来,然后小泡与突触前膜粘合处出现破裂口,小泡内递质和其他内容物就释放到突触间隙内。在这一过程中钙离子的转移很重要。如果减少细胞外钙离子的浓度,即细胞膜内外的钙离子浓度差下降,则神经递质释放就要受到抑制,而增加细胞外钙离子的浓度差,则递质释放就增加。所以,钙离子由膜外进入膜内数量的多少,是直接关系到递质释放量的。钙离子是小泡膜与突触前膜贴紧融合的必要因素。钙离子有两方面作用:一方面是降低轴浆的粘度,有利于小泡移动;另一方面是消除突触前膜内的负电位,便于小泡和突触前膜接触而发生融合。 神经递质释放后,穿过突触间隙,激活突触后受体,这是突触后整合作用的第一步。整合作用的一部分经由亲离子受体的开放产生电位变化直接总合而发生在质膜水平;而另一部分额外的、重要的突触后整合作用通过信号级联发生在细胞内,这些信号级联控制着多种代谢过程和生物合成过程,进而调节长时程神经元反应,如调节突触强度、神经元兴奋性和调控蛋白质合成,Ca+在所有这些过程中所扮演的至关重要的作用。和控制膜通道的许多依赖Ca2+的信号、长时程突触可塑性及基因表达都被详细描述过。ER在信息的突触后处理过程中有特殊的作用,因为ER是个通用的、发信号的细胞器,能够把新产生的信号和正在进行的细胞进程进行整合,如将蛋白质合成及翻译后修饰和多种分子的细胞内转运进行整合。依赖于内膜Ca2+的兴奋性,ER密切参与在高度极化的神经细胞的末梢远端突触后部位产生的信号传递。这个ER参与的信号传播对突触活性与基因表达之间的偶联尤为重要。 二Ca2+与血液凝固 凝血开始到形成凝血酶之前为止,是由内源性和外源性两个系统组成。内源性(血液的内在性)凝血机制,为血液的单独过程。血液与异物表面(血管壁的胶原纤维等)接触时,所谓接触因子的第XII因子和第XI因子就被激活,当第VI因子被激活后,它再使无活性的第IX因子活化。另一方面,血小板也在异物表面上粘着、凝集,并引起血小板变性(viscous me-tamorphosis)释放血小板第III因子。紧接着血浆中第VIII因子和钙离子与这些有活性的第XI因子和血小板第III因子发生反应,把无活性的第X因子激活。第V因子再和血小板

钙离子测定

用荧光测定法,通过测定荧光强度来反映细胞中的钙离子浓度是目前普遍采用的细胞内钙离子检测方法。根据激发光的波长不同,可以将检测细胞内钙离子用的荧光染料分为紫外光激发的钙离子荧光指示剂和可见光激发的钙离子荧光指示剂。其中,紫外光激发的钙离子荧光指示剂有Fura 2、lndo-1、Bis-fura、Ouin-2、Fura-4 F、Fura-5F、Fura-6F、Benzothiaza-1、Benzoth. Iaza-2、BTC等;可见光激发的钙离子荧光指示剂有FIno-3、Fluo-4、Fluo-5N、Rhod-5N、X-rhod-5N 、Calcium Green-1 、Calcium Green-2、Calcium Orange、Calcium Crimson、Fura Red等。Fluo-3具有Kd值较高、可见光激发、监测背景低等优点,被广泛用于荧光监测的指示剂[9]。Fluo-3/AM在与钙结合后表现为荧光强度的增加,细胞内钙离子浓度愈高,荧光愈强,细胞内钙离子浓度愈低,荧光愈弱[10]。以往测定细胞内钙离子浓度变化的方法通常是利用激光扫描共聚焦显微镜(LSCM)来完成,但缺点是LSCM扫描采集速度慢,对培养器皿要求特殊,且价格高昂,检测成本高,对细胞伤害大。为降低长时间采集对样品造成的损伤,作者应用高灵敏度的流式细胞仪和流式细胞技术相结合,以纯化的T淋巴细胞为研究对象,选择Fluo-3/AM负载细胞,成功获得了实时监测并分析受到外界信号刺激时细胞内Ca2+ 浓度的动态变化。结果显示随着刺激信号的加入和时间的变化,Fluo-3/AM负载的T淋巴细胞内的钙离子浓度呈现动态变化。该方法能简单快速、可直接动态实时检测细胞内钙离子荧光信号,为研究细胞内的Ca2+浓度的动态变化提供了实用的解决方案和方法。 水母发光蛋白(AEQ)广泛应用于Ca2+信号监测领域己有近40年。AEQ是由一个22KDa大小的可结合Ca2+的脱辅基发光蛋白和辅基腔肠素(CTZ)组成的,在有

胞内游离Ca的测定方法

Pluronic F-127 (F127)美国Molecular Probes Inc.产品。 Ultima型共聚焦激光扫描显微镜为美国MERIDIAN Instruments Inc 产品。 1. 光源:Ultima型50Mw UV,200Mw Visible 2. 激发波长:351-364nm,488nm,514nm 3. 扫描系统:Ultima为台阶扫描,精度0.1um 目的:监测细胞胞浆中游离钙的动态变化 原理:正常细胞内游离钙浓度[Ca2┼]i为0.1 umol/L,胞外钙离子浓度为1.2-1.3mmol/L,相差达10000倍。胞外钙内流和胞内钙库动员形成的钙震荡(钙峰或钙波)在各种生理过程中起重要作用;病理状态下细胞内钙超负荷将造成一系列代谢紊乱,直至细胞坏死或凋亡;钙离子通道阻断剂已广泛应用于临床。显而易见,测定[Ca2┼]i在生理学、病理学和药理学等研究工作中均具有重要意义。Fluo-3/AM等钙离子荧光染料以脂溶性的乙酰甲氧基酯(AM酯)的形式导入细胞,在胞内水解酶的的作用下水解成游离酸,与钙离子的结合物在激发光作用下能产生特异的荧光。荧光信号的强弱随钙离子浓度的变化而变化。 100ug Fluo-3/AM 溶于100ul DMSO中,就是1ug/ul,1mg/ml,1g/L 方法:1.预先用二甲基亚砜(DMSO)将Fluo-3/AM配制为1mmol/L(1g/L)原液,-20oC避光保存。F127用DMSO配制成20%溶液(W/V)。用无血清无酚红培养液将Fluo-3/AM稀释成终浓度为10umol/L,并加入0.1%的Pluronic F-127备用。2.移去培养皿中的原培养液,用PBS液冲洗心肌细胞2遍,加入10umol/L 染料液1ml,置于37oC的CO2孵箱里避光温育30min。 3.将染色后的心肌细胞用PBS液冲洗3遍,加入1mlDMEM液后置于20倍光学显微镜观察区域及层面,用LSCM观察Fluo-3染色的细胞的某一层面的荧光图像。 4.启动LSCM,选择488nm氩离子激光,启动计算机,运行lasersharp2000软件,选择time-course程序,设置扫描间隔时间(30sec)、扫描次数(300次),开始扫描。 5.将数据输入excel进行整理、统计、分析。 一、细胞内游离Ca2+浓度([Ca2+]i)的测定 按经典方法,以钙离子敏感的荧光探针Fura-2/AM或Fluo-3/AM来检测细胞内[Ca2+]i。Fura-2的结构类似于四羧酸的Ca2+螯合剂EGTA,能以1:1的比例特异性地与Ca2+结合,与EGTA不同的是Fura-2可发出荧光,并且结合Ca2+后荧光特性有改变,Fura-2及其与Ca2+结合后的复合物的最大激发波长分别为380 nm和340 nm,这种变化可指示Ca2+的存在及其浓度。Fura-2为一极性很大的酸性化合物,不能进入细胞内,但在其负性基团部位结合上乙酰氧甲酯基后则成为Fura-2/AM。后者脂溶性很强,又消除了负电荷,容易通过细胞膜,随后被细胞内的非特异性酯酶水解掉分子中的酯基后又变为Fura-2,与胞浆中的游离Ca2+结合后即可被特定波长的紫外光(340 nm)激发产生荧光。并且,Fura-2与Ca2+解离容易,随着游离Ca2+的增加或减少,其荧光强度便随之变化。因此,Fura-2的荧光强度与[Ca2+]i呈比例关系,据此可以测定[Ca2+]i及其变化(Malgaroli, A., et al., 1987)。

抗高血压药(钙拮抗剂)总论

抗高血压药--钙拮抗剂 一、概述 钙拮抗剂也叫钙通道阻滞剂简称CCB,主要通过阻断心肌和血管平滑肌细胞膜上的钙离子通道,抑制细胞外钙离子内流,使细胞内钙离子水平降低而引起心血管等组织器官功能改变的药物。对心脏的作用,主要是抑制心肌去极化过程中第二时相钙离子内流,降低细胞内钙,减弱心肌收缩力,降低心肌氧耗量,同时抑制窦房结和房室结的钙内流,使窦房结自律性下降,房室传导减慢,心室率降低。在血管主要扩张动脉平滑肌,降低外周阻力,而对静脉平滑肌作用甚小。 二、钙拮抗药的分类及特点 钙拮抗剂的分类 根据药物的分子结构及其作用于L型钙通道的不同亚单

位,可将钙拮抗剂分为二氢吡啶类和非二氢吡啶类,前者以硝苯地平为代表,后者代表药物有维拉帕米和地尔硫。根据药物作用的持续时间,钙拮抗剂又可分为短效和长效两类。长效钙拮抗剂包括半衰期较长的药物,例如氨氯地平;脂溶性膜控型药物,例如拉西地平和乐卡地平;缓释或控释型制剂,例如非洛地平缓释片、硝苯地平控释片等。 根据药物受体结合特性、组织选择性和药代动力学特点等决定的临床作用,分为第一代、第二代、第三代和第四代。 第一代钙拮抗剂均为短效。特点是:①量效关系难以预测。这是因为生物利用度低、波动大,造成个体内和个体间的药物血浆浓度波动大。②由于快速的血管扩张和交感神经系统激活引起反射性心动过速、心悸和头痛,尤其以硝苯地平最为明显,这是因为此药的达峰时间较短(1 h)。③作用持续时间短。半衰期短、清除率高,使高血压患者的血压和心绞痛患者的心肌缺血的控制很难实现24 h 的有效覆盖,在清晨的血压和缺血高峰期患者不能得到保护。④血管选择性差,如维拉帕米和地尔硫卓具有明显心脏作用,包括负性变时、负性传导和负性变力作用。第一代钙拮抗剂对充血性心力衰竭都有不利影响,使预后恶化。使用历史最长、最普遍的是硝苯地平(心痛定),它是第一代的钙离子拮抗剂。服用心痛定后血压很快降低,但由于血管迅速扩张,病人常常感到头痛、心跳快、面红、不容易坚持治疗。另外,心痛

钙离子在调控细胞凋亡和细胞迁移中的作用综述

钙离子在调控细胞凋亡和细胞迁移中的作 用综述 中国农业大学植生071 薛永铭0702040118 摘要钙离子对生命活动具有重要作用。本文集中讨论钙离子在细胞凋亡与迁移的调控中所扮演的重要角色。亚细胞区室内钙离子分布的微妙变化可以有效地正调控或负调控细胞凋亡,这是钙离子参与四条信号通路来调控细胞凋亡的基础。程和平教授研究组最近发现钙闪烁在细胞定向迁移中的作用,对细胞迁移的研究有重要作用。 关键词钙离子信号通路细胞凋亡Caspase(半胱天冬酶)细胞迁移钙闪烁 一、钙离子对生命活动具有重要作用。 钙离子对多项生命活动具有重要作用。在动物生理的教科书中对其主要生理功能进行了总结: 1.钙离子是凝血因子,参与凝血过程; 2.参与肌肉(包括骨骼肌、平滑肌)收缩过程(内质网内钙库的释放); 3.参与神经递质合成与释放、激素合成与分泌; 4.是骨骼构成的重要物质。 这些重要生理功能已经有了几十年的研究基础,然而近些年的研究却揭示了钙离子在细胞凋亡与迁移的调控中所扮演的重要角色,使人们得以钙离子的生理功能,所以我认为集中笔墨将这两个方面进行介绍也是很有意义的。 二、钙离子参与四条主要的凋亡信号通路。 长期研究表明,亚细胞区室内钙离子分布的微妙变化可以有效地正调控或负调控细胞凋亡,因此钙离子扮演着细胞生存的捍卫者或是无情的死刑执行者的双重角色。近年来,研究者发现并总结出了引起哺乳动物细胞凋亡的四条信号通路:外部

通路(死亡受体通路)、内部通路(线粒体通路)、依赖Caspase-2的通路、不依赖于Caspase的通路(GrA介导通路)。四条通路图示见图1。 图1 引发哺乳动物细胞凋亡的四条信号通路。(引自Sten Orrenius et al., 2003)1.钙离子与死亡受体通路 死亡受体(DR)通路是目前研究最多最清楚的凋亡诱导机制。死亡受体包括Fas、TRAILR2、TRAILR1等,都属于肿瘤坏死因子受体超家族。以Fas为例,Fas 触发的凋亡机制是通过升高钙离子浓度来实现的。钙结合蛋白对内质网腔内钙离子变化非常敏感,与Fas结合后使钙离子内流,启动细胞凋亡,激活Caspase-8。在I 型细胞中,Caspase-8激活Caspase-3,而Caspase-3是细胞凋亡的直接执行者之一;在II型细胞中,Caspase-8剪切Bid蛋白,而后依赖线粒体通路诱导凋亡。 2.钙离子与线粒体通路 线粒体是胞内重要的钙库,内质网与线粒体之间的钙离子交流对细胞命运有深刻地影响。在一些刺激作用下,内质网将其储存的钙离子释放,然后线粒体摄取钙离子,引起钙离子超载,导致线粒体的损伤。线粒体的损伤会导致细胞色素c的释放,引发凋亡体(apoptosome)的形成,apoptosome激活Caspase-9,Caspase-9又激活了细胞凋亡的直接执行者Caspase-3,诱导了细胞凋亡。线粒体通透孔的开放使

细胞线粒体内钙离子浓度荧光检测试剂盒产品说明书中文版

细胞线粒体内钙离子浓度荧光检测试剂盒产品说明书(中文版) 主要用途 细胞线粒体内钙离子浓度荧光检测试剂是一种旨在通过线粒体钙离子特异性荧光探针Rhod-2,与钙离子结合后,其荧光强度显著增强,在荧光分光光度仪下观察相对荧光峰值的变化,来测定细胞线粒体中总钙离子浓度的权威而经典的技术方法。该技术经过精心研制、成功实验证明的。其适用于各种活体细胞(动物、人体等)内线粒体钙离子的浓度检测。产品严格无菌,即到即用,操作简捷,性能稳定,检测敏感。 技术背景 钙是人体中的一种重要电介质和矿物质,占1150克。其中99%的钙以氟磷灰石钙(calcium fluorophosphate apatite)形式存在于骨组织中。非骨组织钙成分主要存在于细胞内。钙具有两种主要形式:一种是非弥散型蛋白结合钙,其构成约40%至50%的血清中的总钙含量;另一种为弥散型游离钙,其进一步分成具有活性的复合钙(complexed calcium)和离子钙(ionized calcium)。钙对神经肌肉兴奋性(neuromuscular excitability)、血液凝固、酶的激活、离子跨膜运输、释放神经传导介质、信使传导等方面起着重要作用。在细胞内,钙离子主要储存在线粒体和内质网等细胞器中。其中线粒体钙离子在调节线粒体代谢、保持线粒体的A TP产量达到细胞需求,维持细胞内环境钙离子平衡方面起着重要作用。线粒体钙的检测包括沉淀法、EDTA鳌合滴定法、火焰光度法(flame photometry)、原子吸收分光光度法等技术,但容易受到钠、钾、磷酸盐、硫酸盐的干扰,或者受限于仪器的特殊的要求,以及需要线粒体纯化。Rhod-2,罗丹明123(rhodamine 123)的衍生产物,一种与钙离子结合产生荧光,同时其正电荷特性,特异性地聚集在线粒体里,由此用于测定线粒体内钙离子水平。在荧光分光光度仪下,激发波长550nm,散发波长590nm,来定量测定线粒体的钙浓度。 产品内容 清理液(Reagent A)40毫升 染色液(Reagent B)30微升 介导液(Reagent C)600微升 饱和液(Reagent D)2毫升 阴性液(Reagent E)2毫升 产品说明书1份 保存方式 保存染色液(Reagent B)和介导液(Reagent C)在-20℃冰箱里,避免光照;其余的保存在4℃冰箱里;有效保证6月 用户自备 1.5毫升离心管:用于工作液配制的容器 细胞培养箱:用于染色孵育 黑色96孔板:用于样品操作的容器

钙离子成像

钙离子成像 一、实验目的 钙是人体的重要组成成份,它广泛分布于全身各组织器官中,正常人体的钙占体重的1.5%-2.0%。在人体中的含量居第五位。钙离子与神经递质的释放、肌肉收缩以及凝血过程等生理过程都有重要关系,因此钙离子的检测对人体了解相关的生理活动非常的重要。 二、实验仪器 硬件设备: ? 1.Olympus 倒置显微镜 IX71 ? 2. TILL单光仪 ? 3.EM-CCD(HAMAMATSU C9100) ? 4.Computer 软件模块:SimplePCI 6.5 三、实验原理 测量钙离子的合成指示剂分为单波长激发指示剂、双波长激发指示剂和双波长发射指示剂3种。 ①波长激发指示剂:Quin-2 是第1代荧光指示剂,在340 nm处激发,505nm处可观察到结合Ca2+的发射峰强度的增加。用于测定静息状态或接近静息状态下的细胞内Ca2+的浓度,无法检测 1μM以上的Ca2+浓度 ②双波长激发指示剂:Fura-2 Fura-2是第2代荧光指示剂,当介质中无钙时,Fura-2的激发峰为380nm;当与钙结合后,激发峰向短波方向移至340nm,所以采用激发比例荧光测量。进入细胞的Fura-2随时间推移将泄漏到细胞外,所以应尽量缩短测定时间。 ③双波长发射指示剂:Indo-1 Indo-1为单波长激发(340nm)和双波长发射(405和506nm)指示剂,其优点与

Fura-2相同。Indo-1已经在流式细胞研究中广泛使用。测量340nm和380nm激发下的发射荧光强度: F 340和F 380 →R= F 340 / F 380 校准 [Ca2+] i =K d (R-R min )/(R max -R)(nmol/L) R max 是加入0.1%的TritonX-100破坏细胞膜后所得到的最大荧光强度比值; R min 为加入5μM的螯合剂EGTA后测得的最小荧光强度比值。K d 为Fura-2与钙离 子反应的解离常数,大小为224nmol/L. 四、实验结果

二氢吡啶钙离子拮抗剂的合成

实验十五二氢吡啶钙离子拮抗剂的合成 一、目的要求 1. 了解硝化反应的种类、特点及操作条件。 2. 学习硝化剂的种类和不同应用范围。 3. 学习环合反应的种类、特点及操作条件。 二、实验原理 二氢吡啶钙离子拮抗剂具有很强的扩血管作用,适用于冠脉痉挛、高血压、心肌梗死等症。本品化学名为1,4-二氢-2,6-二甲基-4-(2-硝基苯基)-吡啶-3,5-二羧酸二乙酯,化学结构式为: N H NO 2 CH 3CH 2 OOC COOCH 2 CH 3 CH 3 C H 3 本品为黄色无臭无味的结晶粉末,mp.162~164℃,无吸湿性,极易溶于丙酮、二氯甲烷、氯仿,溶于乙酸乙酯,微溶于甲醇、乙醇,几乎不溶于水。 合成路线如下: CHO KNO 3 24CHO NO 2 CH 3 COCH 2 COOCH 2 CH 3 NH 4 OH N H NO 2 CH 3 CH 2 OOC COOCH 2 CH 3 CH 3 C H 3 三、实验方法(一)硝化

在装有搅拌棒、温度计和滴液漏斗的250 mL三颈瓶中,将11 g硝酸钾溶于40 mL浓硫酸中。用冰盐浴冷至0℃以下,在强烈搅拌下,慢慢滴加苯甲醛10 g (在60~90 min左右滴完),滴加过程中控制反应温度在0~2℃之间。滴加完毕,控制反应温度在0~5℃之间继续反应90 min。将反应物慢慢倾入约200 mL冰水中,边倒边搅拌,析出黄色固体,抽滤。滤渣移至乳钵中,研细,加入5 % 碳酸钠溶液20 mL(由1 g碳酸钠加20 mL水配成)研磨5 min,抽滤,用冰水洗涤7~8次,压干,得间硝基苯甲醛,自然干燥,测熔点(mp.56~58℃),称重,计算收率。 (二)环合 在装有球型冷凝器100 mL圆底中,依次加入间硝基苯甲醛5 g、乙酰乙酸乙酯9 mL、甲醇氨饱和溶液30 mL及沸石一粒,油浴加热回流5 h,然后改为蒸馏装置,蒸出甲醇至有结晶析出为止,抽滤,结晶用95% 乙醇20 mL洗涤,压干,得黄色结晶性粉末,干燥,称重,计算收率。 (三)精制 粗品以95% 乙醇(5 mL / g)重结晶,干燥,测熔点,称重,计算收率。 (四)结构确证 1. 红外吸收光谱法、标准物TLC对照法。 2. 核磁共振光谱法。 注释: 甲醇氨饱和溶液应新鲜配制。

钙拮抗剂横向比较

钙拮抗剂横向比较 分类:与动脉血管及心脏的亲和力和作用: 1.二氢吡啶类(DHPs), 如氨氯地平、硝苯地平主要作用于血管平滑肌上的L型钙通道, 起到舒张血管和降低血压的作用; 2.非DHPs, 如维拉帕米、地尔硫卓, 对心肌和血管上的L型钙通道作用程度与DHPs相同, 但是对窦房结和房室结处的钙通道有选择性。维拉帕米和地尔硫卓在扩张血管方面较DHPs差, 但是其对心脏的负性变时、负性传导和负性变力作用是DHPs所不具备的。 根据受体结合特性、组织选择性和药代动力学特点: (1)第一代为短效钙离子拮抗剂, 包括硝苯地平、尼卡地平、地尔硫卓等,由于生物利用度低且波动大,药物血浆浓度波动大,用药后快速导致血管扩张和交感神经系统激活,引起反射性心动过速、心悸和头痛;由于此类药物半衰期短、清除率高、作用持续时间短,使其对血压控制时间短,很难实现24小时的有效覆盖,容易引起反射性交感神经激活, 增加心率, 基本不用于高血压的治疗; (2)第二代钙离子拮抗剂的药物,通过改革剂型为缓释或控释剂型使药代动力学特性有了明显改善,也有部分具有新的化学结构,代谢动力学特性有所改善,血管选择性有所提高, 性质稳定、疗效确切, 如硝苯地平缓释片、尼莫地平、尼群地平等, 但其生物利用度仍很低, 峰谷血浆浓度波动较大; (3)第三代为长效钙离子拮抗剂, 以氨氯地平、拉西地平、乐卡地平等为代表, 半衰期长, 可1次/d服用, 因其起效缓慢,作用平稳,持续时间久,抗高血压的谷峰比值高,血压波动小、不良反应小、服用方便且能24h覆盖等特点, 已成为用于高血压治疗的重要钙离子拮抗剂类药物。 拉西地平: (1)肝功能不全者需减量或慎用, 因其生物利用度可能增加, 而加强降血压作用。 (2)本品不经肾脏排泄, 肾病患者无需调整剂量。 (3)虽然本品不影响传导系统和心肌收缩, 但理论上钙离子拮抗剂影响窦房结活动及心肌储备, 应予以注意。窦房结活动不正常者尤应关注, 有心脏储备较弱者亦应谨慎。

激光共聚焦扫描显微镜技术在大鼠皮层神经元细胞内钙离子浓度动态测定中的应用

?530? ?实验研究? 激光共聚焦扫描显微镜技术在大鼠皮层神经元细胞内钙离子浓度动态测定中的应用 武美娜李新毅白玮郭芬祁金顺 【摘要】目的探讨激光共聚焦扫描显微镜(LCSM)技术在动态测定神经元细胞内钙离子浓度中的应用。方法采用原代培养大鼠皮层神经元,用LCSM测定给KCI前后细胞内钙离子浓度的动态变化。结果培养神经元状态良好。用LCSM准确、稳定、可靠地测出细胞内钙离子浓度的动态变化。结论LCSM在动态测定神经元细胞内钙离子浓度中具有明显优势。 【关键词】显微镜检查,共焦;细胞内钙离子浓度;皮层神经元 UseofIasereonfocalscanningmicroscopyfordynamicstudyofintracellularcalciumconcentrationinratcor-ticalneuronsWUMei-na',LIXin一蚋,BAlWei,GUOFen,QIJin-shun.DepartmentofPhysiology,ShanxiMedicalUniversit)',Taiyuan030001.China 【Abstract】ObjectiveTodocumentthepromisesoflaserconfocalscanningmicroscopy(LCSM)indynamicstudyof intraeellulafcalciumconcentration(『Ca邳)jnneuronssubjeetedtodifferentdrugadministration.MethodsLCSMwasuse(1toinvestigatethedynamicchangeoffCa2qiinprimaryculturedcorticalneuronsbeforeandafterKCItreatment.ResultsTheculturedneuronsshowedgoodmorphologyandgrowthstatus.Accurate,stableandreliablemeasurementsofdynamic『Ca2+]iwereperformedusingI£SM.ConclusionLCSMtechniquemayshowpromisesformeasurementofdynamicchangeinfCa2+]i. 【Keywords】Microscopy,COllfocal;IntraceUularcalciumconcentration;Cortiealneurons Ca2+是细胞内最为重要的阳离子和第二信使之一。它对于神经递质释放、神经元之间信息传递和神经元存活等都具有重要意义。神经元细胞内游离Caz+浓度([Ca:+3i)异常升高是导致胞内钙稳态失调和细胞死亡的重要因素…,因而观察神经元[Ca2+]i的变化是神经生理学研究中的一个重要内容。然而。目前采用的一些测定细胞内钙离子浓度的方法.如Ca“活化的发光蛋白法、偶氮染料法、ca:+选择性微电极测定法、发射示踪法、核磁共振法、荧光标记法等各有优势,但同时也有不足之处【引。 激光共聚焦扫描显微镜(1aserconfocalscanningmicroscope,LCSM)是20世纪80年代诞生的一种先进的细胞生物学分析仪器。利用紫外光或可见光激 基金项目:国家自然科学基金科学部主任基金资助项目(30740095);教育部高等学校博士学科点专项科研基金资助项目(20060114004);山西省自然科学基金资助项目(200601105);山西省重点实验室开放基金资助项目(200603012) 作者单位:030001太原,山西医科大学生理教研室(武美娜、郭芬、祁金顺);山西医科大学第一医院神经内科(李新毅);山西省肿瘤医院病理科(白玮) 通讯作者:祁金顺:发荧光探针,计算机进行图像处理。可以对活细胞生理信号、离子含量如Ca嗽度进行实时动态分析检测。LCSM具有高灵敏度、高分辨率、高放大倍数的特点。可进行定性、定量、定时、定位的分析测量,是近代生物医学技术最重要的发展之一。因此,它已成为形态学、分子细胞生物学、神经科学、药理学和遗传学等领域新一代强有力的研究工具[,,4|。LCSM的一个显著优点是可以对同一样品平面随时间进行连续扫描。进而分析细胞结构或细胞内离子含量的动态变化。对细胞内C矿的动态测定,要求仪器具有实时、连续测定的能力。本文介绍使用LCSM在原代培养大鼠皮层神经元细胞内Ca2+浓度动态测定中的具体应用及其优势。 1材料和方法 1.1大鼠皮层神经元的原代培养:取新生1~3dWistar大鼠,无菌条件下分离大脑皮层,剪碎(<linln,)。以终浓度为0.0325%的胰蛋白酶消化(37℃,5—10min),用含胎牛血清的培养基终止消化,火抛光的Pasteur吸管轻轻吹打10~20次,静置沉淀3~5min.取上液200目筛网过滤后1000r/min离心5

原子吸收法对钙的测定

原子吸收法对钙的测定 摘要:探讨原子吸收分光光度法测定食品中钙的方法。钙单元素检测范围在0~5μg/ml浓度内,标准曲线线性关系良好,(r= 0.99942);相对标准偏差为1.59%~2.19%,加标回收率95.13%~96.28%。结论:该检测结果与国标方法比较无显著性差。该方法抗干扰能力强,检出限低,重现性好,精密度高,回收率高,操作快速简洁等优点。适合开展大批量检测工作,可为食品中钙的含量测定提供技术支持。 abstract: this paper is to investigate the method to determine calcium in food by the atomic absorption spectrometry. the range of calcium single-element detection is in 0~5μg/ml concentration, and the standard curve linear relationship is good,(r=0.99942); the relative standard derivations for ca is 1.59%~2.19% respectively. the recoveries of samples for ca is 95.13%~96.28% respectively. conclusion: results of the testing methods has no significant difference with the national standard. this method has strong anti-interference ability, low detection limit, good reproducibility, high-precision, high-rate, simple and fast operation and other advantages. to carry out testing for high-volume work can provide the technical support for the calcium determination.

薄层液基细胞检测技术

薄层液基细胞检测技术(TCT)及临床意义 一,薄层液基细胞学检测技术(TCT技术)研究发展背景 薄层液基细胞学检测技术(Thin-Cytologic Test TCT),液基薄层细胞制片检查系统处理技术诞生于1991年美国等国家,率先应用于妇科细胞学检查,国内从2001年开始作液基细胞学筛查宫颈癌的研究,使该项技术得到迅速发展,被称之为一场细胞学制片技术的革命。 TCT从根本上解决了常规脱落细胞制片假阴性率高、丢失细胞率高(80%)和涂片质量差等技术难题,使宫颈癌的阳性检出率达95%以上,为脱落细胞学诊断作出了重大贡献。但是过去该技术需要国外的制片机、细胞保存液等,它的价格昂贵,在国内也只能是一些大医院才能开展该项目,在基层医院的推广则比较缓慢。后来国内的一些厂家研发了半自动的离心法制片机,并自主研发了细胞保存液,大大地降低了薄层液基细胞的制片成本,从而使该项技术易于被广大基层医院所接受并且进行推广使用。目前,它已成为筛查宫颈癌最好的推荐方法之一,为宫颈癌的早期诊断和治疗提供了非常明确的诊断依据,是一项非常值得推广应用的临床检验技术。 二,产品作用原理: 通过采集阴道或宫颈分泌物,获得脱落细胞后浸入液基细胞处理试剂中进行处理,试剂中的裂解成分能对红细胞进行裂解,去除红细胞对检验结果造成的干扰;同时试剂中的固定成分能保存固定白细胞、脱落上皮细胞等有价值的细胞;并使包裹在黏液中的有效细胞充分分离出来,防止有价值细胞的丢失。将有效细胞制备成细胞悬液,最后通过过滤离心方法清除黏液对制片的干扰,制成脱落细胞薄片。可用HE染色、巴氏染色或其他免疫组织化学染色等方法使细胞着色,再通过人工观察分析来检查阴道或宫颈的细胞形态,诊断子宫颈癌及其癌的前期变化、人乳头瘤病毒和单纯疱疹病毒感染。 三,主要开展的检查项目: 宫颈脱落细胞检查、胸腹水脱落细胞检查、尿沉渣检查、痰液脱落细胞检查、支气管刷片细胞检查。特别适用于所有的女性的宫颈癌的早期诊断。 四,TCT优点: 1、保存液试剂盒有裂解红细胞功能,能快速裂解采集样品中的红细胞,裂解能力强,裂解更完全,能去除血液对检验结果造成的干扰。 2、试剂盒含有细胞固定剂成分,能快速对样品中的白细胞、脱落上皮细胞等有检验价值的细胞进行固定保存,防止有效细胞发生自溶。经试剂盒固定保存的细胞,细胞形态完好,能保持样品采集时细胞的原始形态,不会发生膨胀、固缩等形态变化,保证检验对有效细胞的数量和质量要求。 3、试剂盒对粘液具有稀释作用,能分离出大量包埋在粘液中的有效细胞。使更多有检验价值的细胞被保存下来,提供充足的细胞数量,为检验结果的准确提供保证;同时,处理后的样品经低速离心过滤后能彻底清除样本中的粘液,有效防止粘液对样品检验结果的干扰。 4、处理过的样本经过低速离心后可制成均匀单层的细胞薄片,达到检验要求。 5、、经试剂盒处理的脱落细胞对生物染色剂具有亲和性,有利于生物染色剂着色,为诊断工作提供了方便。 6、、试剂盒使用简单,操作方便,大大节省了制备样品标本的时间,同时克服了传统检查方法的不足。 五,宫颈癌是常见的恶性肿瘤之一,发病率位于女性恶性肿瘤的第二位,据相关组织公布全世界每年大约有20万名妇女死于这种疾病。近年筛查发现,发达国家发病率明显下降,而发展中国家的发病率是发达国家的6倍,我国妇女宫颈癌的发病率和死亡率占世界的1/3,可见改善卫生状况,及时就诊,早发现、早治疗极为重要。

钙离子拮抗剂 信心小总结

1 钙离子拮抗剂的应用类型及作用机制 低血游离钙可能引起高血压,其机理与钙对膜的稳定效应有关。当血游离钙降低时,膜的稳定效应减弱,膜上相应的电压依赖性钙通道开启,细胞外游离钙流入细胞。并触发“钙流入激活钙释放机制”,使胞浆游离钙进一步增高,最终引起血管收缩,血压升高,称I型缺陷。此型特点为低肾素、低血清游离钙及高细胞游离钙水平。此时,钙离子阻滞剂或补充钙治疗有效;而高肾素一高血清游离钙型高血压,钙离子阻滞剂或补钙治疗效果不佳。 在高血压治疗中的作用及地位。CCB明确适应证为:(1)老年性高血压患者;(2)单纯收缩期高血压患者;(3)高血压有心绞痛患者;(4)外周血管病患者;(5)颈动脉粥样硬化;(6)高血压伴妊娠患者。 钙离子拮抗剂阻滞心肌钙依赖性的兴奋一收缩耦联并在离子通道水平选择性地阻断细胞膜上的钙离子通道 (慢钙通道),使胞内肌浆网释放钙离子下降,同时减少钙离子与钙调蛋白相结合,使肌球蛋白氢键激酶 (MLCR) 活化, 肌球蛋白与肌动蛋白相互作用引起的收缩作用减弱, 使全身血管扩张,血压下降。除此之外, 钙离子拮抗剂还具有抑制心肌收缩力、降低心肌耗氧量、松弛血管平滑肌、引起血液动力学变化等心血管系统方面的作用, 而且还具有抑制血小板聚集、抑制神经及内分泌系统的兴奋分泌偶联以及减少交感神经末梢递质的释放等作用。. 2+Ca 2+通道Ca -2+Ca内流-2+Ca通道钙调蛋白阻滞剂2+Ca钙调蛋白复合物-

平滑肌收缩血压 钙离子拮抗剂的分2 : 根据其化学结构和药理作用可分为两大类型钙通道,起到舒张血 (DHP 二氢吡啶类s),主要作用于血管平滑肌上的L(1) 管和降低血压的作用;型钙通道作用程度, 对心肌和血管上的 L(2) 非DHPs, 如维拉帕米、地尔硫卓但是对窦房结和房室结处的钙通道有选择性。维拉帕米和地相同, 与 DHPs差,但是其负性变时、降低交感神经活性的尔硫卓在扩张血管方面较DHP s所不具备的。作用是 DHPs组织选择性和药代动力学特点将钙离子拮抗剂划分为根据药物的受体结合特性、: 三代容易, 包括硝苯地平、尼卡地平、地尔硫卓等,(1) 第一代为短效钙离子拮抗剂;基本不用于高血压的治疗引起反射性交感神经激活, 增加心率 , , 血管选择性有所提高(2) 第二代钙离子拮抗剂的药物代谢动力学特性有所改善,但其生, 尼莫地平、 , 性质稳定、疗效确切如硝苯地平缓释片、尼群地平等; 物利用度仍很低,峰谷血浆浓度波动较大. (3) 第三代为长效钙离子拮抗剂, 以氨氯地平、拉西地平、乐卡地平等为代表, 半衰期长 , 可 1次 / d服用, 因其长效、不良反应小、服用方便且能 24h覆 盖等特点, 已成为用于高血压治疗的重要钙离子拮抗剂类药物。 根据此分类 第一代钙拮抗剂均为短效。特点是: ①量效关系难以预测。这是因为生物利用度低、波动大,造成个体内和个体间的药物血浆浓度波动大。 ②由于快速的血管扩张和交感神经系统激活引起反射性心动过速、心悸和头痛,尤其以硝苯地平最为明显,这是因为此药的达峰时间较短( 1h ) 。 ③作用持续时间短。半衰期短、清除率高,使高血压患者的血压和心绞痛患者的心肌缺血的控制很难实现2 4 h的有效覆盖,在清晨的血压和缺血高峰期患者不能得到保护。 ④血管选择性差,如维拉帕米和地尔硫卓具有明显心脏作用,包括负性变时、负性传导和负性变力作用。第一代钙拮抗剂对充血性心力衰竭都有不利影响,使预后恶化。 第二代钙拮抗剂的药代动力学特性有所改善或血管选择性有所提高。 Ⅱa类与第一代钙拮抗剂相比,血管扩张所致的副作用减少减轻,因为它们的血浓度达峰时间延长,起效较慢。它们的半衰期延长,作用持续的时间延长。 Ⅱb类的血管选择性提高,对心脏的负性变力性、负性变时性和负性传导作用减弱,药代动力学也有所改善,但生物利用度仍很低,峰谷血浆浓度波动较大。

钙片中钙含量的测定

原子吸收光谱分析钙片中钙含量的测定 高伟 环境工程0801 200829090119

钙离子在人体中的作用 钙离子是维持机体细胞正常功能的非常重要的离子,它对于维持细胞膜两侧的生物电位,维持正常的神经传导功能。维持正常的肌肉伸缩与舒张功能以及神经-肌肉传导功能,还有一些激素的作用机制均通过钙离子表现出来。 1、维持正常的肌细胞功能,保证肌肉的收缩与舒张功能正常。 2、对于心血管系统,钙离子通过细胞膜上的钙离子通道,进入胞内,通过一系列生化反应,主要是有加强心肌收缩力,加快心率,加快传导的作用。因而,细胞外钙离子浓度高则会升高血压,使心收缩力加强,每博输出量增大,因而血压也会相应增高。重要的抗高血压药物有一种便是钙离子拮抗剂,它使得钙离子通过细胞膜上的钙通道的数量减少,使得心肌收缩力减弱,心率降低,血压下降。其他心血管系统疾病还有充血性心力衰竭、心律失常等,病因均与钙离子关系密切。 4、钙离子对与骨骼的生长发育有着重要的作用,在年轻时,这主要受激素(降钙素、甲状旁腺素等)的调节。老年人骨骼钙易流失,因此骨骼变脆,变得容易骨折。 科学补钙: 据全国营养调查,我国31个省、市、自治区平均每人每天摄入钙为406mg。儿童、幼儿钙摄入量为平均每天322mg,低于全国人平均钙摄入量,仅为国家推荐量的40%。(我国钙日标准推荐量:6个月以下的婴儿为400mg,6个月~3岁为600mg,3~11岁为800mg,11~

13岁为1000mg,13~16岁为1200mg) 新生儿 新生儿的体重和身高增长速度较快,需要补钙。3.0-2岁的宝宝户外活动时间少,饮食还不够丰富,对钙的吸收就会缺乏,此阶段因缺钙而发生佝偻病或佝偻病症状的可能性特别高,因此也需要服用补钙产品。 女性 女性缺钙从30岁开始,到了40岁以后,每年丧失骨质约1%,在更年期后,骨质丧失进一步加重,导致骨质疏松。目前我国孕妇和哺乳妇女平均每日钙摄入量仅为国家钙日推荐量的50%(我国钙日推荐量孕妇早期为1000mg、晚期及乳母为1500mg)。女性在妊娠期,摄取的钙除满足自身代谢所需还要通过胎盘供给胎儿生长发育。哺乳期则满足自身需要外还要通过母乳供给婴儿。 中老年人 缺钙是造成老年人变矮、或者掉牙的直接原因之一。缺钙则引起骨质疏松、老年人椎骨及椎间盘组织逐步退化,椎骨出现骨质疏松,而椎间盘则失去弹性、受压而变薄,体重的压力使椎骨上下受压而变扁,身高变矮,出现驼背。同时,牙龈萎缩,牙根暴露,牙骨质减少,小颌骨及下颌骨骨质疏松,使牙槽窝变浅变大,导致牙齿松动,以至脱落。老年人由于骨中的钙质疏松,因此很容易骨折。 补钙须知 1.补钙必须要加维生素D

新型均相Fura-2 钙流检测实验(Molecular Devices)

FLIPR TETRA高通量实时荧光成像分析系统应用系列(3) Fura-2QBT?钙流试剂盒: 新型均相Fura-2钙流检测实验 Fura-2染料一直以来被认为是在细胞成像、GPCR介导的细胞内钙流、以及离子通道激活等实验中检测钙动员的重要工具。这种比值法检测染料通过计算结合和未结合两种状态之间的荧光强度比值,有助于纠正由于染料添加或细胞铺板造成的误差。然而,传统的Fura-2染料必须要进行缓冲液清洗,从而对于每一个实验来说都提高孔间差异性并需要耗费更多时间且增加操作复杂性。Molecular Devices?推出的Fura-2 QB T?钙流试剂盒是基于专利的信号湮灭技术,含有比值法检测的Fura-2钙离子指示剂,提供均相实验体系并减小细胞基础的差异性, 从而通过在检测前去除细胞清洗步骤间接增加通量。另外, Fura-2 QB T?钙流试剂盒是在紫外光谱处激发,最大程度使得研究者可以减少488nm 激发的化合物荧光信号的干扰。 实验原理 Fura-2 AM是一种钙离子敏感染料,在340 nm和380 nm被激发,发射波长是510 nm。染料结合了钙离子后其吸收波长从380nm转移到340nm。图1显示了钙离子结合Fura-2后340/510nm发射的信号(绿)的增加,而380/510 nm发射的信号(橙)下降。计算两种发射的信号比值(插图)来检测用于拟合量效曲线的最大值减去最小值后的信号效应。Fura-2 QBT?钙流实验准备 本次实验中使用的是小规格的Fura-2 QB T?钙 流试剂盒(PN #R8197)。染料重悬在含有20 mM HEPES的Hank’s平衡盐溶液(HBSS)。丙磺 舒(PBX)在需要时加入,用以抑制染料被转移 出细胞内。贴别的CHO M1细胞或HeLa细胞实 验前过夜种在黑壁底透的384孔板中,在试验时 从培养箱中取出。含有Fura-2 QBT染料或者其 它染料的25μL缓冲液加入到每个孔中,同时孔 中需含有25μL缓冲液或培养基。加载了Fura-2 QB T?钙流试剂(PN #R8197)或BD比值法钙 流试剂(#644243)的细胞记录板在37°C、5% CO2孵育一小时。为便于对比,采用了传统的 Fura-2清洗方法。 特点 基于信号湮灭技 术,获得更大信号 窗口 免洗和比值法信号 检测使得实验差异 性降至最低 免洗步骤节省了时 间和实验成本 FURA-2 QBT钙流实验的比值法分析(图 1)

流式细胞仪检测技术与质量控制

流式细胞仪检测技术与质量控制 【摘要】流式细胞术(FCM)检测HLA等位基因是最近新建立的方法,与原有的分型技术相比,技术上有很大的改进和突破。流式细胞术已广泛用于临床常规检验中,为保证检验结果的可靠性,提高准确度和室间结果的可比性,流式细胞术质量控制越来越受到重视。它在功能水平上对单细胞或其他生物粒子进行定量分析和分选,同传统的荧光镜检查相比,具有速度快、精密度高、准确性好等特点。 【关键词】流式细胞术;检测技术;质量控制 流式细胞仪检验技术(FCM),即流式细胞术,是以流式细胞仪作为检测手段,以免疫荧光技术作为主要标记方法的一门先进的分析技术。该方法用免疫磁珠作为载体,在同一微孔内进行反应,利用流式细胞仪检测杂交信号和区分探针的种类。本技术使用的免疫磁珠具有一定的特性,磁珠可利用颜色进行标识[1]。当免疫磁珠上两种颜色混合的比例不同时,经流式细胞仪检测后即可区分定义为不同种类的免疫磁珠,目前两种颜色的组合在流式细胞仪上最多可区分成为100种不同的免疫磁珠。

1 材料与方法 1.1 标本收集 收集近3年本院治疗的30例患者,对30例患者行流式细胞仪检测,30例受检者中,男性患者16例,女性患者14例,最大年龄60岁,最小年龄17岁,患者平均年龄39岁。 2 检测方法 2.1 采用特定的免疫磁珠作为载体,将已知序列特异性探针(SSO)固定在免疫磁珠上,每一种特异性探针固定在已知颜色比例的免疫磁珠上。由于免疫磁珠上颜色比例的不同,在流式细胞仪红色激光束下可进行区分,根据事先设计的标记情况,通过流式细胞仪检测后可确认特定颜色比例免疫磁珠上携带的特异性探针的种类,从而达到将探针区分的目的。 2.2利用标记的特异性引物对目的DNA进行扩增,将PCR扩增产物与免疫磁珠上的序列特异性探针(SSO)在同一孔内进行特异性杂交,再加入荧光显色剂,然后利用流式细胞仪绿色激光束检测杂交信号,红色激光束区分探针的种类,利用软件分析杂交结果得出样本HLA基因型别。 3 方法学评价该方法与PCR-SSO有相似的地方,但是技术上有重大的突破。本方法灵敏度非常高,

相关文档
最新文档