聚醚类聚羧酸减水剂合成工艺及性能研究123汇总

聚醚类聚羧酸减水剂合成工艺及性能研究123汇总
聚醚类聚羧酸减水剂合成工艺及性能研究123汇总

全国中文核心期刊

聚醚类聚羧酸减水剂合成工艺及性能研究

郑立新

(武汉科技大学城建学院,湖北武汉430065)

摘要:采用烯丙基聚乙二醇(AEO)、马来酸酐、乙烯基磺酸钠为聚合单体,水溶液自由基聚合合成一系列聚醚类聚羧酸减水

剂,研究了合成工艺对减水剂性能的影响规律。结果表明,当烯丙基聚乙二醇与马来酸酐质量比为3~5,引发剂用量为单体总质量的6%~7%,反应温度为75~85℃时,合成的聚羧酸减水剂在掺量为水泥质量的1%时,水泥净浆流动度可达270mm。分散性和分散当接枝共聚分子量为800~1200的AEO时,水泥净浆流动度相对较大;当接枝共聚分子量为350~500保持性受AEO分子量的影响,

的AEO时,分散保持性较好。浆体凝结时间随AEO分子量的增加而缩短,分子量越小,缓凝效果越好。

关键词:聚羧酸减水剂;烯丙基聚乙醇;马来酸酐;聚醚;分散性;凝结时间中图分类号:TU528.042.2

文献标识码:A

文章编号:1001-702X(2008)05-0048-03

Studyonsynthesisprocessandperformanceofpolyetherkindpolyocarboxyacidwaterreducingagent

ZHENGLixin

(WuhanUniversityofScienceandTechnology,Wuhan430070,Hubei,China)

Abstract:Aseriesofpolyetherkindpolyocarboxyacidwaterreducingagentissynthesizedtakingallylpolyethyleneglycol

(AEO),maleicanhydride,sodiumvinylsulfonateasmonomerofpolymerizationbyaqueoussolutionfreeradicalpolymerization.

Studyismadeoninfluenceofsynthesisprocessontheperformanceofwaterreducingagent.Theresultshowsthatwhenthemass(AEO)tomaleicanhydrideis3 ̄5,dosageofinitiatingagentis6% ̄7%ofmonomertotalmass,ratioofallylpolyethyleneglycol

andreactiontemperatureis75 ̄85℃,theamountofsynthesizedpolyocarboxyacidwaterreducingagentis1%ofcementmass,thewhenfluidityofneatcementpastecanreachto270mm.AEOmolecularweightinfluencesthedispersivityandretentivity,molecularweightofgraftcopolymerizationis800 ̄1200ofAEO,thefluidityofneatcementpasteisrelativelygreat,andwhenmolecularweightofgraftcopolymerizationis3

50 ̄500ofAEO,retentivityisbetter.Thesettingtimeofpasteshortenswiththethesmallerthemolecularweight,thebettertheretardedsetting.increaseofAEOmolecularweight,

allylpolyethyleneglycol(AEO);maleicanhydride;polyether;dispersivity;Keywords:polyocarboxyacidwaterreducingagent;settingtime

聚羧酸减水剂以其优良的分散性和分散保持性而成为未来减水剂发展的主要方向[1-3]。就目前的研究来看,对甲基丙

烯酸及其酯类的研究较多,合成工艺已日趋成熟[4-6]。而对第

6]

二代聚羧酸系减水剂———丙烯基醚共聚物的研究较少[3,。有研究表明,以烯丙醇聚醚、顺酐、苯乙烯、烯丙基磺酸钠、甲基烯丙基磺酸钠、苯乙烯磺酸钠等为反应单体,采用本体或者自由基聚合方式,可合成出具有梳状分子结构的共聚物减水剂,该类减水剂与聚酯类聚羧酸减水剂相比,同样具有较好的分

收稿日期:2007-11-05

作者简介:郑立新,男,1966年生,湖北武汉人,讲师

散性和分散保持性,同时具有较好的早强效果。

本文选择不同分子量的烯丙基聚乙醇、马来酸酐、乙烯基

磺酸钠为聚合单体,水溶液自由基聚合,合成了具有较好分散性和分散保持性的聚醚类聚羧酸减水剂,并对该减水剂的合成工艺进行了研究。

1.1

实验

原料

烯丙基聚乙二醇(AEO-n)350,600,1000,2000:工业级;马来酸酐(MA):工业级;乙烯基磺酸钠(SVS):工业级。水泥:华新P?O42.5。1.2实验方法

1.2.1聚羧酸减水剂的合成

?48?

新型建筑材料2008.5

郑立新:

聚醚类聚羧酸减水剂合成工艺及性能研究

A料:50%~70%的烯丙基聚乙二醇与马来酸酐单体混合溶液。

B料:1%~5%的引发剂。在装有温度计、搅拌器、冷凝装置、滴液漏斗、氮气保护装置的三口瓶中加入一定量的水,加热至80~90℃,一边滴加A料,一边滴加B料,均匀滴加4~5h滴完,然后再均匀滴加单体乙烯基磺酸钠,2h滴完,保温3h,冷却,用NaOH中和pH值至7,得到聚醚类聚羧酸减水剂(固含量20%)。其分子结构如下:

7%时,减水剂分子量分子偏向亲水性;当引发剂用量为6%~

适中,亲水与亲油达到平衡,分散性能最好,其水泥净浆流动度达到最大。2.2

反应温度对减水剂分散性的影响

引发剂的分解与温度有关,温度较低时,引发剂分解效率低,引发效率低,聚合自由基少;反之,引发剂分解速度快,可能引起局部过度聚合。图2为反应温度对掺减水剂水泥净浆流动度的影响。

1.2.2性能测试方法

(1)水泥净浆流动度

称取水泥300g,水87g,采用截锥圆模(Φ上=36mm,Φ下=64mm,h=60mm)测试掺减水剂的流动度。减水剂的掺量为水泥质量的1.0%。(2)凝结时间按GB8076—1997《混凝土外加剂》进行测试。

图2

反应温度对掺减水剂水泥净浆流动度的影响

由图2可知,减水剂的反应温度为60~70℃时,随温度升高,掺减水剂水泥净浆流动性缓慢增加;当温度超过70℃时,

流动性随温度迅速增大;温度超过85℃后,流动性又随温度升高而降低。说明引发剂在60~70℃分解效率较低,产生的自由基少,聚合反应速度较慢,分子量偏大;当温度高于90℃时,引发剂分解效率较高,单体聚合速度过快,可能局部过度聚合,或者导致接枝链官能团基团分布不均匀。因此,温度控制在75~85℃时,引发剂分解速度合适,减水剂分散效果最好。

2.3AEO用量对减水剂分散性的影响

马来酸酐、烯丙基聚乙二醇是构成聚醚类聚羧酸减水剂的主要成份,两者用量对减水剂分散性影响较大[7](见图3)。

2.1

结果与讨论

引发剂用量对减水剂分散性的影响

共聚物减水剂的分散能力还与分子量有直接关系。减水

剂为表面活性剂,存在亲水亲油的平衡。分子量过大或过小都会使减水剂失去亲水亲油平衡。减水剂合成过程中,通过引发剂的用量来控制分子量。相同条件下,引发剂用量越多,分子量越小,反之则分子量越大。图1为引发剂用量对水泥净浆流动度的影响规律(引发剂质量按单体质量的百分数计)。

图3

图1

引发剂用量对掺减水剂水泥净浆流动度的影响

AEO用量对掺减水剂水泥净浆流动度的影响

由图1可见,随引发剂用量的增加,水泥净浆流动度先增大后减小。引发剂用量较少时,减水剂分子量和黏度较大,分子偏向亲油;引发剂用量较多时,减水剂分子量较小,减水剂

由图3可见,随AEO用量的增加,共聚物减水剂分散性

先增大后减小;当m(AEO)∶m(MA)为1~2、6~8时,减水剂的分散性很差;当m(AEO)∶m(MA)为3~5时,减水剂的分散性较好。当马来酸酐用量较多,减水剂分子中存在大量的短侧

NEWBUILDINGMATERIALS

?49?

郑立新:聚醚类聚羧酸减水剂合成工艺及性能研究

链—COO-,而长侧链相对较少,空间位阻作用不能有效的发挥,分散性差;当烯丙基聚乙二醇用量过多时,体系中大分子较多,高密度接枝长侧链使聚合阻力较大,同时高密度长侧链的减水剂分子不易在水泥颗粒表面吸附,所以分散性较差。当m(AEO)∶m(MA)为3~5,长侧链与短侧链搭配合理时,分散性较好。2.4

AEO分子量对减水剂分散性的影响

接枝共聚型聚羧酸减水剂主要依靠短侧链提供静电斥力及长侧链的空间位阻对水泥颗粒起到分散和分散保持作用。亲水性极强的长侧链决定聚羧酸减水剂的分散性和分散保持性。图4为AEO分子量对水泥净浆流动度的影响。

保护,水化层稳定性好,对水泥水化的抑制作用时间较长,水泥凝结时间相对延长。反之,分子量越大,接枝链物质的量越少,水化层稳定性差,对颗粒的立体保护不稳定,水泥凝结时间相对较短。

3结论

(1)当烯丙基聚乙二醇与马来酸酐质量比为3~5,引发剂用量为单体总质量6%~7%时,合成的聚羧酸减水剂分散性能最好。

(2)聚合反应的最佳反应温度为75~85℃,引发剂分解速度合适,共聚物分散效果最好。(3)当接枝共聚分子量为800~1200的AEO时,水泥净浆流动性较好,当接枝共聚分子量为350~500的AEO时,分散保持性较好。

(4)水泥浆体凝结时间随AEO分子量的增大而缩短,分子量越小,缓凝效果越好。

参考文献:

[1]李崇智,李永德,冯乃谦,等.聚羧酸系混凝土减水剂结构与性能

图4AEO分子量对掺减水剂水泥净浆流动度的影响混凝土,2002(4):3-5.关系的试验研究[J],

[2]李崇智,冯乃谦,王栋民,等.梳形聚羧酸系减水剂的制备、表征

硅酸盐学报,2005(1):87-92.及其作用机理[J],

中国计划出版[3]陈建奎.混凝土外加剂原理与应用[M].2版.北京:

社,2004.

王子明.聚羧酸高性能减水剂的制备、性能与应用现状[4]刘俊元,

[J].商品混凝土,2005(1):22-25.

王劲松,马保国,等.新型聚羧酸类化学减水剂合成的几[5]廖国胜,

2004(2):48-50.个关键问题研究探讨[J].国外建材科技,

[6]廖国胜.聚丙烯酸系混凝土高性能减水剂的研究[D].武汉:武汉

2003,5.理工大学,

[7]何靖,庞浩,张先文,等.新型聚醚接枝聚羧酸型高效混凝土减水

剂的合成与性能[J].高分子材料科学与工程,2005(9):44-47.

由图4可知,随AEO分子量的增大,水泥净浆流动度先

增大后减小,流动性损失逐渐增大;当分子量为800~1200时,浆体流动性达到最大;当分子量为350~500时,浆体流动性损失较小。这是因为长侧链的空间立体效应较强,分散性和分散保持性较好,但接枝难度增大,接枝密度不高;而短侧链聚合难度较小,可实现高密度接枝,在水泥颗粒表面吸附容易,但其空间位阻作用较弱。2.5律。

AEO分子量对凝结时间的影响

图5为AEO分子量对掺减水剂水泥凝结时间的影响规

!

""""""""""""""""""""""

美涂士集团投资20亿元打造800亩的美涂士工业园

美涂士集团近日正式与宿迁市政府签定合同,投资20亿元打造800亩的美涂士工业园。

作为中国涂料十强企业,总部位于佛山的美涂士集团的

图5

AEO分子量对掺减水剂水泥凝结时间的影响新基地项目将分三期开发建设,主要生产内外墙乳胶漆、家具漆、工业涂料等系列产品。

随着业务的蓬勃发展,产品不断远销全球,美涂士工业园的建造,将为集团的快速发展注入更强大的动力。(雪)

从图5可以看出,随AEO分子量的增加,初凝、终凝时间逐渐缩短;分子量大于1000时,下降缓慢。由于相同质量的

AEO,分子量越小,接枝链越多,长侧链密度大,形成连续水膜?50?

新型建筑材料

2008.5

聚羧酸减水剂生产环保说明

聚羧酸外加剂生产说明 1、项目由来 随着我国城镇化进程进程和基础设施建设的步伐逐渐加快,混凝土的需求量不断增多,同时也大大推动混凝土外加剂的需求量。 从全国范围来看,掺有外加剂的混凝土约占混凝土总量的40%,与国外先进国家60%~80%的比例相比,我国在使用量上还存在较大差距,即外加剂的生产还有较大的发展空间。根据相关市场调查,我国每年对减水剂、助磨剂及多功能粉体材料的需求量高达几百万吨,由此可见,该类材料仍具有较大前景和市场需求。目前,聚羧酸减水剂在发达国家的使用率已占绝对优势,相比而言,我国的使用量并不客观,但该材料的使用在我国的高速铁路建设、公路桥梁建设、水利工程及高层建筑中已得到广泛的认可,其用量正以每年20%~30%的速度递增。 传统的萘系、三聚氰胺系以及木质素减水剂虽然能使新拌砂浆或混凝土具有较好的工作性,但塌落度经时变化大,运至施工现场时,必须重新加入减水剂来增加其流动性,这样会产生噪音并排放大量工业废气,而且这类减水剂大多采用有毒的甲醛,通过缩聚反应(有时还采用强腐蚀性的发烟硫酸或浓硫酸进行磺化反应)制备而成,这不可避免会对环境造成污染,不利于可持续发展。合成萘系磺酸盐减水剂的主要原料是精萘或工业萘,价格较贵,很难满足工程实际需要,萘被认为是致癌物质,限制了其发展。于是人们把目光转向了羧酸类聚合物——称之为第三代新型聚合物减水剂,聚羧酸减水剂不仅减水效果好,其成品本身也无毒性,生产加工过程中也无工艺性废水产生,无工艺性废气产生,属于绿色环保型材料。 聚羧酸减水剂是一种高性能减水剂,是水泥混凝土运用中的一种水泥分散剂,广泛应用于公路、桥梁、大坝、隧道、高层建筑等工程。该产品绿色环保,不易燃,不易爆,可安全使用火车和汽车运输。 2、工艺流程 从原料库房领取原材料,按照配方准确称量后加入去离子水、甲基烯丙基聚氧乙烯醚,配置成原材料溶液,;搅拌并升至18~24℃。按照配方把维生素C、巯基丙酸、去离子水投入预混罐中配制溶液成A,搅拌均匀后打入滴加罐A里;按

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。

聚羧酸减水剂生产工艺的制作方法

图片简介: 本技术介绍了一种聚羧酸减水剂生产工艺,在常温状态下,往反应箱内加入占总溶液总比重20%50%的聚醚时,后加入占总溶液总比重30%71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到8085摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时。 技术要求 1.一种聚羧酸减水剂生产工艺,其特征在于:在常温状态下,往反应箱(1)内加入占总溶液总比重20%-50%的聚醚时,后加入占总溶液总比重30%-71.7%的水进行溶解,自由 基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%-7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到80-85摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%-10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄 氏度下,保温一个半小时至两个小时;

其中,所述的反应箱(1)侧壁上设有出料管(11),所述反应箱(1)设有加热块(13),所述反应箱(1)内设有传动轴(14),所述传动轴(14)上设有搅拌杆(141),所述反应箱(1)侧壁上设有保温层(12),所述反应箱(1)顶部设有多个进料口(15),所述反应箱(1)顶部设有多个与所述进料口(15)相配合的连接管(3),所述连接管(3)顶部设有储料箱(2),所述连接管(3)侧壁上设有第一通槽,所述第一通槽内设有固定板(31),所述连接管(3)内设有支撑板(5),所述支撑板(5)上设有连接轴(4),所述连接轴(4)穿设于所述储料箱(2)内,所述支撑板(5)底部设有导块(55),所述支撑板(5)上设有下料口(54),所述下料口(54)设于所述导块(55)上方;在制备聚羧酸减水剂时,将聚醚和水加入到反应箱(1)内,传动轴(14)带动搅拌杆(141)转动,聚醚与水在反应箱(1)内混合;将丙烯酸放入到其中一个储料箱(2)内,再将巯基乙酸、硫酸铵和水的混合物放入另外的储料箱(2)内,推动连接轴(4)带动支撑板(5)移动,根据需要滴加的量确定支撑板(5)的位置;当支撑板(5)位置确定后,储料箱(2)内的液体进入到连接管(3)内,连接管(3)内的液体从下料口(54)处往下运动,液体粘沿导块(55)往下滑落,将液体滴入到反应箱(1)内,根据先后顺序依次将相应的液体加入到反应箱(1)内,当聚羧酸减水剂制备完成后,将聚羧酸减水剂出料管(11)内排出,获得初成品聚羧酸减水剂。 2.根据权利要求1所述的一种聚羧酸减水剂生产工艺,其特征在于:将经过保温的水降温至50摄氏度后,打入复配池,加入添加剂,加水稀释后将复配好的溶液打入成品罐。 3.根据权利要求1所述的一种聚羧酸减水剂生产工艺,其特征在于:所述以上步骤均在密闭状态下进行。

聚羧酸减水剂实验室合成工艺

聚羧酸减水剂实验室合成工艺 聚羧酸类减水剂是继以木钙为代表的普通减水剂和以萘系为代表的高 效减水剂之后发展起来的第三代高性能化学减水剂,其综合性能优异,不仅具有高减水率,而且还可以有效的抑制坍落度损失,目前有较好的应用前景。日本首先于80年代初开发出聚羧酸系高效减水剂,1985年开始逐渐应用于混凝土工程。1995年以后,聚羧酸盐系减水剂在日本的使用量超过了萘系减水剂。目前国内对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,不少科研机构已开始转向对聚羧酸系高性能减水剂的开发与研究。聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大, 高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。本文在合成聚醚甲基丙烯酸酯大单体的基础上,采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺,并研究了其应用性能。 2 实验 2.1 实验原料及试验设备 聚醚(分子量为1200,上海台界化工有限公司) ; 对甲苯磺酸(国药集团化学试剂厂) ; 对苯二酚(天津市大茂化学试剂厂) ; 甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ; 甲苯(天津市大茂化学试剂厂) ; 甲基丙烯酸(成都科龙化工试剂厂) ; 过硫酸铵(天津市大茂化学试剂厂)等。 聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ; 国内聚羧酸(p s2, 40% ) ; 自制聚羧酸(p s3, 20% ) 。 水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5级普通硅酸盐水泥。 500ml三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml滴液漏斗;旋转蒸发器等。

基于HPEG大单体常温合成高保坍型聚羧酸减水剂的研究

中国科技核心期刊全国中文核心期刊 H9F HPEG穴甲血常温台朋高保I円嬰 聚竣酸原水剂的研奔 蔡正华,韩武军,刘勇彰,周辉,吕亚林 (中建商品混凝土有限公司,湖北武汉430205) 摘要:以异丁烯醇聚氧乙烯瞇(HPEG)、丙烯酸拓乙酯(HEA)、丙烯酰胺(AM)和丙烯酸(AA)为单体,在引发剂甲醛合次硫酸氢钠(DBK)&双氧水(H?O?)和链转移剂毓基丙酸(MPA)作用下,常温合成一种具有较高保坍性和良好混凝土和易性的新型聚竣酸减水剂,并用凝胶渗透色谱(GPC)对产物的结构进行了表征。结果表明,合成的减水剂在折固掺量为0.16%,水灰比为0.29时,60-120 min其水泥净浆经时流动度仍能保持330mm稳定不变。 关键词:常温;聚竣酸减水剂;HPEG;坍落度 中图分类号:TU528.042+.2文献标识码:A文章编号:1001-702X(2019)03-0079-03 Study on the synthesis of high-protection polycarboxylate superplasticizer based on HPEG macromonomer at room temperature CAI Zhenghuay HA N Wujun,LIU Yorigzhang,ZHOU Hui,LV Yalin (China Construction Ready Mixed Concrete Co.Ltd..Wuhan430205,China) Abstract:A new type of polycarboxylate superplasticizer with excellent slump retaining ability and workbility was directly polymerized using HPEG?2-hydroxyethyl acrylate(HEA)?acrylamide(AM)and acrylic acid(AA)as monomers?Sodium formaldehyde sulfbxylate&hydrogen peroxide as initiator.and-mercaptopropionic acid(MPA)as chain transfer agent.and its structure was characterized by GPC.Results indicate that the fluidity of cement paste can attain as high as330mm and no slump loss occurs within60-120min at the dosage of0.16%and the water to cement ratio of0.29. Key words:room temperature,polycarboxylate superolasticizer.HPEG?slump loss 绿色混凝土是现代高性能混凝土研究与应用非常重要的一个发展趋势",聚竣酸减水剂是高性能、绿色混凝土发展的关 键。传统聚竣酸减水剂生产工艺的合成温度为60合成时间为6h。传统工艺对设备要求较高,能耗大,人力成本高。 本项研究基于HPEG大单体,利用氧化还原引发体系常温合成一种具有较高保坍性能的聚竣酸减水剂。该工艺将合 成温度降低至室温,合成时间缩短为4h。改进后大幅度降低能源消耗,节约人工成本,并可降低对环境的污染。在不增加人工数量和设备的情况下,生产效率显著提高,同时电耗仅为原工艺的50%,煤耗基本消除。降低能源消耗效果极其显 收稿日期:2018-05-04;修订日期:2018-07-07 作者简介:蔡正华,男,1983年生,江苏盐城人,工程师,主要从事聚竣酸减水剂及混凝土研究。E-mail:ezh03@https://www.360docs.net/doc/953727201.html,.通讯作者:韩武军,硕士,工程师,地址:武汉市青山区武钢七号门,E-mail:hanwjl01@ https://www.360docs.net/doc/953727201.html, o 著,而产品的性能在原工艺基础上有所提高。投资少,与传统锅炉或电加热工艺装置相比总投资可减少30%。 1试验 1.1主要原材料 (1)合成原材料 异丁烯醇聚氧乙烯醞(HPEG):工业级,上海台界化工有限公司(TJ-188C);丙烯酸羟乙酯(HEA):工业级,江苏银燕化工股份有限公司;丙烯酸(AA):99.5%,工业级,上海华谊:甲醛合次硫酸氢钠(DBK)、双氧水(HA-30%)、籬基丙酸(MPA):AR,国药集团化学试剂有限公司。 (2)性能测试用材料 水泥:P-O42.5,华新水泥;粉煤灰:武钢II级灰;矿粉: S95,武新矿粉;石:武穴碎石,5-31.5mm连续级配;砂:岳阳河砂,细度模数2.8;聚竣酸减水剂:ZJSS-01、ZJSS-02、ZJSS-03、ZJSS-04,中建三局外加剂厂生产的第一代、第二代、第三 NEW BUILDING MATERIALS?79?

聚酸酸减水剂合成工艺

1 实验 1.1 原材料 丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体总质量的百分比。表2为不同实验组数对应的各因素水平。 1.4 掺减水剂水泥净浆流动度测试方法 水泥净浆初始流动度按GB8077-2000《混凝土外加剂匀质性试验方法》中测定水泥净浆初始流动度的方法进行测试,W/C为0.29。 水泥净浆流动度经时损失的测试方法为:保持一定水灰比,加入一定量的聚羧酸减水剂,按GB8077-2000《混凝土外加剂匀质性试验方法》每隔一定时间测试水泥净浆的流动度。 2 结果与分析 2.1 减水剂掺量对水泥净浆初始流动度的影响 表3为对在表2中1~9组的3种聚羧酸减水剂(JH9、JH23、JH35)在不同掺量时对水泥净浆初始流动度的影响。 由表3可知,当减水剂掺量大于0.5%以后,增加减水剂掺量,水泥净浆初始流动度增大变缓。表明该聚羧酸减水剂的饱和掺量为水泥质量的0.5~0.8%。 2.2 聚羧酸减水剂合成配方的确定 通过对表3的实验结果计算分析,可看出减水剂掺量为0.5%时四因素对水泥净浆初始流动度影响的显著程度。聚羧酸减水剂合成时各因素对水泥净浆初始流动度影响的极差分析见表)(减水剂掺量为0.5%)。 2.2.1 聚羧酸减水剂JH9合成配方的确定 由表4可知:(1)在设计的原料用量范围内,掺JH9的水泥净浆初始流动度随MAS、AA用量的增加而增加,随PA和APS用量的增加而下降;(2)由极差R可知,四因素对水泥净浆初始流动度影响均较显著,影响程度从大到小依次为:PA、APS、AA、MAS;(3)JH9的较佳合成配方为:MAS:AA:PA(摩尔)=1.5:(5.0~7.0):(1.0~1.25),APS的用量为15%。 图1为四因素在三水平下所合成的JH9聚羧酸减水剂对水泥净浆流动度经时损失的影响。图1中的水泥净浆流动度为各因素分别在三水平下的算术平均值,减水剂掺量为水泥质量的0.8%(图2和图3与此相同)。 由图1可知,MAS用量对水泥净浆的初始流动度影响不大,但增大MAS用量有利于水泥净浆流动度的保持,MAS用量为1.0~1.5mol时,水泥净浆流动度经时损失曲线基本接近,因此,MAS用量取1.0~1.5mol为宜;增大AA用量对水泥净浆初始流动度有利,但PA用量过大对水泥净浆的流动度保持不利,AA用量取5.0mol为宜;PA用量对水泥净浆流动度的保

聚醚型聚羧酸高效减水剂的研究进展_赵梅桂

doi:10.3969/j.issn.1009-1815.2013.03.014 第31卷第3期2013年9月 胶体与聚合物 ChineseJournalofColloid&PolymerVol.31No.3Sep.2013 混凝土作为一种非均质多孔性脆的水泥基 复合材料,在其构件的生产制作及使用过程中,由于自身物理力学性质和外界环境条件影响,难免会出现裂缝等结构上的缺陷,降低混凝土强度,缩短使用年限。为减少混凝土拌合物单位用水量,提高强度,并保持良好的工作性和耐久性,通常需要在混凝土中添入外加剂,减水剂便是外加剂最主要的组成部分[1]。减水剂的发展经历了木质磺酸盐类减水剂、萘系减水剂、聚羧酸系减水剂等几代。聚羧酸系减水剂具有分子结构可设计性强,掺量低,减水率高,与水泥、掺合料及其它外加剂相容性好,分散保持性和坍落度保持性能好等诸多优点,在国内外备受关注。聚羧酸系减水剂主要分为聚酯型和聚醚型两大类,相比聚酯类减水剂,普通聚醚类减水剂的成本较低,聚合浓度高,合成工艺简单,但减水性能、水泥保坍性能及适应性却较差,所以常与聚酯类减水剂复配使用。而高性能聚醚减水剂不仅具有聚酯类减水剂水泥适应性好、 减水率高、保坍性能好等优点,又具有普通聚醚类减水剂合成工艺简单、聚合浓度高等优点,已成为目前聚羧酸类减水剂的研究热点。本文从聚醚型聚羧酸高效减水剂的分子结构、作用机理及研究进展等方面做介绍。 1聚醚型聚羧酸高效减水剂的分子 结构模型与作用机理 聚醚型聚羧酸高效减水剂的分子结构为梳形侧链型,带有羧基、磺酸基、聚氧化乙烯基、胺基、羟基等极性基团。其分子结构模型见图1,分为三个层次:中心线型主链层,以非极性基相互连接为主,包括脂肪烃、芳烃和部分弱极性基团; 长侧链溶剂化扩散层,由许多疏水基亚甲基和亲水 基醚键构成的聚氧化乙烯长侧链PEO ;短侧链绒化紧密层:连接在主链上的一些亲水基团(-COO -、-OH 、-SO 3-等)和低碳脂肪链的疏水基团。 图1聚羧酸减水剂的分子结构模型[2] 聚醚型聚羧酸高效减水剂的减水作用机理与普通聚羧酸减水剂具有一致性。从化学结构上来说,减水剂是高分子表面活性剂中的一种,它对水泥粒子的吸附形态,可按图2所示分类, 吸图2高分子链的各种吸附形态[3] (a)均聚物(圈状、序列、尾状)吸附;(b)末端吸附(尾状);(c)一点吸附(2条尾状);(d)平状吸附(e)刚直链的垂直吸附;(f)刚直链的横卧吸附;(g)嵌段共聚物(左:AB 型,右:ABA 型)的圈状、序列、尾状吸附;(h)接枝共聚物的齿型吸附 聚醚型聚羧酸高效减水剂的研究进展 赵梅桂张玉红杨世芳何培新* (有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,武汉 430062) 摘要:介绍了聚醚型聚羧酸高效减水剂的分子结构、作用机理;综述了聚醚型聚羧酸高效减水剂的主要类型(如烯丙基聚氧乙烯醚APEG 、改性聚醚TPEG 、两性减水剂系列)及其最新研究进展。 关键词:聚醚;高效;减水剂;研究进展中国分类号:TU528.042.2 文献标识码:A 文章编号:1009-1815(2013)03-0138-04 收稿日期: 2013-03-25 基金项目:湖北省教育厅重点项目(D2*******)通讯作者:何培新(1957-),教授、博导,主要从事功能高分子的制备与性能研究。E-mail:peixinhe@https://www.360docs.net/doc/953727201.html,

【CN109970924A】一种常温合成复合功能性聚羧酸减水剂母液及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910277689.5 (22)申请日 2019.04.08 (71)申请人 四川铁科新型建材有限公司 地址 610400 四川省成都市金堂县淮口镇 四川金堂工业园区现代大道 (72)发明人 苏琳 邓斌 李胜龙 仲一夫  兰海堂  (74)专利代理机构 四川省成都市天策商标专利 事务所 51213 代理人 刘兴亮 (51)Int.Cl. C08F 283/06(2006.01) C08F 220/06(2006.01) C08F 220/14(2006.01) C08F 222/06(2006.01) C08F 2/38(2006.01)C04B 24/26(2006.01)C04B 103/30(2006.01) (54)发明名称一种常温合成复合功能性聚羧酸减水剂母液及其制备方法(57)摘要本发明公开了一种常温合成复合功能性聚羧酸减水剂母液及其制备方法,属于化工技术领域。由如下重量份的各组分构成:去离子净化水:30—36份;聚醚类单体:38—48份;A溶液:9—10份;B溶液:6—7份;C溶液:6—8份;次亚磷酸钠:0.8-1份。整个聚羧酸减水剂的生产过程中,包括原料的分别制备过程,对环境及生产原料的的温度控制要求小,生产周期短。本发明的聚羧酸减水剂各项性能优良,适应各种砂石水泥。应用范围广。用本发明的聚羧酸减水剂配制的混凝土工作性好,强度高。本发明与现有聚羧酸减水剂及萘系等其他减水剂相比, 具有明显的经济优势。权利要求书1页 说明书5页CN 109970924 A 2019.07.05 C N 109970924 A

聚醚类聚羧酸减水剂合成工艺及性能研究123汇总

全国中文核心期刊 聚醚类聚羧酸减水剂合成工艺及性能研究 郑立新 (武汉科技大学城建学院,湖北武汉430065) 摘要:采用烯丙基聚乙二醇(AEO)、马来酸酐、乙烯基磺酸钠为聚合单体,水溶液自由基聚合合成一系列聚醚类聚羧酸减水 剂,研究了合成工艺对减水剂性能的影响规律。结果表明,当烯丙基聚乙二醇与马来酸酐质量比为3~5,引发剂用量为单体总质量的6%~7%,反应温度为75~85℃时,合成的聚羧酸减水剂在掺量为水泥质量的1%时,水泥净浆流动度可达270mm。分散性和分散当接枝共聚分子量为800~1200的AEO时,水泥净浆流动度相对较大;当接枝共聚分子量为350~500保持性受AEO分子量的影响, 的AEO时,分散保持性较好。浆体凝结时间随AEO分子量的增加而缩短,分子量越小,缓凝效果越好。 关键词:聚羧酸减水剂;烯丙基聚乙醇;马来酸酐;聚醚;分散性;凝结时间中图分类号:TU528.042.2 文献标识码:A 文章编号:1001-702X(2008)05-0048-03 Studyonsynthesisprocessandperformanceofpolyetherkindpolyocarboxyacidwaterreducingagent ZHENGLixin

(WuhanUniversityofScienceandTechnology,Wuhan430070,Hubei,China) Abstract:Aseriesofpolyetherkindpolyocarboxyacidwaterreducingagentissynthesizedtakingallylpolyethyleneglycol (AEO),maleicanhydride,sodiumvinylsulfonateasmonomerofpolymerizationbyaqueoussolutionfreeradicalpolymerization. Studyismadeoninfluenceofsynthesisprocessontheperformanceofwaterreducingagent.Theresultshowsthatwhenthemass(AEO)tomaleicanhydrideis3 ̄5,dosageofinitiatingagentis6% ̄7%ofmonomertotalmass,ratioofallylpolyethyleneglycol andreactiontemperatureis75 ̄85℃,theamountofsynthesizedpolyocarboxyacidwaterreducingagentis1%ofcementmass,thewhenfluidityofneatcementpastecanreachto270mm.AEOmolecularweightinfluencesthedispersivityandretentivity,molecularweightofgraftcopolymerizationis800 ̄1200ofAEO,thefluidityofneatcementpasteisrelativelygreat,andwhenmolecularweightofgraftcopolymerizationis3

聚羧酸减水剂合成工艺配方方案

聚羧酸减水剂合成工艺配方的确定 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方;工艺;合成 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料 丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体总质量的百分比。表2为不同实验组数对应的各因素水平。

聚羧酸减水剂常温制备工艺及性能研究

2018年05 月 聚羧酸减水剂常温制备工艺及性能研究 张小虎王剑锋(中交二公局东萌工程有限公司,陕西西安710065) 摘要:随着社会经济的发展,建筑行业的发展较快,建筑 工程项目在施工建设中,应用绿色环保技术,对于提升项目建设效益,促进经济可持续发展具有重要作用。隧道工程、桥梁工程、大坝工程、公路工程以及高层建筑在施工中,需要适用大量的建筑材料,其中混凝土材料的使用量大,水泥配置比影响其性能,在水泥混凝土中使用水泥分散剂,即聚羧酸减水剂,对于混凝土的搅拌和性能优化作用明显。聚羧酸减水剂性能高,在建筑工程领域应用广泛,适用于水泥混凝土的搅拌,并且具有不易燃易爆和绿色环保的特征,工程实用性强。聚羧酸减水剂常温制备工艺简单、操作方便,生产成本和能耗也低,本篇文章在此基础上,主要对聚羧酸减水剂常温制备工艺及性能方面进行研究和分析。 关键词:聚羧酸减水剂;常温制备;合成工艺;材料性能建筑工程项目在施工建设中,对于工程材料方面要严格把好关,不同类型的建筑项目施工需要使用大量的水泥混凝土,在混凝土材料中适当添加减水剂,对于混凝土材料性能优化和 施工质量控制等具有良好效果[1] 。聚羧酸减水剂的分子结构中含有羧酸,是一种接枝共聚物,聚羧酸减水剂的支链结构特征较为明显,一般是聚氧乙烯形成的“接枝状”支链或者是“梳状”支链,这种组成形式比较有利于提高分子功能基团的表面活性。现代建筑业发展中,无论是高速公路、机场还是桥梁、房屋等的建设,水泥混凝土材料的拌制对于聚羧酸减水剂需求量较大,市场上的聚羧酸减水剂通常有两种类型,一种是酯类聚羧酸减水剂,是先酯化后共聚合成的减水剂材料,制备工艺较为复杂,操作难度也大,而另一种则是醚类聚羧酸减水剂,一步合成、工艺简单,因而市场份额较大。关于聚羧酸减水剂常温制备工艺及性能方面的内容,均需要结合实践情况,展开研究与探讨。 1聚羧酸减水剂常温制备工艺的实验研究 (1)工艺分析 聚羧酸减水剂是一种新型的混凝土外加剂,在水泥混凝土材料中的掺量低,但是减水率高,使用环保,因而工程效益显著,聚羧酸减水剂在自由度设计方面,能够对其进行改性,具有多种功能,改性产品包括保坍剂和早强减水剂等[2]。对聚羧酸减水剂的常温制备工艺进行分析,能够对其技术环节进行适当的改进,一般聚羧酸减水剂合成温度在60℃~80℃之间,聚羧酸减水剂常温制备过程中的升温和调温会对生产周期造成影响,能耗和成本均会增加,在这种情况下,将聚羧酸减水剂合成用原材料和反应单体等,放置在常温的储罐中通过滴加搅拌使其充分反应,不需要再对其进行加温,直接保温6小时,然后得到成品,其分散性能高。(2)合成材料 聚羧酸减水剂在常温制备的过程中,由于聚合反应的温度明显降低,反应速率也会同步降低,同一反应时间内,聚羧酸减水剂产物聚合度低,产品性能受影响,对此,要对聚羧酸减水剂制备材料进行分析。聚羧酸减水剂合成的实验材料包括甲基丙烯磺酸钠、丙烯酸、抗坏血酸、氢氧化钠和过硫酸铵等。其中 工业级的甲基烯丙基聚氧乙烯醚的分子量为2400,合成聚羧酸减水剂,是将一定量的去离子水和甲基烯丙基聚氧乙烯醚加入到容量为500ml 的烧瓶中,调制氢氧化钠的ph 值在7.0左右,氢氧化钠质量分数为40%。获得试样后,调制去离子水固含量40%,整个工艺流程不需要进行加热处理,控制聚合体系的温度在25℃[3]。(3)性能测试 对聚羧酸减水剂的常温制备工艺进行研究,能够及时发现减水剂合成中的技术问题,改进合成方案,控制产品的生产能耗以及制备成本等[4]。在实验分析中,对聚羧酸减水剂常温制备的性能进行测试,水泥净浆流动度要根据《混凝土外加剂匀质性实验方法》标准,测定聚羧酸减水剂合成样品初始的净浆流动度是否固掺量0.13%、水灰比0.29。对于聚羧酸减水剂水泥净浆流动度较大的,还要对其1h 保坍效果、扩展度和初始坍落度进行测定,其中细骨料为河沙,细度模数1.1,粗骨料为碎石,连续级配为5~10mm 和10~20mm ,粉煤灰样品固含量配成8%,应用红外光谱测定聚羧酸减水剂中含有的官能团。 2聚羧酸减水剂性能分析 (1)合成温度对聚羧酸减水剂性能的影响 在对聚羧酸减水剂合成工艺进行研究分析中发现,聚羧酸减水剂常温制备的水泥净浆流动度受聚羧酸减水剂合成温度的影响[5]。根据合成实验,在其他因素不变的情况下,聚羧酸减水剂合成温度升高,水泥净浆流动度也在明显的增加,聚羧酸减水剂对于水泥混凝土的颗粒分散能力增强。但是在聚羧酸减水剂合成温度较低的情况下,引发剂引发率显著降低,总反应速率也受到影响明显降低,同时降低了聚羧酸减水剂聚合物聚合度,聚羧酸减水剂分散性降低。根据实验分析发现,聚羧酸减水剂的合成温度在20~40℃时聚合物分散能力无明显变化,温度在40~60℃时水泥净浆流动度增加,且引发剂引发效果最佳是在60℃,其引发作用受温度降低影响,水泥净浆流动度减弱。(2)引发剂用量对聚羧酸减水剂性能的影响聚羧酸减水剂常温制备的实验分析中发现,引发剂用量不同,水泥净浆流动度受到的影响也不同。在20℃对聚羧酸减水剂制备氧化剂的用量进行调整,在40℃对聚羧酸减水剂制备还原剂的用量进行调整,但是氧化剂和还原剂的摩尔比一致,不改变其他的合成条件,对制备的聚羧酸减水剂试样进行水泥净浆流动度测试。增加引发剂用量,水泥净浆流动度也随之增加,20℃以下的聚羧酸减水剂,PC5初始水泥净浆流动度值达到最大,其中PC1、PC2的水泥净浆流动度增长速度快,一小时内损失小,PC4、PC5水泥净浆流动度在经过一小时后出现流化现象。聚羧酸减水剂在40℃以下条件下的合成,PC5水泥净浆流 动度初始值达到最大[6] 。(3)合成比对聚羧酸减水剂性能的影响聚羧酸减水剂常温制备中,合成配比条件不变,合成温度升高,水泥净浆流动度加快,且聚羧酸减水剂的水泥颗粒分散性增强,温度降低后,引发剂速率降低,聚羧酸减水剂聚合物聚 198

聚羧酸减水剂配方

聚羧酸减水剂配方 摘要:采用自由基水溶液共聚方法合成聚羧酸减水剂。通过正交试验考察不同配方时所合成的聚羧酸减水剂对水泥净浆流动度及经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳合成配方。 关键词:聚羧酸减水剂;水泥净浆;流动度;配方 聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。 本文采用聚合度分别约为9、23、35的自制聚氧乙烯基烯丙酯大单体(PA)分别与丙烯酸、甲基丙烯磺酸钠在引发剂过硫酸铵作用下进行自由基水溶液共聚反应,得到不同侧链长度的聚羧酸减水剂,分别记为JH9、JH23、JH35。通过正交试验分析考察单体及引发剂用量不同时所合成的聚羧酸减水剂对水泥净浆初始流动度及流动度经时损失的影响,确定不同侧链长度聚羧酸减水剂的最佳配方。并分析在最佳合成配方下合成的不同侧链长度的聚羧酸减水剂对水泥净浆的初始流动度及经时损失的影响。 1 实验 1.1 原材料

丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、过硫酸铵(APS)均为市售化学试剂;聚氧乙烯基烯丙酯大单体,自制,其聚合度分别约为9、23、35;水泥,P.O42.5R,重庆腾辉江津水泥厂产。 1.2 聚羧酸减水剂的合成方法 将丙烯酸、甲基丙烯磺酸钠、过硫酸铵、聚氧乙烯基烯丙酯大单体分别用去离子水配成浓度为20%的水溶液。在装有搅拌器、回流冷凝管及温度计的三颈烧瓶中分批滴加单体及引发剂,滴加完毕后在75℃下保温反应一定时间。反应结束后,用浓度为20%的NaOH水溶液调节PH值至7~8,得到浓度约为20%的黄色或红棕色聚羧酸减水剂。 1.3 正交试验设计 采用正交试验方法,通过改变丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、聚氧乙烯基烯丙酯大单体(PA)、过硫酸铵(APS)4个因素的用量,考察四因素在三水平下合成的聚羧酸减水剂对水泥净浆初始流动度及流 动度经时损失的影响,从而确定聚羧酸减水剂的最佳合成配方。正交试验因素及水平见表1,表中引发剂APS用量为MAS、AA、PA等3种单体

聚醚型聚羧酸系减水剂的性能研究

44 聚醚型聚羧酸系减水剂的性能研究 张鑫,王海宾,叶光锐,周南南 摘要:通过与聚酯型聚羧酸系减水剂(LEX-9)进行性能比较,证明自制的聚醚型聚羧酸系减水剂(LEX-10)的性能与前者相当。LEX-10生产工艺简单,可制备出浓度40%以上的产品,降低了生产成本,具有良好的应用前景。 关键词:聚醚型;聚酯型;净浆流动度;混凝土性能 中图分类号:TU528.042文献标识码:B文章编号:1004-1672(2009)05-0044-03 Study of Performance of Polyether-Type Polycarboxylic Superplasticizer/Zhang Xin et al//Shanghai Research Institute of Building Sciences(Group)Co.,Ltd. Ab st ract:Compared with polyester-type polycarboxylic superplasticizer(LEX-9),the self-made polyether-type polycarboxylic superplasticizer(LEX-10)showed similar performance as with the former when applied to cement or concrete.Manufacture process of LEX-10was simple,could be used to prepare products with concentration over40%, reduce production cost and cherish a bright prospect for application. Key Words:polyester-type;polyether-type;uidity of cement paste;concrete performance 上海市建筑科学研究院(集团)有限公司,上海200032 减水剂是混凝土工程中应用最广泛的外加剂,其用量占外加剂总量的80%以上,是现代混凝土不可缺少的重要组成部分。减水剂的主要功能是在保持混凝土拌合物坍落度不变的情况下,减少拌合物的用水量,改善拌合物的流变性能及提高混凝土的强度等[1-3]。 目前,国内外市场上聚羧酸系减水剂产品大部分属于聚酯型,该类减水剂具有减水率较高,保坍性能好,与水泥的适应性好等优点。但也存在一定的缺陷,如合成工艺复杂,生产周期长,不易直接生产出浓度40%以上的产品,酯化过程需要加入强腐蚀性酸(一般为浓硫酸)做为催化剂,容易对生产人员造成危害。因此,开发新型聚羧酸系减水剂显得十分必要。 聚醚型聚羧酸系减水剂近年来得到越来越多的研究,其优势在于:①无酯化过程,工艺简单,生产周期短;②原料的封端基团中含有不饱和双键,可以通过一步法直接聚合;③可以生产出高浓度产品。但该产品却存在许多不足,如低温贮存会出现析晶现象,减水率低,低掺量下混凝土的坍落度保持性差等[4]。 针对这些问题,笔者进行了一系列研究,并合成出新型聚醚型聚羧酸系减水剂。通过与聚酯型聚羧酸系减水剂进行比较,证明了性能与后者相当,同时解决了聚醚型聚羧酸系减水剂存在的问题。 1试验部分 1.1合成试验 原料和试剂:丙烯酸,丙烯酸羟丙酯,丙烯酸羟乙酯,马来酸酐,甲基丙烯磺酸钠,烯丙基聚醚(分子量1200、2000、2400),过硫酸铵,过硫酸钾,双氧水,去离子水等。 合成方法:按照分子设计的要求配制单体及引发剂水溶液。在四口烧瓶中放置一定量的单体水溶液,升温至75~90℃,分别滴加单体及引发剂水溶液,滴加时间为l~4h,滴加完毕后保温1~2h。反应完成后降温至60℃以下,加入液碱调整pH值。 1.2混凝土试验 1.2.1原料 (1)水泥及掺合料:水泥为上海联合水泥有限公司P.O42.5水泥,掺合料为宝钢Ⅰ型掺合料。 (2)减水剂:上海建研建材科技有限公司研制的LEX-9(聚酯型)和最新研制的LEX-10(聚醚型)。 (3)砂、石、水:混凝土试验用砂为中砂,细度模数2.7;混凝土试验碎石粒径为5~20mm;试验用水为一般饮用水。 水泥净浆及混凝土试验 聚醚型聚羧酸系减水剂的性能研究张鑫1.2.2

聚醚型聚羧酸减水剂的侧链结构对其性能的影响

N E W B U I L D I N G M A T E R I A L S 基金项目:江苏省新型环保重点实验室开放基金(AE201029)收稿日期:2011-12-31 作者简介:袁莉弟,男,1986年生,江苏南通人,硕士研究生,研究方向:混凝土外加剂的合成及应用研究。 0前言 聚羧酸系减水剂是一种综合性能良好的混凝土外加剂, 能显著改善新拌混凝土的流变学性能和硬化混凝土的力学性 能[1]。与传统的木质素磺酸盐系和萘系等减水剂相比,聚羧酸 系减水剂具有掺量小、减水率高、保塑功能强及环境友好等特点,在工程应用中发挥着越来越重要的作用[2]。人们普遍认为,聚羧酸减水剂的优异性能主要源于静电斥力和空间位阻的双 重作用。 进一步研究发现,吸附有聚羧酸减水剂的水泥颗粒的Zeta 电位绝对值低于吸附萘系减水剂颗粒的Zeta 电位绝对值,而前者的水泥分散性却明显大于后者,这就表明聚羧酸减水剂的分散能力主要来源于减水剂分子的空间位阻效应,而空间位阻效应的大小则与分子侧链的长度、构象等有着密切关系[3]。所以,研究聚羧酸减水剂的结构及分子质量大小对其 聚醚型聚羧酸减水剂的侧链结构 对其性能的影响 袁莉弟1,谢吉民1,丁继华2,陈景文3 (1.江苏大学化学化工学院,江苏镇江212013;2.常州大学石油化工学院,江苏常州 213000; 3.盐城工学院化学与生物工程学院,江苏盐城 224051) 摘要: 采用烯丙基聚氧乙烯醚(APEG )、丙烯酸(AA )、马来酸酐(MA )及甲基丙烯磺酸钠(MAS )为单体,以过硫酸铵为引发剂,在水溶液中共聚合成了具有不同长度侧链的聚醚型聚羧酸减水剂。利用凝胶渗透色谱(GPC )测定了不同侧链结构减水剂的分子质量,进而研究了不同分子质量的聚醚型聚羧酸减水剂在水泥颗粒表面的吸附行为对水泥的分散性能和水泥早期水化的影响。结果表明,水泥颗粒对聚醚型聚羧酸减水剂的吸附具有选择性,在相同条件下,水泥颗粒会优先吸附单一侧链结构聚醚型聚羧酸减水剂中分子质量较高的减水剂分子;分子质量适中的复合侧链聚醚型聚羧酸减水剂比单一侧链和分子质量过大或过小的复合侧链聚醚型聚羧酸减水剂更容易在水泥颗粒表面上发生吸附,对水泥颗粒具有显著的分散性能,同时能够显著地延缓水泥早期水化。 关键词: 聚醚型聚羧酸减水剂;侧链结构;分子质量;吸附;性能中图分类号:TU528.042文献标识码:A 文章编号:1001-702X (2012)06-0069-05 Effect of the side chains of ether polycarboxylic acid-type water reducers on its properties YUAN Lidi 1,XIE Jimin 1,DING Jihua 2,CHEN Jingwen 3 (1.School of Chemistry and Chemical Engineering ,Jiangsu University ,Zhenjiang 212013,Jiangsu ,China ; 2.School of Petrochemical Engineering ,Changzhou University ,Changzhou 213000,Jiangsu ,China ; 3.School of Chemical and Biological Engineering ,Yancheng Institute of Technology ,Yancheng 224051,Jiangsu ,China ) Abstract :A series of ether polycarboxylic acid-type water reducers (PCWRs )were synthesized in the water solution by using allyl polyoxyethylene ether (APEG ),acrylic acid (AA ),maleic anhydride (MA )and sodium methylallyl sulfonate (MAS )as monomers ,and the ammonium persulfate as initiator.The different side chain length of each water-reducer was measured by gel-permeation chromatography (GPC ).The adsorption behavior of the polyether water-reducers with different molecular weight on the cement par -ticle surface ,and their cement dispersibility and the effect on the early hydration of cement were investigated.The results indicat -ed that cement particle can selectively absorb the water-reducer molecules with different molecular weight and different side chain structure.Those with high weight molecular weight among the single side chain and those with moderate weight molecular weight a -mong the complex side chain water-reducer molecules can be preferentially absorbed on the surface of cement particle under the same experimental conditions.The water-reducer molecules with complex side chain and moderate weight molecular weight possess remarkable dispersibility for cement and can also obviously delay the early hydration of cement paste. Key words : ether polycarboxylic acid type water reducers ;side chain structure ;molecular weight ;adsorption ;property 全国中文核心期刊中国科技核心期刊 69··

相关文档
最新文档