微带线匹配设计

微带线匹配设计
微带线匹配设计

第3节微带线匹配设计

在前面介绍了设计集总参数元件的匹配网络的方法,但是这种匹配网络只适合于频率较低的场合,或者是尺寸远小于工作波长的情况。随着工作频率的提高和工作波长的缩小,分立元件的寄生参数效应将变得更加明显,设计时相应地就要考虑寄生效应,这将使得问题变得相当复杂。分立元件的这些问题限制了它在射频微波电路中的应用。

通常在几个GHz频段中,射频工程师常采用分立元件和分布元件混合使用的方法。相比较于前面的分立元件匹配网络,这种网络避免使用电感,而是用传输线替换了电感。原因是电感比电容具有更高的电阻性损耗,而且电感绕制起来麻烦,很难做到精确。

这种网络是由几段串联的传输线以及间隔配置的并联电容构成。在这种匹配网络中的分布元件显示出独特的电特性,明显地不同于低频集总参数元件。它适合作为手机等移动通信设备功率放大器的匹配网络。其结构如下图所示。

传输线(TL)和电容元件的混合匹配网络

设计实例1:设计一个匹配网络将ZL=(30+j20)ohm的负载阻抗变换到Zin=(60+j80)ohm 的输入阻抗。要求必须采用两段串联传输线和一个并联电容。已知两段传输线的特性阻抗均为50ohm,匹配的工作频率为2 GHz。

首先,建立一个工程matching1_prj,

弹出窗口如下图

点选框内的S_Params,然后点OK。然后会光标处出现虚框将虚框放在空白窗体内。出现S参数模板如图示:

然后手工将Zin和ZL值键入Term1和Term2的Z参数,如下图示:

放置一个smithchart元件,目前这个元件是空的。

然后点击tools,在下拉菜单中找到Smith Chart Utility点击,启动Smith Chart工具视窗。如下图示:

在弹出的对话框中选择Update Smith Chart utility from SmartCoponent,然后点击OK就可以用ADS自带的Smith圆图工具来设计匹配。

先设置匹配的工作频率为2 GHz,默认设置为1 GHz。然后在Smith Chart工具右下角的Network Schematic中分别选中ZS和ZL,将设计要求中的Zin和ZL值输进去。分别按下回车键,可以看到Smith圆图中的源和负载点将自动移动到相应的位置。如图所示:

接下来先在Network Schematic中选中负载ZL,然后在左上方的Palette中选择串联微带线,将鼠标移动到圆图区域。

中将开始频率和结束频率分别设为1.0e9和3.0e9。如下图示:

接下来通过手动调整圆图上三个节点的位置,将曲线末端节点位置调整到尽可能与源点重合。在此过程中可以借助菜单栏中的Zoom in选中局部放大进行微调。如下图所示:

然后单击Build ADS Circuit,将设计的匹配网络Update到电路原理图中。如下图示:

接着按下工具栏中的Push Into Hierarchy,……,可以通过

然后在matching1.dsn

(完整word版)微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

四段式含加载线双带阻抗匹配变换器设计分析

四段式含加载线双带阻抗匹配变换器设计分析 我们在设计电路的时候,难免会做一些与射频相关的工作,工作的主要意义和射频设计的核心之一是使电路的一部分与另一部分匹配,以实现两部分之间的最大功率传输。目的。在本文中,我们介绍了一种T型阻抗转换器及其设计和仿真,该转换器的中心频率为400MHz,带宽为40MHz,标记阻抗为50至75欧姆。本文介绍了射频阻抗转换器的开发过程和当前状态,详细介绍了不同种类的变换器的性能与优缺点,用途及发展。而在介绍阻抗匹配的原理中,我们还穿插了一些关于史密斯圆图的定义,它作为一个分析阻抗匹配最广泛的工具让我们在面对庞大计算量的问题面前不会束手无策。在分析了微带线阻抗匹配理论的基础知识的基础上,讨论了射频阻抗变换器的整个设计过程,然后通过软件进行设计和构建。采用ADS软件进行整个设计的构建。对于仿真软件,我们选择的是HFSS,HFSS软件是一款高效的仿真软件,可以快速帮助我们进行模型仿真,之后我们对仿真结果进行分析和总。 关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS

1.1 概述 在处理射频系统的实际应用时,您总是会发现非常困难的工作,因为其中之一就是级联电路各部分的不同阻抗的匹配。通常,需要匹配的电路包括天线与低噪声放大器之间的匹配,功率放大器输出与天线之间的匹配以及LNA / VCO输出与LNA / VCO 输出之间的匹配。调音台输入。匹配的目的是确保信号或能量有效地从“信号源”传递到“负载”。 在高频侧,寄生元素对相应的网络具有重大且不可预测的影响。当频率超过几十兆赫兹时,理论计算和仿真远远不能满足要求,要获得足够的最终结果,还必须考虑并适当地调整实验室RF测试。通过计算出的值来确定电路结构的类型和相应目标组件的值. 1.2阻抗匹配变换器的发展与现状 IMPEDANCE变压器是微波组件(例如功率放大器,电源)的基本组件分配器和天线。最近,随着越来越多的无线通信和无线应用标准出现因此,建议系统和电路在不同的频带上同时工作。因此,尊重 TI频率阻抗变压器(MFIT)的开发非常担心。您最近看到了许多MFIT 十年来,大多数研究都包括双频那。双频阻抗变压器(DFIT)首先使用级联在两个实际阻抗之间实现两条线相互匹配,L形网络 Pi形传输线和网络. 一个更普遍的问题是针对频率相关的复杂负载(FDCL)的DFIT实现。因此,许多新拓扑和方法。中三传动线级联以实现DFCL DFIT。作为选择,传输线的两个部分和并联支路的两个部分串联连接,这具有尺寸大的缺点。然后提出了一种结构简化,尺寸更紧凑的T形DFIT。在DFIT中通过使用耦合线可以丰富DC阻止功能。一两个通用DFIT通过复杂的阻抗传递传输线的四个部分。以上分配双变频器通常具有两个或多个部分传输线或耦合线,所以长度大。对称双频偏移线T形或Pi形网络可以直接用作实际阻抗之间的DFIT,并且可以使用通过添加一部分传输为FDCL构造DFIT线和短线或T形双频短线,但电路复杂度高且尺寸大。

传输线反射以及终端电阻

传输线反射以及终端电阻 传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器 ,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻 R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

微波实验二传输线上的波的测量与阻抗匹配教材

微波技术与天线实验报

(1)负载开路,负载短路,与负载匹配 负载开路与短路即为令终端负载L Z 为∞或0,而对于功率输出,当负载匹配时会得到最大的功率输出;对于电源电压输出,指电源内阻越小在内阻上的压降越小,会得到最大的电压输出,就是说电源的效率最大,当内阻r=0,电源的效率等于1(100%)。 (1)传输线的工作状态 传输线的工作状态取决于传输线终端所接的负载,有三种状态。其中负载开路与短路即为令终端负载L Z 为∞或0导致传输线工作于驻波状态,Z L =Z 0时传输线工作于行波状态。 行波状态:传输线上无反射波出现,只有入射波的工作状态。 当传输线终端负载阻抗等于传输线的特性阻抗,即Z L =Z 0时,线上只有入射波(反射系数为零)。此时 z z e U e Z I U z U '' =+= 'γγ20222 )( z z e I e Z Z I U z I ' +'=+= 'γγ20 0222)( 对于无损耗线=γj β,则

本实验用微带传输线模块模拟测量线。利用驻波测量技术测量传输线上的波,可以粗略地观察波腹、波节和波长,进而测量反射系数|Γ|和驻波比ρ。若条件允许可以使用反射测量电桥以较精确地测量反射损耗。 (1)实验仪器 RZ9908综合实验箱频率合成信号发生器电场探头频谱分析仪反射测量电桥终端负载(2)实验思路 用驻波分布法测量微带传输线上电磁波的波长。观测微带传输线上驻波分布,测量驻波的波腹、波节、反射系数和驻波比。 (3)实验过程 实验装置大致如下,应用实验箱固定模块可简化操作。 原理如下: 实验连接图如下:

微带传输线模块测量端开路(不接负载)。 把频率合成信号发生器设置成为:CENTER FREQUENCY=1000MHz,SPAN=1MHz,参考电平-30dBm,在保证信号不超出屏幕顶端的情况下,参考电平越小越好,尽量使信号谱线的峰值显示在屏幕的第一格和第二格之间。 频率合成信号发生器设置为输出频率1000MHz和最小衰减量。 如图1连接,逐次移动探头。记录探头位置刻度读数和频谱分析仪读数,必要时可调节信号发生器的输出功率或频谱分析仪的参考电平。 改变频率合成信号发生器的输出频率为800MHz,再重复进行驻波分布测试。 用反射测量电桥来测量驻波损耗,按图2连接好实验装置

关于阻抗匹配的理解

关于阻抗匹配的理解 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。实际的电压源总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P="I"*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r) =U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共轭匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信

号源跟负载之间匹配的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R,如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等),在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的朋友可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75

微带线设计ADS

} 微带线设计ADS: 使用ADS中的微带线计算器LineCalc计算得到微带线的几何尺寸W、S、L。 具体方法是点击菜单栏Tools -> LineCalc -> Start Linecalc,出现一个新的窗口 1.在窗口的Substrate Parameters栏中填入与MSUB中相同的微带线参数。 2.在Cpmpnet Parameters填入中心频率。 栏中的W和L分别表示微带线的宽和长。 栏中的Z0和E_Eff分别表示微带线的特性阻抗和相位延迟。 · 5.点击Synthesize和Analyze栏中的↑箭头,可以进行W、L与Z0、E_Eff间的相互换算。填入75 Ohm和30deg可以算出微带线的线宽1.38 mm和长度15.54mm。 图计算 ! 3.2.2连接好电路,将的W、S、L输入,进行、仿真 * 具体方法是: 1.在原理图设计窗口中选择微带电路的工具栏 窗口左侧的工具栏变为右图2-0所示。 (1)在工具栏中点击选择微带线MLIN并在右侧的绘图区放置。 (2)选择微带线MLIN以及控件MSUB分别放置在绘图区中。 (3)选择画线工具将电路连接好,连接方式见下图2-1。

^ 图。 ( 图传输线原理图 2.双击图上的控件MSUB设置微带线参数。 ¥ H:基板厚度(62 mil) Er:基板相对介电常数 Mur:磁导率(1) Cond:金属电导率+7) Hu:封装高度+33 mm) T:金属层厚度(0.03mm)

TanD:损耗角正切 Roungh:表面粗糙度(0 mm) 、 3 .双击两边的引出线TL1、TL2,分别将其宽与长设为1.26mm和2.6 mm(其中线长只是暂定,以后制作版图时还会修改)。 4.在原理图设计窗口中选择S参数仿真的工具栏 (1)选择Term 放置在滤波器两边,用来定义端口1和2,点击图标,放置两个地,并按照 ] 上图2-1连接好电路。 (2)选择S参数扫描控件放置在原理图中,并设置扫描的频率范围和步长,频率范围根据滤波器的指标确定(要包含通带和阻带的频率范围)。 5.点击工具栏中的Simulate按钮就开始进行优仿真,仿真结束后会出现图形显示窗口。(1)点击图形显示窗口左侧工具栏中的按钮,放置一个方框到图形窗口中,这时会弹出一个设置窗口(见下图2-2),在窗口左侧的列表里选择S(1,1)即S11参数,点击Add按钮会弹出一个窗口设置单位(这里选择dB),点击两次OK后,图形窗口中显示出S11随频率变化的曲线。 (2)用同样的方法依次加入S22,S21,S12的曲线,由于滤波器的对称结构,S11与S22,以及S21与S12曲线是相同的。

微带线和带状线设计

MT-094 指南
微带线和带状线设计
简介 人们撰写了大量文章来阐述如何端接PCB走线特性阻抗以避免信号反射。但是,妥善运用 传输线路技术的时机尚未说清楚。 下面总结了针对逻辑信号的一条成熟的适用性指导方针。 当PCB走线单向传播延时等于或大于施加信号上升/下降时间(以最快边沿为准)时端接传输 线路特性阻抗。 例如,在Er = 4.0介电质上2英寸微带线的延时约270 ps。严格贯彻上述规则,只要信号上升 时间不到~500 ps,端接是适当的。
更保守的规则是使用2英寸(PCB走线长度)/纳秒(上升/下降时间)规则。如果信号走线超过 此走线长度/速度准则,则应使用端接。 例如,如果高速逻辑上升/下降时间为5 ns,PCB走线等于或大于10英寸(其中测量长度包括 曲折线),就应端接其特性阻抗。 在模拟域内,必须注意,运算放大器和其他电路也应同样适用这条2英寸/纳秒指导方针, 以确定是否需要传输线路技术。例如,如果放大器必须输出最大频率fmax,则等效上升时 间tr和这个fmax相关。这个限制上升时间tr可计算如下: tr = 0.35/fmax 等式 1
然后将tr乘以2英寸/纳秒来计算最大PCB走线长度。例如,最大频率100 MHz对应于3.5 ns的 上升时间,所以载送此信号的7英寸或以上走线应视为传输线路。 PCB板上受控阻抗走线的设计 在受控阻抗设计中,可以采用多种走线几何形状,既可与PCB布局图合二为一,也可与其 相结合。在下面的讨论中,基本模式遵循IPC标准2141A的规定(见参考文献1)。
Rev.0, 01/09, WK
Page 1 of 7

微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline) 微带线剖面图 适合制作微波集成电路的平面结构传输线。与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料。导体应具有导电率高、稳定性好、与基片的粘附性强等特点。 两个方面的作用 在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。 1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 微带线 2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。最常使用的微带线结构有4种:表面微带线(surface

microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。 2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。 物理性能 带状线是介于两个接地层之间的印制导线,它是一条置于两层导电平面之间的电介质中间的铜带线。它的特性阻抗和印制导线的宽度、厚度、电介质的介电常数以及两个接层的距离有关。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数 物理盆 微带线和带状线的异同 1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。 2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关

50欧微带线

微带线的特性阻抗计算方法: 0=60Z π≥(W h ) 这个公式近似度差些,若要求稍微更精确些的计算,可采用下列的计算公式,即 01 =601+[2(2h 2h Z W W Ln e h ππ ≥(W h )+0.94)] 1 -r r 2e 1+-110h ++22W εεε=(1) 或者使用另一组计算公式: 0068h =60n +h 4h 120=h h h +2.42-0.44+-h W Z L W Z W W W π≤≥( ),W ,W (1) 本设计中使用r ε=的介质,那么对于不同的W/h ,使用matlab 编程计算: disp('微带线阻抗计算') er=; wh=1::10 ee=(1+er)/2+(er-1)/2*(1+10*(1./wh)).^; z0=120*pi./(wh+得到WH 比为

copper: relative permittivity:1 relative permeability: conductivity:58000000 siemens/m mass density:8933 Tlines microstrip: MUSB H=1mm,微带线基板厚度为1mm Er=,微带线基板的相对介电常数为 Mur=1,微带线基板的相对磁导率为1 Cond=58000000,微带线导体的电导率为58000000 Hu=+,表示微带线的封装高度 T=,微带线的导体层厚度为(50um) TanD=,微带线的损耗角tan= Rough=0mm,微带线表面粗糙度为0mm 几种方法: (1)经验公式法 (2)手动设置法 (3)计算法,需要ADS的计算控件 (4)优化法 使用经验公式计算得到得到WH比为,实际反射系数很大,S11<-12dB,由圆图可见,微带线特性阻抗偏大。其坑爹程度令人发指。 手调WH,当WH=时,S11<-40dB,可以求出反射系数为,反射能量为万分之一,满足设计要求。 使用ADS自带计算微带线阻抗,可以得到WH为时,分析得到微带线特性阻抗为欧。

电路阻抗匹配设计

何為"阻抗匹配"? 更多相关:https://www.360docs.net/doc/956637267.html, 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载 时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说 ,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 . 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1

传输线的特性阻抗分析

传输线的特性阻抗分析 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段l可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。

传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。 单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下: ?? 与迹线到参考平面的距离(介质层厚度)成正比 ?? 与迹线的线宽成反比

传输线的反射干扰分析

传输线的反射干扰分析 一.引言 在微机系统中,接口与其它设备之间的连接要通过一定长度的电缆来实现,在计算机内部,印制电路板之间需要通过焊接线来连接。在一些其它的脉冲数字电路中也存在这类事的问题。脉冲信号包含着很多的高频成分,即使脉冲信号本身的重复频率并不十分高,但如果前沿陡峭,在经过传输通道时,将可能发生信号的畸变,严重时将形成振荡,破坏信号的正常传输和电路的正常工作。脉冲信号的频率越高,传输线的长度越长,即便问题越严重。 二.传输线的反射干扰及其造成的危害 任何信号的传输线,对一定频率的信号来说,都存在着一定的非纯电阻性的波阻抗,其数值与集成电路的输出阻抗和输入阻抗的数值各不相同,在他们相互连接时,势必存在着一些阻抗的不连续点。当信号通过这些不连续点时便发生“反射”现象,造成波形畸变,产生反射噪声。另外,较长的传输线必然存在着较大的分布电容和杂散电感,信号传输时将有一个延迟,信号频率越高,延迟越明显,造成的反射越严重,信号波形产生的畸变也就越厉害。这就是所谓的“长线传输的反射干扰”。对于TTL器件来说,“过冲”超过6V时,对器件输入端的P-N结就有造成损坏的可能。同时从3V~-6V的大幅度下降,将会对邻近的平行信号产生严重的串扰,且台阶将造成不必要的延时,给工作电路造成不良的后果。一旦形成震荡,危害就更严重,这种振荡信号将在信号的始端和终端同时直接构成信号噪声,从而形成有效的干扰。 三.信号传输线的主要特性及阻抗匹配 1.信号传输线的特征阻抗 对于计算机及数字系统来说,经常使用的信号传输线主要有单线(含接连线和印制线等)、双绞线、带状平行电缆、同轴电缆和双绞屏蔽电缆等。传输线的特性参数很多,与传输线的反射干扰有关的参数主要有延迟时间和波阻抗。一般说来,反显得信号延迟时间最短,同轴电缆较长,双绞线居中,约为6ns/m。波阻抗为单线最高,约为数百欧,双绞线的波阻抗,双绞线的波阻抗一般在100Ω-200Ω之间,且绞花越短,波阻抗越低。从抗干扰的角度讲,同轴电缆最好,双绞线次之,而带状电缆和单线最差。 2.阻抗的匹配 当传输线终端不匹配时,信号被反射,反射波达到始端时,如始端不匹配,同样产生反射,这就发生了信号在传输线上多次往返反射的情况,产生严重的反射干扰。因此要尽可能做到始端和终端的阻抗匹配,是抑制反射干扰的有效途径。为此,确定“长线”的最佳长度是至关重要的。 在实际实践中,一般以公式的经验来决定实际电路信号传输线的最大允许不匹配长度(也即“长线”界限)。其中,为电路转换边沿的平均宽度,对于常用的中速TTL电路,取15ns,为传输线的延迟时间。可以计算出,其最大允许匹配长度分别为1m,0.6m和0.4m,否则应考虑阻抗匹配。对于高速运行的ECL器件,由于其传输时间只有4ns-5ns,故传输长度一般超过20cm时,就应考虑匹配问题。 阻抗匹配的方法可以分为始端阻抗匹配和终端阻抗匹配。 始端阻抗匹配的方法是在电路的输出端,即传输线的输入端串接一个电阻R,使电路的输出电阻(对TTL而言分别为14R和135R)与所用传输线的波阻抗(如双绞线典型波阻抗为130R)相近似,。这种方法简单易行,波形畸变也较小。但由于电流流经,使在线低压电平上升,从而降低信号低电平的噪声容限。一般规定低电平的升高要小于0.2V,为此应考虑减少负载们的个数来减小电阻R上的电压降。 无源终端匹配可以在接收端的逻辑门的输入端,即传输线的终端并联一个电阻,其阻值应近似等于传输线的波阻抗,。这种方法一般仅限于发送端采用功率驱动门的场合,如用普通

微带线设计

矩形微带天线的设计 (一)实验目的 了解微带天线设计的基本流程 掌握矩形微带天线的设计方法 熟悉在ADS的layout中进行射频电路设计的方法 (二)设计要求 中心频率:24GHz; 增益:>15dB; 输入阻抗:50Ω。 介质基板在要求中没有指定用那种。在这,选用用FR4介质基板(εr=4.4),厚度h=1.6mm,设计一个在24GHz附近工作的矩形微带天线。基片选择的理由是:陶瓷基片是比较常用的介质基片,其常用的厚度是h=1.6mm,0.835mm,0.554mm。其中1.6mm的基片有较高的天线效率,较宽的带宽以及较高的增益。在这导体的厚度t=0.05 (三)微带天线的技术指标 辐射方向图 天线增益和方向性系数 谐振频率处反射系数 天线效率 (四)设计的总体思路 计算相关参数 在ADS的Layout中初次仿真 在Schematic中进行匹配 修改Layout,再次仿真,完成天线设计 (五)相关参数的计算 需要进行计算的参数有 贴片宽度W 贴片长度L 馈电点的位置z 馈线的宽度

(五)相关参数的计算(续) 贴片宽度W、贴片长度L、馈电点的位置z可由公式计算得出 馈线的宽度可以由Transmission Line Calculator 软件计算得出(五)相关参数的计算(续) (六)用ADS设计过程 有了上述的计算结果,就可以用ADS进行矩形微带天线的设计了下面详细介绍设计过程 ADS软件的启动 启动ADS并建立一个工程

创建新的工程文件 进入ADS后,创建一个新的工程,命名为antenna_prj。打开一个新的layout文件,首先设定度量单位。在ADS中,度量单位的缺省值为mil,把它改为mm。改动方法可以在建立工程时直接修改。 设定度量单位 介质层设置 在ADS的Layout中进行设计,介质层和金属层的设置很重要 在菜单栏里选择Momentum->Substrate->Create/Modify…,在Substrate Layer标签里,保留////GND////的设置不变,重命名FreeSpace和Alumina层,修改其设置为: 介质层设置(续)

传输线阻抗匹配方法

传输线阻抗匹配方法 匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1.并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。 并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。 对长走线进行并联终端匹配后仿真,波形如下: 2.串联终端匹配 串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻,是一种源

端的终端匹配技术。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。 而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。 串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。 由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式为串联匹配电阻来选择一个最合适的值。 对长走线进行串联终端匹配后仿真,波形如下: 3.戴维南终端匹配

什么是微带线

微带线 一般的传输线由两个或两个以上的导体组成,用来传输横电磁波(TEM波),常见 的传输线有双线、同轴线、带状线和微带线等。其中,微带线是最普遍使用的平面传输 线之一,微带线可以用光刻工艺制作,并且易于与其他无源和有源器件集成,因此被广 泛应用于印刷电路板中。 在精密电路设计中,人们往往容易忽略印刷电路板本身的电特性设计,而这对整个 电路的功能可能是有害的。如果电特性设计得当,它将具有减少干扰和提高抗干扰性的 优点。在高速电路中,应该把印制迹线作为传输线处理。常用的印制电路板传输线是微 带线和带状线。微带线是一种用电介质将导线与接地面隔开的传输线,印制迹线的厚度、 宽度和迹线与接地面间介质的厚度,以及电介质的介电常数,决定微带线特性阻抗的大小。 微带线的几何形状如图(a)所示,导带的宽度w 是印在薄的、接地的介质基片上, 基片的厚度为d,相对介电常数,电磁场示意图如图(b)所示。 实际上,微带线的准确场是一个混合TE-TM波,需要更加先进的分析技术,但在大 部分的实际应用中,介质基片电气上很薄(d <<),所以场是准TEM波。换句话说, 场本质上与静电场是相同的。因此,通过静态或准静态解,可得到相近的相速、传播速 度和特性阻抗。 1. 微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽 度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。 2. 带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介 质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关 3. PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB走线特性阻抗 的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 4. 当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感 的传输线,而且在高频下会有趋肤效诮和电介质损耗,这些都会影响传输线的特征阻抗。 按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。

微带线E类功率放大器的设计与实现

微带线E 类功率放大器的设计与实现 郝新慧,纪学军 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要:E 类功率放大器作为开关模式放大器一种,其理想效率为100%。一种简单微带线拓扑网络的E 类功率放大器被提出,这种微带线负载网络不仅满足E 类功率放大器工作模式的特殊要求,而且对高次谐波有很好的抑制性,同时通过增加合适的偏置微带线可以拓宽放大器的工作带宽。采用ADS 软件仿真电路,并在1G H z 频率点电路实现了输出功率为4W ,漏极效率为73.4%,其中漏极效率效率在63%以上的电路带宽为200MH z 。 关键词:E 类功率放大器;高效率;ADS;微带线 中图分类号:T N722 文献标识码:A 文章编号:1003-3114(2007)03-39-3 Design and R ealization of T ransmission 2line Class E Pow er Amplifiers H AO X in 2hui ,J I Xue 2jun (The 54th Research Institute of CET C ,Shijiazhuang Hebei 050081,China ) Abstract :Class 2E am plifiers are a type of s witching am plifier offering very high efficiency approaching to 100%.A design methodology ,which could be used for a transmission 2line im plementation of a class 2E power am plifier ,is presented.A sim ple transmission 2line class 2E load netw ork is proposed that offers combined trans formation of the load resistance down to a suitable level ,as well as simultaneous suppression of harm onics in the load.The load netw ork was tested with ADS.A microstrip lay out was designed at 1G H z.A drain efficiency of 73.4%was measured with the output power of 4W.The bandwidth of 200MH z is achieved with the drain efficiency of 63%. K ey w ords :class 2E power am plifier ;high efficiency ;ADS;transmission 2line 收稿日期:2006-12-22 作者简介:郝新慧(1980-),女,硕士研究生。主要研究方向:电磁场与电磁波。 0 引言 在通信系统中,所应用的功率放大器,其效率都皆为偏低,大部分所消耗的功率是由功率放大器而来,为了延长系统使用时间,在不需要拥有高线性度的恒包络调制系统,譬如电子干扰、FM 系统中都可以使用高效率放大器。在高效率功率放大器范围内,E 类功率放大器不仅电路结构简单,而且在理论上具有集电极效率为100%的优点[1]。 最早S okal 提出的E 类功率放大器一般为集总的拓扑网络结构[1],其应用多在MH z 的范围内,然而在射频微波段,集总参数E 类功率放大器受限于器件难以实现,因而提出了微带线E 类功率放大器。在射频以上的频率段,微带线E 类功率放大器以其效率和谐波抑制度高的优点得到更广泛的应用[2]。本文针对L 频段E 类功率放大器做了特殊的微带线电路设计实现,给出细节的拓扑结构以及仿真性能分析。 1 原理 对于一般E 类功率放大器电路,输出负载回路是由并联电容、剩余电感以及基频谐振回路组成。这种特殊负载网络使晶体管上电压和电流不同时出现而使其功耗为零,因而理想的E 类功率放大器效率为100%,其设计公式为[3]: R L =8V CC 2P o ( π2 +4),C shunt =15.4466R L , V ds =3.647V CC ,X =πV CC 2(π2 -4) 2ωP o (π2 +4) 。微带线E 类功率放大器电路的实现,在转换为微带线负载网络,必须满足: ?基频上所要求的理想化最佳阻抗[2,5]: Z =R/(1+jtan49.052° );?负载网络应该提供在谐波分量上的高阻抗,理论上抑制所有的谐波分量; ?负载电阻应该被转换到一个合理的值,以使功率最大化,峰值电压和电流不应该超出有源器件的反向击穿电压; ?电路拓扑结构应该尽可能简单, 便于转换到

相关文档
最新文档