亚式期权论文:亚式期权概念及定价简析

亚式期权论文:亚式期权概念及定价简析
亚式期权论文:亚式期权概念及定价简析

亚式期权论文:亚式期权概念及定价简析摘要:给出了亚式期权的基本概念并讨论了亚式期权的几种定价方法的优劣。

关键词:亚式期权;monte carlo;模拟;简析

一、引言

比标准欧式期权或美式期权和看跌期权盈亏状态更复杂的衍生证券有时称为新型期权。大多数新型期权在场外交易,它们是由金融机构设计以满足市场特殊需求的产品。本文的第一个目的,就是介绍新型期权的一种—亚式期权,这类期权在场外市场广受欢迎,但此类期权较难定价,本文的第二个目的,给出常见的亚式期权的定价方法并作一定的比较。

二、基本概念

亚式期权是市场上常用金融工具, 其到期收益函数与一特定时段内标的资产的某种形式的平均息息相关,即依赖于标的资产价格的某种平均值。可以是一段时间内的连续平均值,也可以是若干个时间点的离散平均值;可以是算术平均,也可以是几何平均. 每一个确定的平均类型都对应着两种亚式期权的形式,即平均资产价格与平均敲定价格,它们都具有欧式期权风格. 不同的是前者的收益函数是在欧式期权的收益函数中用平均值取代资产本身的价格;而后者的

收益函数是在欧式期权的收益函数中用平均值取代合约的敲定价格.

与普通的期权类似,每种亚式期权都具有看涨和看跌两种交易情形。以连续情形的标的资产价格平均值为例,用a 表示算术平均值, g表示几何平均值, s t表示时刻t的资产价格,服从几何布朗运动,则

对于算术平均情形,看涨平均资产价格期权的到期收益为max ( a - k ,0) ,开始时刻的期权价格为

对于几何平均情形,看涨平均资产价格期权的到期收益为max( g - k ,0) ,开始时刻的期权价格为

亚式期权的优点是可以缓解市场的投机行为,且相对于普通期权,价格较便宜,常利用其对冲指定时期的风险。但亚式期权的定价仍是个公开问题。假定标的资产价格s服从对数正态分布,一系列对数正态分布变量的几何平均仍服从对数正态分布,而相应算术平均没有可以解析处理的特性,故算术平均亚式期权比几何平均亚式期权的定价要困难得多。对几何平均亚式期权,我们已得到它的定价的解析解,但算术平均亚式期权很难存在这种解析解。

三、亚式期权定价分析

(一)连续型亚式期权的定价

kemna &vorst (1990)通过改变波动率和敲定价格提出

了一个几何平均期权的定价解析公式。几何平均期权可以用一个明确的解析式来计算,因为如果价格服从对数正态分布,那么价格的几何平均值也服从对数正态分布。则几何平均亚式买入和卖出期权的价值就可以得出。

turnbull & wakeman (1991) 提出了一种近似计算方法,尽管亚式期权的分布是未知的,但我们可以精确的计算算术平均的概率分布的头两项,然后再假定算术平均的分布是具有相同头两项的对数正态分布。将亚式期权转化为普通期权求解其定价公式。

zhang(2001):给出了具有固定敲定价格的算术平均亚式期权的半显示解,并得到了较好的数值结果,但此方法没

有充分利用解在部分区域中有解表达式的特征。

(二)离散型亚式期权定价分析

hull & white (1993) 在二叉树的模型上增加一个结点,然后运用线性内插法来计算每个结点的近似平均值,最后通过后向折现计算出期权价格。但是,这种方法不能保证收敛性。

ju(2002):用泰勒展示的平均特征函数获得近似定价,但定价方法过于复杂且不在black-scholes假设条件下。

(三)monte carlo模拟方法

当衍生证券没有精确的解析公式时,可用数值计算方

第十章 期权价格概述

第十章 期权价格概述 【学习目标】 本章是期权部分的重点内容之一。本章首先从内在价值和时间价值两个方面对期权价格进行了深入解析,分析了影响期权价值的主要因素,确定期权价格的基本边界,探讨了美式期权是否需要提前执行的问题,从而画出了期权价格曲线的基本形状,最后,我们运用无套利分析的基本方法,推出了看涨期权和看跌期权之间的平价关系。学习完本章,读者应能够运用期权价格曲线,深入掌握期权价格中的内在价值和时间价值的有关内容,掌握期权价值的主要影响因素和期权价格的基本边界,掌握看涨期权和看跌期权之间的平价关系,同时理解美式期权的提前执行问题。 如第八章所述,期权交易实质上就是一种权利的交易。在这种交易中,期权购买者为了获得期权合约所赋予的权利,就必须向期权出售者支付一定的费用。这一费用就是期权费(期权价格),即期权合约本身的价格。在期权交易中,期权价格(价值1)的决定是一个重要而复杂的核心问题。自1973年以来,许多专家和学者纷纷提出各自的期权定价模型,以说明期权价格的决定和变动。在这些模型中,最著名的模型主要有如下两个:一个是布莱克-舒尔斯模型(The Black-Scholes Model ),另一个则是二项式模型(The Binominal Model )。在第十一章,我们将对这两个模型作一简要的介绍和评价。在此之前,为了更好地说明这两个模型的内涵,我们有必要先对各种期权定价模型的理论基础——期权价格的构成、影响期权价格的主要因素以及期权价格的边界等问题进行深入的分析。 第一节 期权价格解析 尽管在现实的期权交易中,期权价格会受到多种因素的复杂影响,但从理论上说,期权价格都是由两个部分组成的:一是内在价值,二是时间价值。即 期权价格=期权内在价值+期权时间价值。 一、期权的内在价值 期权的内在价值(Intrinsic Value )是指期权合约本身所具有的价值,也就是期权多方行使期权时可以获得的收益的现值。我们曾经在第八章中谈及这一概念2。例如,如果股票XYZ 的市场价格为每股60美元,而以该股票为标的资产的看涨期权协议价格为每股50美元,那么这一看涨期权的购买方只要执行此期权即可获得 1 000美元()60501001000??-?=??美元(股票期权通常为美式期权且一张期权合约的交易单位为100股股票)。这1 000美元的收益就是看涨期权的内在价值。 1 价格和价值本来是两个不同的概念,它们之间是市场价格和理论价值的区别。但是在对期权费的研究中,一般将这两者混用。所谓的期权价格(Options Price )实际上就是期权价值(Options Value ),即期权的合理公平价值。 2 详见第八章第一节。

BS期权定价模型

Black-Scholes期权定价模型 (重定向自Black—Scholes公式) Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型 Black-Scholes 期权定价模型概述 1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。 斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。 [编辑] B-S期权定价模型(以下简称B-S模型)及其假设条件 [编辑] (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会;

Vasiek利率模型下的亚式期权的定价问题和数值分析

263Vol.26No.3 20037ACTA MATHEMATICAE APPLICATAE SINICA July,2003 Vasiˇc ek ? (200092) (230026) Vasiˇc ek Cauchy Cauchy 1 (Call/Put Option) (Exotic Option). Black-Scholes Vasiˇc ek T,[0,T] 2001107 ?(10201029)

468 26 Monte Carlo [1,2], [3–5]. Turnbull &Wakeman (1991) Levy (1992). Laplace Taylor ( [6–9]), [3,10,11]. Cauchy [12]. 1 Cauchy Cauchy 2 T , [0,T ] T 0 (Zero-Coupon). (?,F,P ) r S d r t =(β?αr t )d t +γd Z t ,d S t =S t (r t dt +σB t ). (2.1) (Z t ,B t ) (?,F,P )2 (F t )t ≥0 σ-α,β,λ=0σ=0 T , 1 T T S (τ)d τ T ξ= S T ? 1 T T S (τ)d τ + .(2.2) C (t ) C (t )=E p ξexp ? T t r s d s F t . (2.3) I t = t S (τ)d τ,(t,r t ,S t ,I t ) Markovian C (t ) (t,r,S,I ) C (t,r,S,I ).Feymann-kac

B-S期权定价公式

Black-Scholes 期权定价模型 一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下: 1、 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动,即dz dt S dS σμ+=。 其中,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率,σ则就是股票价格的波动率,即证券收益率在单位时间内的标准差。μ与σ都就是已知的。 简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一就是单位时间内已知的一个收益率变化μ,被称为漂移项,可以被瞧成一个总体的变化趋势;二就是随机波动项,即dz σ,可以瞧作随机波动使得股票价格变动偏离总体趋势的部分。 2.没有交易费用与税收,不考虑保证金问题,即不存在影响收益的任何外部因素。 3、 资产价格的变动就是连续而均匀的,不存在突然的跳跃。 4、 该标的资产可以被自由地买卖,即允许卖空,且所有证券都就是完全可分的。 5、 在期权有效期内,无风险利率r 保持不变,投资者可以此利率无限制地进行借贷。 6.在衍生品有效期间,股票不支付股利。 7.所有无风险套利机会均被消除。 二、Black-Scholes 期权定价模型 (一)B-S 期权定价公式 在上述假设条件的基础上,Black 与Scholes 得到了如下适用于无收益资产

欧式瞧涨期权的Black-Schole 微分方程: rf S f S S f rS t f =??+??+??2 22221σ 其中f 为期权价格,其她参数符号的意义同前。 通过这个微分方程,Black 与Scholes 得到了如下适用于无收益资产欧式瞧涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---= 其中, t T d t T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln() )(2/()/ln( c 为无收益资产欧式瞧涨期权价格;N(x)为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。 (二)Black-Scholes 期权定价公式的理解 1、 1()SN d 可瞧作证券或无价值瞧涨期权的多头;()2()r T t Ke N d --可瞧作K 份现金或无价值瞧涨期权的多头。 可以证明,1/()f S N d ??=。为构造一份欧式瞧涨期权,需持有1()N d 份证券多头,以及卖空数量为2 ()rT K e N d -的现金。 Black-Scholes 期权定价公式用于不支付股利的欧式瞧涨期权的定价。 注意: 该公式只在一定的假设条件下成立,如市场完美(无税、无交易成本、资产无限可分、允许卖空)、无风险利率保持不变、股价遵循几何布朗运动等。 2、风险中性定价原理 风险中性定价原理:我们可以注意到期权价格就是与标的资产的预期收益率无关的。C(S, t)与 S 、r 、t 、T 、σ以及 K 有关,而与股票的期望收益率μ无关。这说明欧式Call 的价格与投资者的风险偏好无关。 在对欧式Call 定价时,可假设投资者就是风险中性的(对所承担的风险不要求额外回报,所有证券的期望收益率等于无风险利率)。

亚式期权论文:亚式期权概念及定价简析

亚式期权论文:亚式期权概念及定价简析摘要:给出了亚式期权的基本概念并讨论了亚式期权的几种定价方法的优劣。 关键词:亚式期权;monte carlo;模拟;简析 一、引言 比标准欧式期权或美式期权和看跌期权盈亏状态更复杂的衍生证券有时称为新型期权。大多数新型期权在场外交易,它们是由金融机构设计以满足市场特殊需求的产品。本文的第一个目的,就是介绍新型期权的一种—亚式期权,这类期权在场外市场广受欢迎,但此类期权较难定价,本文的第二个目的,给出常见的亚式期权的定价方法并作一定的比较。 二、基本概念 亚式期权是市场上常用金融工具, 其到期收益函数与一特定时段内标的资产的某种形式的平均息息相关,即依赖于标的资产价格的某种平均值。可以是一段时间内的连续平均值,也可以是若干个时间点的离散平均值;可以是算术平均,也可以是几何平均. 每一个确定的平均类型都对应着两种亚式期权的形式,即平均资产价格与平均敲定价格,它们都具有欧式期权风格. 不同的是前者的收益函数是在欧式期权的收益函数中用平均值取代资产本身的价格;而后者的

收益函数是在欧式期权的收益函数中用平均值取代合约的敲定价格. 与普通的期权类似,每种亚式期权都具有看涨和看跌两种交易情形。以连续情形的标的资产价格平均值为例,用a 表示算术平均值, g表示几何平均值, s t表示时刻t的资产价格,服从几何布朗运动,则 对于算术平均情形,看涨平均资产价格期权的到期收益为max ( a - k ,0) ,开始时刻的期权价格为 对于几何平均情形,看涨平均资产价格期权的到期收益为max( g - k ,0) ,开始时刻的期权价格为 亚式期权的优点是可以缓解市场的投机行为,且相对于普通期权,价格较便宜,常利用其对冲指定时期的风险。但亚式期权的定价仍是个公开问题。假定标的资产价格s服从对数正态分布,一系列对数正态分布变量的几何平均仍服从对数正态分布,而相应算术平均没有可以解析处理的特性,故算术平均亚式期权比几何平均亚式期权的定价要困难得多。对几何平均亚式期权,我们已得到它的定价的解析解,但算术平均亚式期权很难存在这种解析解。 三、亚式期权定价分析 (一)连续型亚式期权的定价 kemna &vorst (1990)通过改变波动率和敲定价格提出

第十一章 期权定价模型

第十一章 期权定价模型 【学习目标】 本章是期权部分的重点内容之一。本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。 自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。 第一节 Black-Scholes 期权定价模型 一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下: 1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动3,即 dz dt S dS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。μ和σ都是已知的。 简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变 1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-659 2 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章 3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页

期权定价

第二章期权定价 自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。 第一节二叉树与风险中性定价 对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。 1.1 二叉树模型概述 二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。

(定价策略)期权定价理论

期权定价理论 期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世(有关期权定价的发展历史大家可以参考书上第358页,有兴趣的同学也可以自己查找一下书上所列出的经典文章,不过这要求你有非常深厚的数学功底才能够看懂)。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。为此,对期权定价理论的完善和推广作出了巨大贡献的默顿和Scholes在1997年一起荣获了诺贝尔经济学奖(Black在1995年去世,否则他也会一起获得这份殊荣)。 原始的B—S模型仅限于这类期权:资产可用于卖出期权;能够评估价值,资产价格行为随时间连续运动。随后建立在原始的B—S模型上的研究以及许多其他期权定价模型的变体相继出现,用于处理其他类型的标的资产以及其他类型的价格行为。在大多数情况下,期权定价模型的推倒基于随机微积分(Stochastic Calculus)的数学知识。没有严密的数学推演,演示这种模型只是摸棱两可的。可是,这并非要紧的问题,因为确定期权公平价格的必要计算已自动化,且达到上述目的的软件在大型计算机及微机中均可获得。因此,在这里,我只简单介绍一下B—S模型的关键几个要素,至于具体的数学推导(非常复杂),感兴趣的同学可以在课后阅读一下相关资料(一般都是在期权定价理论章节的附录中)。 首先,我们来回顾一下套利的含义 套利 套利(arbitrage)通常是指在金融市场上利用金融产品在不同的时间和空间上所存在的定价差异、或不同金融产品之间在风险程度和定价上的差异,同时进行一系列组合交易,获取无风险利润的行为。注意,这种利润是无风险的。 现代金融交易的目的主要可以分为套利、投机和保值,这也是我们在以前的课程中接触过的。那么,我们怎样来理解套利理论的含义呢? 我们说,市场一般是均衡的,商品的价格与它的价值是相一致的。如果有时候因为某种原因使得价格与价值不相符,出现了无风险套利的机会,我们说这种套利的机会就会马上被聪明的人所发现和利用,低买高卖,赚取利润,那么通过投机者不断的买卖交易,原来价值被低估的商品,它的价格会上涨(投机者低价买入);原来价值被高估的商品,它的价格会下跌(投机者高价卖出),交易的结果最终会使得市场价格重新回到均衡状态。(就像书中列举的两家书店卖书的例子一样…) 同样的道理我们不难理解,现代期权定价技术就是以无风险套利原理为基础而建立起来的。我们可以设计一个证券资产组合,使得它的价值(收益)与另外一个证券资产组合的价值相等。那么,根据无风险套利理论,这两种证券资产组合应该以同样的价格出售。从而,可以帮助我们确定,在价格均衡状态下,期权的公平定价方式。 具体来说,对期权跌——涨平价原理的推导就采用了无风险套利的原理。 跌——涨平价原理(put——call parity) 看涨期权的价格与看跌期权的价格(也就是期权费)之间存在着非常密切的联系,因此,只要知道看涨期权的价格,我们就可以推出看跌期权的价格(通过平价原理)。这样,就省去我们再费心研究看跌期权的定价公式了。只要我们通过B——S模型计算出看涨欧式期权的定价之后,我们就可以相应地推出欧式看跌期权的定价(注意,B——S模型只适用于欧式看涨期权)。

蒙特卡洛期权定价方法

第八章蒙特卡洛期权定价方法在金融计算中蒙特卡洛模拟是一种重要的工具:可以用来评估投资组合管理规则、为期权定价、模拟套期保值交易策略、估计风险价值。蒙特卡洛方法主要的优势在于对大多数情况都适用、易于使用、灵活。它把随机波动性和奇异期权的很多复杂特性都考虑进去了,更倾向于使用处理高维问题,而网格和PDF分析框架却不适用。蒙特卡洛模拟潜在的劣势在于它的计算量大。多次的重复需要完善我们所关注的置信区间的估计。利用方差缩减技术和低差异序列可以部分的解决这个问题。本章的目的是解释这些技术在一些例子上的应用,包括一些路径依赖型期权。这章是第四章的延伸,在第四章里我们讨论了蒙特卡洛积分。需要强调的是蒙特卡洛方法是概念上的一个数字积分工具,即使我们适用更多的“模拟”或“抽样”。在使用低差异序列而不是伪随机生成时这需要牢记。 如果可能,我们可以把模拟的结果和分析公式进行比较。很明显我们这样做的目标是一个纯粹的教学。如果你要计算一个矩形房间的面积,你只需要用房间的长度乘以房间的宽度即可,而不必要计算有多少次一块标准砖与这个表面相匹配。尽管如此,你还是应该学会在一些简单案例中首先适用模拟的方法,在这些简单的例子中我们可以检验答案的一致性;更进一步,我们也要看为达到方差减小的目的分析公式可用于的模拟期权可能更有力的控制变量。 蒙特卡洛应用的出发点是生成样本路径,这个生成的样本路径给予一个描述价格(或利率)动态的随机微分方程。在8.1节我们解释几何布朗运动的路径生成;在一个具体例子中模拟两个对冲策略,我们也会讨论布朗桥,它是适时推进模拟样本的一个替代方案。在8.2节将讨论交换期权,它被用作为一个如何将这种方法推广到多维过程的一个简单实例。在8.3节我们考虑一个弱路径依赖型期权的例子,这是个下跌敲出看跌期权;我们加入了有条件的蒙特卡洛和为减小方差抽样的重要性。在

有限差分方法计算欧式期权价格

假设当前股票价格为50美元,股票价格波动率sigma=0.3;以该股票为标的资产的欧式看跌期权的执行价格为50美元,期权有效期为5个月;市场上的无风险利率为10%。利用显示差分格式为该期权进行定价。 %%% 显示法求解欧式看跌期权%%% s0=50; %股价 k=50; %执行价 r=0.1; %无风险利率 T=5/12; %存续期 sigma=0.3; %股票波动率 Smax=100; %确定股票价格最大价格 ds=2; %确定股价离散步长 dt=5/1200; %确定时间离散步长 M=round(Smax/ds); %计算股价离散步数,对Smax/ds取整运算 ds=Smax/M; %计算股价离散实际步长 N=round(T/dt); %计算时间离散步数 dt=T/N; %计算时间离散实际步长 matval=zeros(M+1,N+1); vets=linspace(0,Smax,M+1); %将区间[0,Smax]分成M段 veti=0:N; vetj=0:M; %建立偏微分方程边界条件 matval(:,N+1)=max(k-vets,0); matval(1,:)=k*exp(-r*dt*(N-veti)); matval(M+1,:)=0; %确定叠代矩阵系数 a=0.5*dt*(sigma^2*vetj-r).*vetj; b=1-dt*(sigma^2*vetj.^2+r); c=0.5*dt*(sigma^2*vetj+r).*vetj; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% L=zeros(M-1,M+1); for i=2:M %%建立递推关系 L(i-1,i-1)=a(i); L(i-1,i)=b(i); L(i-1,i+1)=c(i); end for i=N:-1:1 matval(2:M,i)=L*matval(:,i+1); end matval %寻找期权价格进行插值。 Jdown=floor(s0/ds);

亚式期权定价研究综述

亚式期权定价研究综述 对亚式期权定价的文献进行分类整理,并就其中一些文献的观点进行分析评论。亚式期权是场外交易中几种最受欢迎的新型期权之一,但它的价格却没有解析表达式,到目前为止,亚式期权的定价仍是个公开问题。在尝试了大量研究之后,发现在很早之前提出来的Monte Carlo模拟法定价是算术平均亚式期权的较好近似。 标签:亚式期权;定价方法;文献综述 1引言 亚式期权(Asian options)作为新型期权中的一种,也称为平均期权,它实质上是欧式期权的一种创新。它与欧式期权的相同点在于它们都是只允许其投资者在到期日当天执行期权合同,不同点在于欧式期权是根据到期日当天的股价的高低来决定是否执行期权合同,而亚式期权是根据合同期内的股价的平均价格的高低来决定是否执行期权合同。由于欧式期权到期日的价值与路径无关,只依赖于到期日的股价,因此很难防止有人操纵到期日的价格进而从中套利,而亚式期权却是与路径相关的,使用它可以缓解投机行为。而且,与标准期权相比,亚式期权还有价格更便宜、可以用来对冲在指定时期内的风险的优点。 亚式期权是场外交易中几种最受欢迎的新型期权之一,但它的价格却没有解析表达式,到目前为止,亚式期权的定价仍是个公开问题。假定标的资产价格s 服从对数正态分布,因为一系列对数正态分布变量的几何平均仍服从对数正态分布。而相应算术平均没有可以解析处理的特性,故算术平均亚式期权比几何平均亚式期权的定价要困难得多。对几何平均亚式期权,我们已得到它的定价的(显式)解析解,但算术平均亚式期权很可能不存在这种(显式)解析解。然而,实际中常见的是算术平均亚式期权,几何平均亚式期权相对较少。因此,算术平均亚式期权的定价问题引起许多数理金融学家的注意,已有不少的近似解,但至今没有解析解,因而探寻其合理的价值估计方法成为期权理论的一个具有重要学术价值的题目。 2亚式期权定价 尽管亚式期权已经在实务界得到广泛应用,其准确的定价公式仍没有从理论上得到较好解决。对于亚式期权的估价问题,关键是如何确定股价平均价格A(T)的概率分布,这是得到解析定价公式的主要难点。许多学者从不同角度讨论了亚式期权的定价思路。 2.1国外研究 Kemna&V orst(1990)通过改变波动率和敲定价格提出了一个几何平均期权的定价解析公式。几何平均期权可以用一个明确的解析式来计算,因为如果价格

期权定价模型介绍及改进

Final Exam 课程:金融计量 Title: Give a literature review on option pricing. Try to propose a new option and study the price of new option or try to improve a known option and study the price of the improved option.

期权定价模型介绍及改进课程名称:金融计量 任课老师:XX 姓名:XXX 学号:XXXXXX 班级:XXXXXX 2014年1月8日

目录 一、期权定价模型的发展 (4) 二、期权的基础知识 (5) 2.1期权的概念及分类 (5) 2.1.1期权的基本概念 (5) 2.1.2期权的分类 (5) 2.2影响期权定价的主要因素 (6) 2.2.1期权价格 (6) 2.2.2期权价值的构成 (6) 2.2.3期权价格的决定因素 (7) 2.3期权的作用-投机与保值 (8) 三、期权定价模型介绍 (9) 3.1期权定价的基本原理 (9) 3.2期权定价的方法 (9) 3.3常见期权定价模型 (10) 3.3.1二叉树模型 (10) 3.3.1.1单周期二叉树定价模型 (10) 3.3.1.2n周期二叉树定价模型 (11) 3.3.2 Black-Scholes 公式 (12) 3.3.2.1无风险投资组合方法 (13) 3.3.2.2风险中性(等价鞅测度)方法 (14) 3.4常见定价模型应用分析 (15) 四、期权定价模型的推广及改进 (15) 4.1二叉树定价模型的推广 (15) 4.2Black-Scholes定价模型的推广 (16) 五、结论 (17) 参考文献 (18)

期权价格计算公式

期权价格计算公式 股票的价格变化遵循一维维纳过程,其微分方程如下 dz t s b dt t s a ds ),(),(+= 式中:dz 的差分?Z 满足如下条件的正态分布 t z ?=∈? 在一般情况下,ds 可用下式表示: sdz sdt ds σμ+=----------- (1) 或表示为: dz dt s ds σμ+= 式中:s μ股票价格的期望漂移率,μ 为一个恒定参数;2)(s σ为股票价格波动的方差, σ 为股票价格的波动率,可以通过观察股票价格的动态系列数据获得。 如果存在一个变量 G ,它是股票S 的一种衍生证卷,它的价格是S 和 t 的函数,G(s,t),那么,S 和G 都受到同一个基本的不确定性因素的影响。根据ITO 定理,函数G 的行为遵循如下微分方程描述的过程: Sdz S G dt S S G t G S S G dG σσμ??+??+??+??=)21(2222 -------------(2) 函数G 的漂移率为 222221S S G t G S S G σμ??+??+?? 方差为 222)(S S G σ??

如果G 代表股票S 的一种期权,我们想用S 和G 构造一组风险中性的证卷组合。为此,首先将公式(1)、(2)改写成对应的差分形式: z S t S S ?+?=?σμ ---------------(3) z S S G t S G t G S S G G ???+???+??+??=?σμ)21(22 ----------(4) 由于公式(3)、(4)中的z ?t ?=∈()是相同的维纳过程,只要证卷数量的搭配合理,整卷组合就可以消除z ?。 恰当的证卷组合是: -1; 卖空一个期权 S G ??+;买入期权价值变化对股票价格的敏感度,也就是他的偏微分那样多的股票。定义这个证卷组合的价值为∏,表达式为 S S G G ∏??+-= ---------(5) t ?时间后,这个证卷组合的价值变化为: S S G G ???+?-=?∏ -----------(6) 将(3)、(4)带入(6),消去z ?,得: t S S G t G ???-??-=?∏)21(2222σ ---------(7) 由于这个证卷组合是风险中性的,所以,它的收益一定与任何一个无风险证卷的收益相同,就是 ∏∏?=?t r ---------(8) 将(5)、(7)带入(8),得:

期权定价

第八章期权定价的二叉树模型 8.1 一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价 格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权 的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期 日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险 利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有

即 将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为 (8.2) (8.3) 需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: . 现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。 已知:且在期权到期日, 当时,该看涨权的价值为而当时,该看涨权的价值为 根据(8.3)和(8.2),可得 . 上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价 格中了。不妨令股价上升的概率为,则股价下降的概率就是,在时间的期望股票价格为

常用的几个期权定价模型的基本原理及其对比分析

常用的几个期权定价模型的基本原理及其对比分析 (function() { var s = "_" + Math.random().toString(36).slice(2); document.write(''); (window.slotbydup = window.slotbydup || []).push({ id: "u3686515", container: s }); })(); [摘要] 期权是一类重要的金融衍生产品,它赋予持有者的是一种买权或卖权,

而并非义务,所以期权持有者可以选择行使权利,也可以放弃行权。那么,如何对期权定价才能对期权的发行者、持有者双方更加合理?于是就产生了期权的定价问题。在现代金融理论中,期权定价已经成为其重要的组成部分,关于对期权定价模型的研究成果也是层出不穷,文章主要介绍在连续时间下常用的三种期权定价模型:Black-Scholes模型、 Ornstein-Ulhenbeck过程模型以及跳跃-扩散模型,并对这三种模型作简要的对比分析。 [关键词] Black-Scholes期权定价模型;Ornstein-Ulhenbeck过程的期权定价模型;跳跃-扩散过程的期权定价模型;风险中性定价 doi :10 . 3969 / j . issn . 1673 - 0194 . 2018. 23. 050 [中图分类号] F830.9 [文献标识码] A [文章编号] 1673 - 0194(2018)23- 0117- 04 1 Black-Scholes期权定价模型 1970年初,美国经济学家布莱克(F.Black)和斯科尔斯(M.Scholes)发现无支付红利的股票的衍生证券的价格必然满足一个微分方程,他们推导出了该方程的解析解,并得到了欧式看涨、看跌期权的价格。该理论被视为期权定价史上的丰碑,为此,斯科尔斯

关于期权定价模型

关于期权定价模型

期权定价问题的数学模型 白秀琴杨宝玉(平顶山工业职业技术学院,基础部,河南平顶山467001) 摘要:介绍了资产定价理论近十年来的发展状况和历史背景,阐述了期权定价的基本概念 和基本假设的直观模型。 关键词:期权;套利;数学模型 Mathematical Model of OPricing Model BAI Xiu-qin,Yang Bao-yu (Pingdingshang Industrial College Of Technology,Pingdingshan,Henan,467001) Abstract: Introducing the historical background of asset pricing theory and the development during the past 10 years .Expounding the intuitive model of the basic concept and the basic assumptions of option pricing Key words: option arbitrage

mathematicai model 金融数学是研究经济运行规律的一门新兴学科,是数学与金融学的交叉,建立数学模型是对金融理论和实践进行数量分析和研究的主要方法。金融数学的几个主要理论是投资组合选择理论,资本资产定价理论,期权定价理论。本文主要探讨期权定价理论的数学模型及应用。 一 、期权定价理论的基本思想及其发展 期权是一种选择权,是其购买者在支付一定数额的期权费后,即拥有在某一特定时间内以某一确定的价格买卖某种特定商品契约的权利,但又无实施这种权利(即必须买进或卖出)的义务。它按交易性质可分为看涨期权和看跌期权,前者赋予期权拥有者在未来按履约价格购买期权标的物权利,又称买入期权;后者赋予期权拥有者在未来履约价格售出期权标的物权利,又称为卖出期权。期权按权利行使时间的不同,还可以分为欧式期权和美式期权,欧式期权只有在权利到期日才能履约交易,美式期权则在期权有效期内的任何时间都可以行使权利。 期权的交易由来已久,但金融期权到20世纪70年代才创立,并在80年代得到广泛应用。1973年4月26日美国率先成立了芝加哥期权交易所,使期权合约在交割数额,交割月份以及交易程序等方面实现了标准化。在标准化的期权合约中,只有期权的价格是唯一的变量,是交易双方在交易所内用公开竞价方式决定出来的。而其余项目都是事先规定的。因此,我们的问题就是如何确定期权的合理价格。目前两个经典的期权定价模型是Black-Scholes 期权定价模型和Cox-Ross-Rubinstein 二项式期权定价公式。尽管它们是针对不同状态而言的,但二者在本质上是完全一致的。 在讨论期权定价模型之前,我们先对金融价格行为进行分析。 二、金融价格行为 资产价格的随机行为是金融经济学领域中的一个重要内容。价格波动的合理解释在决定资产本身的均衡价格及衍生定价中起着重要的作用。资产价格波动的经典假设,也是被广泛应用的一个假设是资产价格遵循一扩散过程,称其为几何布朗运动,即 )()()()(t dB t S dt t S t dS σα+= (1) 其中,S(t)为t 时刻的资产价格,μ为飘移率,σ为资产价格的波动率,B(t)遵循一标准的维纳过程。为说明问题的方便,下面我们引入It?引理: 设F(S,t)是关于S 两次连续可微,关于t 一次可微的函数,S(t)是满足随机微分方程(1)的扩散过程,则有以下随机变量函数的It?微分公式 dt F dS F dt F t S dF SS S t 2 21),(σ++= (2) Black-Scholes 期权定价模型的一个重要假设是资产价格遵循对数正态分布,即)(ln ),(t S t S F =。将该式与(1)式同时代入(2)式,有 )()()(ln 2 2 1t dB dt t S d σσα+-= (3) 从而有

期权定价模型分类及其实际应用

随着社会的进步,金融市场的发展逐步完善,越来越多的金融衍生品走进了人们的视野。期权作为重要的金融衍生品之一,受到许多投资者与研究者的关注。本文就是对期权的产生与发展和期权相关的定价模型进行了讨论。本文先简要介绍了期权的发展史以及现阶段的概况,随后对期权进行分类详解,接着以B-S模型和二叉树模型这两种经典定价模型为例进行了深入讨论并举例说明他们的实际应用,最后又分析了几种新型期权和他们的定价模型,并简要介绍了他们的实际用途。 关键词:期权发展历程;期权的分类;B-S定价模型;二叉树模型 ?Abstract With thedevelopmentofthesociety, finance mar kethas been improving gradually,more and more f inancial derivative instruments havecome to the eyesight of people. Option, asthe important tool of financial derivativeinstrument, has been cast more attention by theinvestor and the researcher.This essaywould focuson the generation of option and Capital Asset Pricing Model ofthe option.First,thisdissertation in troducesthehistory and nowadaysstate of the option development. Then, it focuses its attention on classifying and description of the option.This paper r aises the Black-ScholesModel and Binary Tree Model astypical example totalk deeplyabou ttheir appliance. Finally, thispaper analysis some kinds of newoptions and their asse tpricing model, and introduce the practical us e o f thenewoption to all readers.??Keywords: historyof option developmentOption classifyin g ?Black-Scholes Model BinaryTree Model

期权定价模型

期权定价模型 什么是期权 期权,又称为选择权,指一种能在未来某特定时间以特定价格买入或卖出一定数量的某种特定商品的权利。它是在期货的基础上产生的一种金融工具,给予买方(或持有者)购买或出售标的资产的权利。期权的持有者可以在该项期权规定的时间内选择买或不买、卖或不卖的权利,他可以实施该权利,也可以放弃该权利,而期权的出卖者则只负有期权合约规定的义务。 Black-Scholes 期权定价模型 股票价格的变动一般没有规律可循,但我们可以用随机过程来刻画股价的变动过程。特别的,我们可以假设股价遵循几何维纳过程。1973年,斯坦福大学的教授Myron Scholes 和他的同事、已故数学家Fischer Black 在美国《政治经济学》上发表了论文《期权与公司债务的定价》,给出了欧式看涨期权的定价公式,即著名的Black-Scholes 期权定价模型。该模型被称为“不仅在金融领域,而且在整个经济学中最成功的理论”。在模型的应用、改进和扩展方面,哈佛商学院的教授Merton 也做了大量的研究工作。因此,Scholes 和Merton 被授予1997年的诺贝尔经济学奖,以表彰他们所做出的杰出贡献。 二叉树期权定价模型 虽然Black-Scholes 期权定价模型有许多优点,但是它复杂的数学推导和求解过程在金融界较难被广泛接受和掌握。1979年,J.C.Cox 、S.A.Ross 和M.Rubinstein 在《金融经济学杂志》上发表论文《期权定价:一种简单的方法》,提出了一种比较浅显的期权定价方法,被称为Cox-Ross-Rubinstein 二项式期权定价模型(Binomial Model )或二叉树期权定价模型(Binomial tree )。二叉树期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。 窝轮的定价及影响因素 目前香港的窝轮发行商给窝轮定价时基本上都是采用Black-Scholes 期权定价模型。所不同的是,各个发行商对模型中的参数如无风险利率,红利和波动率的选取都有所不同。比如发行商会考虑自身的资产状况和借贷资金成本来界定无风险利率,对公司红利的派发预期也有所不同,另外对波动率的选取和稳定性维护更是能体现发行商的信誉和资质水平。 牛熊证的定价及影响因素 牛熊证作为一种新型结构性产品于2006年6月被引入香港市场之后,发展至今深受市场欢迎。由于牛熊证设有收回价机制,在定价方面,牛熊证和窝轮完全不同。用数学公式表示,即为: ()E r T X X S c ??+?=)(,()E r T S S X p ??+?=)( 其中p c 、分别为牛证和熊证的价格,E r T X S 、、、、分别为正股股价、行使价、剩余期限、年息和兑换比率。 招商证券(香港)研究部 陈文质 (86-755) 83295367 cwz@https://www.360docs.net/doc/9610261910.html, 何 钟 (852) 31896818 hezhong@https://www.360docs.net/doc/9610261910.html, 2009年4月2日

相关文档
最新文档